Compare commits

...

149 Commits

Author SHA1 Message Date
Greg Johnston
8f94c8e6b1 v0.2.2 (#667) 2023-03-12 14:59:04 -04:00
martin frances
604ba3ff90 clippy: signal_wrappers_read, was using .clone() when copy is available. (#665) 2023-03-12 14:52:13 -04:00
Elliot Waite
2e671887d9 docs: typo fixes and other small changes to the docs (#662) 2023-03-12 14:51:47 -04:00
Greg Johnston
e7d56b76b8 fix: apply patches to all instances of a view, not just the first one (#663) 2023-03-11 16:34:13 -05:00
Greg Johnston
87d5bddb21 fix: text node issue in template macro (#661) 2023-03-11 14:25:38 -05:00
Charles Taylor
9d46b7bcb0 feat: impl Copy & Clone for MaybeSignal (#660) 2023-03-11 13:17:16 -05:00
Greg Johnston
591212a56a feat: add fragment support for hot reloading and fix some stuff (#659) 2023-03-11 07:21:37 -05:00
Ben Wishovich
1a3c1e9e52 feat: provide Request<_> in context for Axum, enabling easier extractor use (#632) 2023-03-10 17:28:32 -05:00
martin frances
94998aa95e chore: cargo machete: leptos_macro - Removed unused crates. (#656) 2023-03-10 09:44:23 -05:00
Greg Johnston
c782017578 feat: impl IntoView for &Fragment (#655) 2023-03-10 09:43:03 -05:00
Pikhosh
d291cdb968 fix: show console error instead warning for error! (#654) 2023-03-10 09:42:44 -05:00
ealmloff
29fb1842a5 feat: make server functions work outside of WASM (#643) 2023-03-09 18:03:57 -05:00
Greg Johnston
b085a6c38e docs: add create_effect chapter (#653) 2023-03-09 18:03:38 -05:00
zack.shen
17c12823db docs: spelling error (#651) 2023-03-09 16:45:35 -05:00
martin frances
81401a738c chore: bumped typed-builder up to 0.14. (#648) 2023-03-09 16:44:27 -05:00
martin frances
c9476af063 chore: bump bytecheck to 0.7, remove deprecated simdutf8_std. (#647)
* bump bytecheck to 0.7, remove deprecated simdutf8_std.

* When using rkyv, must use the appropiate CheckBytes.
2023-03-09 16:44:06 -05:00
Greg Johnston
1f95eb1e1d chore: typo (closes issue #645) (#646) 2023-03-08 19:52:51 -05:00
Vanius Bittencourt
1584ab6b72 feat: refactor leptos_config to allow loading from string (#628) 2023-03-08 19:49:19 -05:00
martin frances
c63c8ac447 chore: cargo machete: Strip down leptos_server. (#644) 2023-03-08 19:37:22 -05:00
martin frances
1a0e2b509e chore: bump serde-wasm-bindgen to 0.5. (#639) 2023-03-08 19:12:30 -05:00
martin frances
c66b673067 chore: <Form/> component Removed unused variables. (#640) 2023-03-07 14:04:55 -05:00
martin frances
a13468228a Bumped tower-http upto 0.4. (#638) 2023-03-07 14:03:54 -05:00
Greg Johnston
bb0324fd48 fix: custom events (closes issue #641) (#642) 2023-03-07 14:00:48 -05:00
jo!
369ea8531f examples: add session_auth_axum (#589) 2023-03-06 21:16:56 -05:00
Greg Johnston
9cc28943aa CI: split into three actions (#636) 2023-03-06 21:00:56 -05:00
erwanvivien
10bdff7d4b de-duplicate todomvc example (#634) 2023-03-06 16:52:35 -05:00
martin frances
27fb430900 bump typed-builder to version 0.13. (#633) 2023-03-06 09:07:21 -05:00
jfloresremar
207dedab6e Update 04_iteration.md (#630) 2023-03-06 09:06:58 -05:00
IchHabeKeineNamen
0052b10df3 docs: fix instruction typos (#631) 2023-03-06 09:05:21 -05:00
Greg Johnston
08d98691a3 fix: boolean attributes in SSR (#629) 2023-03-04 14:24:08 -05:00
WafflePersonThing
34aa0e014b fix: added missing attributes of events that don't bubble (#625)
references used:
- https://developer.mozilla.org/en-US/docs/Web/API/
- web archives of the above before jun 11th 2022, relevant: https://github.com/mdn/content/issues/19590
2023-03-04 11:30:12 -05:00
Greg Johnston
55ce805b60 feat: hot reloading support for cargo-leptos (#592) 2023-03-04 09:04:22 -05:00
Greg Johnston
1e0adcd89a docs: add a chapter on async actions and create_action (#623) 2023-03-03 17:25:19 -05:00
Greg Johnston
4e67b3aef8 CI: exclude rkyv combos with other serialization traits (#622) 2023-03-03 15:48:06 -05:00
Greg Johnston
02e2948e00 fix: suppress warnings caused by resource loading in generate_route_list (closes #582) (#621) 2023-03-03 13:20:38 -05:00
Greg Johnston
bd86125629 feat: allow easier client-side form validation (closes #413) (#620) 2023-03-03 13:19:54 -05:00
Greg Johnston
11d9018e4f docs: add patterns for global state (closes #245) (#619) 2023-03-03 11:51:21 -05:00
Greg Johnston
553e38ba15 tests: use check instead of build in CI for disk space (#616) 2023-03-03 11:50:50 -05:00
Greg Johnston
c8e6d18139 feat: allow multiple class names in view! macro class = (closes #612) (#614) 2023-03-03 10:44:15 -05:00
Greg Johnston
e29f6a884f docs: improve "Getting Started" page (#618) 2023-03-03 10:43:49 -05:00
Greg Johnston
10a2ada42a add note about running Trunk from root 2023-03-03 10:42:18 -05:00
martin frances
2dd9116a20 chore: clippy - simplified conditional logic in transition.rs. (#615) 2023-03-03 09:06:56 -05:00
Roland Fredenhagen
2ee323135f feat: support expressions in #[prop(default=...)] (#611) 2023-03-02 19:15:45 -05:00
Ivan Agafonov
cebc824fbe docs: updated error handling code (#610)
code is from already updated example
2023-03-02 07:24:04 -05:00
Sergei Gnezdov
dd0bcb950a docs: fix compilation error, Issue #608 (#609)
Compiler reports error
F may not live long enough
2023-03-02 07:23:35 -05:00
Greg Johnston
bb5ad101a2 publish framework-independent server_fn crate (#605) 2023-03-02 07:22:36 -05:00
Ivan Agafonov
df90f183fd docs: use create_node_ref instead of NodeRef::new (#607)
Code in the example already updated by someone
2023-03-02 07:22:18 -05:00
ealmloff
0c261c0fb0 feat: make server functions framework agnostic (#596) 2023-03-01 20:56:30 -05:00
Greg Johnston
f46084723a fix: memory leak in streaming SSR (closes issue #590) (#601) 2023-03-01 20:54:28 -05:00
Qwox
08ad6832af fix: set new value before resetting input (#604)
Co-authored-by: Qwox <qwox@qwox.com>
2023-03-01 20:04:37 -05:00
Greg Johnston
700a110350 Merge pull request #603 from makoven/patch-1
Fix typo in 03_components.md
2023-03-01 16:29:46 -05:00
Artem Makoven
33b5d8c4fb Fix typo in 03_components.md 2023-03-02 05:54:59 +09:00
Greg Johnston
ceb7bd398d Merge pull request #602 from iagafonov/patch-1 2023-03-01 14:26:49 -05:00
Ivan Agafonov
7f72c804f4 typo
_cx replaced with cx
2023-03-01 20:08:03 +03:00
Greg Johnston
be0a793179 Merge pull request #599 from leptos-rs/hydration-do-not-reset
fix: SSR + hydration improvements
2023-03-01 06:00:50 -05:00
Greg Johnston
e1625106b8 fix SSR tests 2023-02-28 21:35:59 -05:00
Greg Johnston
abef12279b fix: don't re-set attributes found in HTML during hydration (closes #597) 2023-02-28 19:56:13 -05:00
Greg Johnston
578853877a fix: restore SSR fast-path support 2023-02-28 15:36:52 -05:00
Greg Johnston
04eae63e39 examples: include missing examples in CI (#598) 2023-02-28 15:33:02 -05:00
Brendon Otto
4b98ece2b4 example: update README.md (#595)
Incorrect framework referenced
2023-02-28 09:45:10 -05:00
Greg Johnston
1b2a0fe2ad fix: mouseenter and mouseleave do not bubble (#593) 2023-02-28 09:39:52 -05:00
Thomas Kratz
ab6ddc1194 fix: make counter test compile (#588) 2023-02-27 21:50:12 -05:00
Azz
b153ab51ee feat: support rkyv encoding (#577) 2023-02-26 16:12:53 -05:00
Greg Johnston
34f7b90177 perf: improvements to event delegation and element creation in <For/> (#579) 2023-02-26 08:31:03 -05:00
g-re-g
3648af0d9d fix: correct scheme handling in router, and improve matching code by removing regexes (#569) 2023-02-26 07:15:14 -05:00
Greg Johnston
3d50ca32cd v0.2.0 2023-02-25 15:45:35 -05:00
tanguy-lf
e576d93f83 examples: add ssr_mode_axum (#575) 2023-02-25 11:24:24 -05:00
Greg Johnston
e71779b8a6 fix: <Transition/> with local_resource (closes #562) (#574) 2023-02-24 19:51:03 -05:00
Markus Kohlhase
0301c7f1cf example: Login with API token (CSR only) (#523) 2023-02-24 17:11:58 -05:00
Remo
46e6e7629c chore: macro panic hygiene (#568) 2023-02-24 16:36:05 -05:00
SleeplessOne1917
a985ae5660 fix: <Meta/> component as_ property outputs correct attribute html (#573) 2023-02-24 08:58:15 -05:00
Denis Nazarov
efe29fd057 Relax Eq to PartialEq for create_slice() (#570)
Co-authored-by: Denis Nazarov <denis.nazarov@gmail.com>
2023-02-23 08:00:01 -05:00
Greg Johnston
05b5b25c0e fixes issue #565 (#566) 2023-02-22 09:20:33 -05:00
Greg Johnston
46f6deddbf fix: transition fallback (closes #562) (#563) 2023-02-21 15:11:08 -05:00
Fangdun Tsai
e9c4b490e5 feat: viz integration (#506) 2023-02-21 12:29:15 -05:00
PolarMutex
f7d0eea04d feature: add class prop to <Html/> component (#554) 2023-02-21 12:28:11 -05:00
Greg Johnston
bf246a62e7 fix: issue with local resources blocking <Suspense/> fragments from resolving (#561) 2023-02-21 06:29:29 -05:00
Greg Johnston
b8acfd758d fix: remove unnecessary log (#560) 2023-02-20 21:34:09 -05:00
Greg Johnston
dc8fd37461 docs: add create_resource, <Suspense/>, and <Transition/> (#559) 2023-02-20 17:39:17 -05:00
Greg Johnston
cc2b310e4c docs: add example of <ButtonC on:click/> syntax (#558) 2023-02-20 15:41:56 -05:00
Thomas Versteeg
884348d7f8 doc: fix button name in parent_child example (#555) 2023-02-20 14:53:04 -05:00
Greg Johnston
dafd6e51c5 v0.2.0-beta (#557) 2023-02-20 14:52:31 -05:00
Ben Wishovich
322041917d fix issue with redirects in server fns creating multiple Location headers (#550) 2023-02-20 08:55:47 -05:00
Ikko Eltociear Ashimine
a2eaf9b3ee fix: typo in hydration docs(#552)
identifer -> identifier
2023-02-20 07:09:33 -05:00
Chrislearn Young
4032bfc210 fix: document docs typo (#553) 2023-02-20 07:08:51 -05:00
Greg Johnston
4ff08f042b change: pass Scope as argument into Resource::read() and Resource::with() (#542) 2023-02-19 19:52:31 -05:00
Greg Johnston
ce4b0ecbe1 fix: more work on hydration IDs with <Suspense/> (#545) 2023-02-18 21:20:40 -05:00
Greg Johnston
6c31d09eb2 revert PR #538 (#544) 2023-02-18 18:39:08 -05:00
Greg Johnston
59ad6a4725 revert accident 2023-02-18 16:03:20 -05:00
Greg Johnston
884dacbc6c fix example 2023-02-18 16:02:19 -05:00
Dmitrii Kuzmin
9c572f7617 fix(examples): hackernews_axum styles href (#536) 2023-02-18 15:17:54 -05:00
jquesada2016
487dba90d8 fix: off-by-one error in <For/> (closes #533) (#538) 2023-02-18 14:57:14 -05:00
Greg Johnston
20f24d2f3a fix: building leptos_reactive in release mode (#540) 2023-02-18 12:45:58 -05:00
Greg Johnston
20cbc240ee v0.2.0-alpha2 (#539) 2023-02-18 12:45:46 -05:00
jquesada2016
f2f52b2533 change: move signal method implementations into traits in signal prelude (#490) 2023-02-18 07:30:03 -05:00
Sean Aye
46d6e3f78c fix compile of leptos dom (#535) 2023-02-17 18:25:58 -05:00
Greg Johnston
586f524015 feature: in-order streaming and async rendering (#496) 2023-02-17 17:31:32 -05:00
Greg Johnston
79781ec20c Fix test import location 2023-02-17 16:18:22 -05:00
Greg Johnston
91f6d9a404 What's in a name? 2023-02-17 07:25:42 -05:00
Greg Johnston
76a74ecde2 fix: hydration IDs for elements following <Suspense/> (closes #527) (#531) 2023-02-16 21:12:52 -05:00
Greg Johnston
0071a48b8a feature: reintroduce limited template-node cloning w/ template macro (#526) 2023-02-16 07:02:01 -05:00
Greg Johnston
8d42e91eb8 fix: top-level SVG in view macro with new exports (#525) 2023-02-15 15:38:06 -05:00
Greg Johnston
00a796d204 change: tweak API of Errors and implement IntoIter (#522) 2023-02-15 14:03:16 -05:00
henrik
bde585dc3e feature: enable cargo-leptos to reload multiple CSS files (#524) 2023-02-14 18:51:47 -05:00
Greg Johnston
0a534bd7fd Reexport web-sys event types in leptos::ev to make it easier to type handlers (#521) 2023-02-13 20:45:46 -05:00
Greg Johnston
50d8eae694 fix: correct namespace for Unit in empty views (closes #518) (#520) 2023-02-13 20:25:26 -05:00
martin frances
e732a4952b leptos_dom erros.rs remove<E>() does not need to be generic. (#516)
* leptos_dom erros.rs remove<E>() does not need to be generic.

* fixed up errors.remove().
2023-02-13 20:25:11 -05:00
Greg Johnston
8a99623fd6 0.2.0-alpha (#515) 2023-02-13 07:49:29 -05:00
Greg Johnston
7d6c4930e4 remove .unwrap() from redirect in Actix integration (#514) 2023-02-13 06:02:43 -05:00
IcosaHedron
81d6689cc0 do not unwrap use_context in integrations axum redirect (#513) 2023-02-12 21:59:12 -05:00
Greg Johnston
989b5b93c3 CI: fix Wasm testing (#511) 2023-02-12 19:39:32 -05:00
Greg Johnston
ca510f72c1 fix: SSR export in Wasm mode (#512) 2023-02-12 19:12:15 -05:00
Greg Johnston
6dd3be75d1 fix: import in leptos_dom and add Wasm build to CI for regressions (#510) 2023-02-12 18:58:57 -05:00
g-re-g
51e11e756a Typos and a small cleanup (#509) 2023-02-12 18:11:31 -05:00
Greg Johnston
1dbcfe2861 change: reorganize module exports and reexports (#503) 2023-02-12 17:04:36 -05:00
Greg Johnston
db3f46c501 Add docs on testing (closes #489) (#508) 2023-02-12 17:03:12 -05:00
Greg Johnston
1cba54d47e fix: <For/> in todomvc example (#504) 2023-02-11 16:30:09 -05:00
Greg Johnston
d1ae3b49cc docs: further additions (#505) 2023-02-11 15:55:43 -05:00
Greg Johnston
6bab4ad966 apply new formatting everywhere (#502) 2023-02-11 14:30:06 -05:00
jquesada2016
d4648da5c6 chore: add workspace rustfmt.tml (#483) 2023-02-11 14:25:55 -05:00
Greg Johnston
cf7deaaea3 fix: proper disposal of nested route scopes (#499) 2023-02-11 14:12:59 -05:00
g-re-g
d0cacecfc6 Allow literal string as class in view macro (#500) 2023-02-10 22:43:40 -05:00
Greg Johnston
ce2c3ec97c examples: remove unused index.html (#497) 2023-02-10 08:02:26 -05:00
martin frances
b9f05f94ce chore: remove unused .clone() call in <Suspense/>. (#486) 2023-02-08 20:44:10 -05:00
Greg Johnston
fe7aacb0c8 Handle <ErrorBoundary/> hydration correctly (closes #456) 2023-02-08 20:32:59 -05:00
Greg Johnston
3fd3e73a10 Correctly handle custom elements in SSR 2023-02-08 20:32:59 -05:00
Greg Johnston
7dca740e47 Add error boundary example to list 2023-02-08 20:32:59 -05:00
Greg Johnston
73420affed Basic error boundary example 2023-02-08 20:32:59 -05:00
Greg Johnston
7c25f59a68 Update README.md 2023-02-08 20:32:32 -05:00
Greg Johnston
c24874d9c8 change: add Scope to view function in <For/> to avoid memory "leak" (#492) 2023-02-08 20:28:04 -05:00
Greg Johnston
4759dfcb60 missing ; 2023-02-08 14:34:57 -05:00
Greg Johnston
ca9419b53f fix: fix debug_warn behavior in reactive crate and remove log dependency (#491) 2023-02-08 07:04:01 -05:00
jquesada2016
765006158a change: NodeRef<HtmlElement<Div>> generics to NodeRef<Div> (#481) 2023-02-07 20:13:25 -05:00
Greg Johnston
8a1adaefaf fix: typed route params with #[derive(Params)] (#488) 2023-02-07 17:28:46 -05:00
Greg Johnston
086326324e Fix inner_html in SSR (#487) 2023-02-07 13:14:14 -05:00
martin frances
e59ee6329e Minor: Clippy router now uses types OnFormData and OnResponse. (#484) 2023-02-07 09:52:29 -05:00
Greg Johnston
a2b31a51d9 fix: errors on 404 page in axum_errors example (#485) 2023-02-07 09:51:52 -05:00
Jan
b0a98d8b4f Better styling for router related components (#477) 2023-02-06 18:34:39 -05:00
Greg Johnston
6931d3904b remove unnecessary "openssl" feature from Actix examples (#480) 2023-02-06 09:10:09 -05:00
Greg Johnston
e380097a9e Create README.md 2023-02-05 21:54:16 -05:00
Greg Johnston
44c18da324 docs: (in-progress) new tutorial/guide format with integrated CodeSandboxes (#375) 2023-02-05 21:33:42 -05:00
Greg Johnston
256cf0c59b Remove old book 2023-02-05 21:28:52 -05:00
Greg Johnston
0765e51db8 fix: adding/removing errors from <ErrorBoundary/> (#478) 2023-02-05 21:23:02 -05:00
Greg Johnston
45d4ebccd8 fix: cargo doc in projects using #[server] (#476) 2023-02-05 19:12:32 -05:00
Greg Johnston
352601aa42 fix: correct out-of-order streaming behavior (#475) 2023-02-05 17:29:35 -05:00
g-re-g
7f77910e91 impl From<&str> for MaybeSignal<String> (#472) 2023-02-04 16:47:40 -05:00
Ben Wishovich
76aeb573bf fix: convert site_address to site_addr to match cargo-leptos (#462) 2023-02-04 16:37:41 -05:00
Greg Johnston
e0bf8f5b6d fix: fix node_ref in SSR (#471) 2023-02-04 15:37:59 -05:00
Greg Johnston
5ace580edb fix: don't override element event listeners with component event listeners (closes #461) (#470) 2023-02-04 15:37:48 -05:00
302 changed files with 21251 additions and 8672 deletions

48
.github/workflows/check-examples.yml vendored Normal file
View File

@@ -0,0 +1,48 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Test on ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- name: Run Rustfmt
run: cargo fmt -- --check
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all examples
run: cargo make check-examples

48
.github/workflows/check.yml vendored Normal file
View File

@@ -0,0 +1,48 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Test on ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- name: Run Rustfmt
run: cargo fmt -- --check
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all libraries
run: cargo make check

View File

@@ -30,6 +30,9 @@ jobs:
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
@@ -42,5 +45,4 @@ jobs:
- uses: Swatinem/rust-cache@v2
- name: Run tests with all features
run: cargo make ci
run: cargo make test

View File

@@ -4,37 +4,43 @@ members = [
"leptos",
"leptos_dom",
"leptos_config",
"leptos_hot_reload",
"leptos_macro",
"leptos_reactive",
"leptos_server",
"server_fn",
"server_fn_macro",
"server_fn/server_fn_macro_default",
# integrations
"integrations/actix",
"integrations/axum",
"integrations/viz",
"integrations/utils",
# libraries
"meta",
"router",
# book
"docs/book/project/ch02_getting_started",
"docs/book/project/ch03_building_ui",
"docs/book/project/ch04_reactivity",
]
exclude = ["benchmarks", "examples"]
[workspace.package]
version = "0.1.3"
version = "0.2.2"
[workspace.dependencies]
leptos = { path = "./leptos", default-features = false, version = "0.1.3" }
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.1.3" }
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.1.3" }
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.1.3" }
leptos_server = { path = "./leptos_server", default-features = false, version = "0.1.3" }
leptos_config = { path = "./leptos_config", default-features = false, version = "0.1.3" }
leptos_router = { path = "./router", version = "0.1.3" }
leptos_meta = { path = "./meta", default-feature = false, version = "0.1.3" }
leptos = { path = "./leptos", default-features = false, version = "0.2.2" }
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.2.2" }
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.2.2" }
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.2.2" }
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.2.2" }
leptos_server = { path = "./leptos_server", default-features = false, version = "0.2.2" }
server_fn = { path = "./server_fn", default-features = false, version = "0.2.2" }
server_fn_macro = { path = "./server_fn_macro", default-features = false, version = "0.2.2" }
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", default-features = false, version = "0.2.2" }
leptos_config = { path = "./leptos_config", default-features = false, version = "0.2.2" }
leptos_router = { path = "./router", version = "0.2.2" }
leptos_meta = { path = "./meta", default-feature = false, version = "0.2.2" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.2.2" }
[profile.release]
codegen-units = 1

View File

@@ -8,17 +8,21 @@
default_to_workspace = false
[tasks.ci]
dependencies = ["build", "check-examples", "test"]
dependencies = ["check", "check-examples", "test"]
[tasks.build]
[tasks.check]
clear = true
dependencies = ["build-all"]
dependencies = ["check-all", "check-wasm"]
[tasks.build-all]
[tasks.check-all]
command = "cargo"
args = ["+nightly", "build-all-features"]
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"
[tasks.check-wasm]
clear = true
dependencies = [{ name = "check-wasm", path = "leptos" }]
[tasks.check-examples]
clear = true
dependencies = [
@@ -27,15 +31,21 @@ dependencies = [
{ name = "check", path = "examples/counter_without_macros" },
{ name = "check", path = "examples/counters" },
{ name = "check", path = "examples/counters_stable" },
{ name = "check", path = "examples/error_boundary" },
{ name = "check", path = "examples/errors_axum" },
{ name = "check", path = "examples/fetch" },
{ name = "check", path = "examples/hackernews" },
{ name = "check", path = "examples/hackernews_axum" },
{ name = "check", path = "examples/login_with_token_csr_only" },
{ name = "check", path = "examples/parent_child" },
{ name = "check", path = "examples/router" },
{ name = "check", path = "examples/session_auth_axum" },
{ name = "check", path = "examples/ssr_modes" },
{ name = "check", path = "examples/ssr_modes_axum" },
{ name = "check", path = "examples/tailwind" },
{ name = "check", path = "examples/todo_app_sqlite" },
{ name = "check", path = "examples/todo_app_sqlite_axum" },
{ name = "check", path = "examples/todo_app_sqlite_viz" },
{ name = "check", path = "examples/todomvc" },
]

View File

@@ -78,7 +78,7 @@ rustup target add wasm32-unknown-unknown
If youre on `stable`, note the following:
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0-alpha", features = ["stable"] }`
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0", features = ["stable"] }`
2. `nightly` enables the function call syntax for accessing and setting signals. If youre using `stable`,
youll just call `.get()`, `.set()`, or `.update()` manually. Check out the
[`counters_stable` example](https://github.com/leptos-rs/leptos/blob/main/examples/counters_stable/src/main.rs)
@@ -99,6 +99,10 @@ Open browser on [http://localhost:3000/](http://localhost:3000/)
## FAQs
### Whats up with the name?
*Leptos* (λεπτός) is an ancient Greek word meaning “thin, light, refine, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
### Is it production ready?
People usually mean one of three things by this question.

View File

@@ -1 +1 @@
book
book

14
docs/book/README.md Normal file
View File

@@ -0,0 +1,14 @@
This project contains the core of a new introductory guide to Leptos.
It is built using `mdbook`. You can view a local copy by installing `mdbook`
```bash
cargo install mdbook
```
and run the book with
```
mdbook serve
```
It should be available at `http://localhost:3000`.

View File

@@ -1,16 +0,0 @@
[book]
authors = ["Greg Johnston"]
language = "en"
multilingual = false
src = "src"
title = "The Leptos Guide"
[preprocessor]
[preprocessor.mermaid]
command = "mdbook-mermaid"
[output]
[output.html]
additional-js = ["mermaid.min.js", "mermaid-init.js"]

View File

@@ -1 +0,0 @@
mermaid.initialize({startOnLoad:true});

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +0,0 @@
[package]
name = "ch02_getting_started"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,14 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Leptos • Todos</title>
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
<link data-trunk rel="rust" data-wasm-opt="z" />
</head>
<body></body>
</html>

View File

@@ -1,5 +0,0 @@
use leptos::*;
fn main() {
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
}

View File

@@ -1,7 +0,0 @@
[package]
name = "ch03_building_ui"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,14 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Leptos • Todos</title>
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
<link data-trunk rel="rust" data-wasm-opt="z" />
</head>
<body></body>
</html>

View File

@@ -1,41 +0,0 @@
use leptos::*;
fn main() {
mount_to_body(|cx| {
let name = "gbj";
let userid = 0;
// This will be filled by _ref=input below.
let input_element = NodeRef::<HtmlElement<Input>>::new(cx);
view! {
cx,
<main>
<h1>"My Tasks"</h1> // text nodes are wrapped in quotation marks
<h2>"by " {name}</h2>
<input
type="text" // attributes work just like they do in HTML
name="new-todo"
prop:value="todo" // `prop:` lets you set a property on a DOM node
value="initial" // side note: the DOM `value` attribute only sets *initial* value
// this is very important when working with forms!
_ref=input_element // `_ref` stores tis element in a variable
/>
<ul data-user=userid> // attributes can take expressions as values
<li class="todo my-todo" // here we set the `class` attribute
class:completed=true // `class:` also lets you toggle individual classes
on:click=|_| todo!() // `on:` adds an event listener
>
"Buy milk."
</li>
<li class="todo my-todo" class:completed=false>
"???"
</li>
<li class="todo my-todo" class:completed=false>
"Profit!!!"
</li>
</ul>
</main>
}
})
}

View File

@@ -1,7 +0,0 @@
[package]
name = "ch04_reactivity"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,28 +0,0 @@
use leptos::*;
fn main() {
run_scope(create_runtime(), |cx| {
// signal
let (count, set_count) = create_signal(cx, 1);
// derived signal
let double_count = move || count() * 2;
// memo
let memoized_square = create_memo(cx, move |_| count() * count());
// effect
create_effect(cx, move |_| {
println!(
"count =\t\t{} \ndouble_count = \t{}, \nsquare = \t{}",
count(),
double_count(),
memoized_square()
);
});
set_count(1);
set_count(2);
set_count(3);
});
}

View File

@@ -1,10 +1,19 @@
# Introduction
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework. Together, well build a simple todo app—first as a client-side app, then as a full-stack app.
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework.
It will walk through the fundamental concepts you need to build applications,
beginning with a simple application rendered in the browser, and building toward a
full-stack application with server-side rendering and hydration.
The guide doesnt assume you know anything about fine-grained reactivity or the details of modern Web frameworks. It does assume you are familiar with the Rust programming language, HTML, CSS, and the DOM and other Web APIs.
The guide doesnt assume you know anything about fine-grained reactivity or the
details of modern Web frameworks. It does assume you are familiar with the Rust
programming language, HTML, CSS, and the DOM and basic Web APIs.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript) and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities to other frameworks like React (JavaScript), Yew (Rust), and Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to understand Leptos.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript)
and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities
to other frameworks like React (JavaScript), Svelte (JavaScript), Yew (Rust), and
Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to
understand Leptos.
You can find more detailed docs for each part of the API at [Docs.rs](https://docs.rs/leptos/latest/leptos/).

View File

@@ -1,37 +1,70 @@
# Getting Started
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch02_getting_started).
There are two basic paths to getting started with Leptos:
The easiest way to get started using Leptos is to use [Trunk](https://trunkrs.dev/), as many of our [examples](https://github.com/leptos-rs/leptos/tree/main/examples) do. (Trunk is a simple build tool that includes a dev server.)
1. Client-side rendering with [Trunk](https://trunkrs.dev/)
2. Full-stack rendering with [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos)
For the early examples, it will be easiest to begin with Trunk. Well introduce
`cargo-leptos` a little later in this series.
If you dont already have it installed, you can install Trunk by running
```bash
cargo install --lock trunk
cargo install trunk
```
Create a basic Rust binary project
```bash
cargo init leptos-todo
cargo init leptos-tutorial
```
Add `leptos` as a dependency to your `Cargo.toml` with the `csr` featured enabled. (That stands for “client-side rendering.” Well talk more about Leptoss support for server-side rendering and hydration later.)
> We recommend using `nightly` Rust, as it enables [a few nice features](https://github.com/leptos-rs/leptos#nightly-note). To use `nightly` Rust with WebAssembly, you can run
>
> ```bash
> rustup toolchain install nightly
> rustup default nightly
> rustup target add wasm32-unknown-unknown
> ```
```toml
leptos = "0.0"
`cd` into your new `leptos-tutorial` project and add `leptos` as a dependency
```bash
cargo add leptos
```
Youll want to set up a basic `index.html` with the following content:
Create a simple `index.html` in the root of the `leptos-tutorial` directory
```html
{{#include ../project/ch02_getting_started/index.html}}
<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>
```
Lets start with a very simple `main.rs`
And add a simple “Hello, world!” to your `main.rs`
```rust
{{#include ../project/ch02_getting_started/src/main.rs}}
use leptos::*;
fn main() {
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
}
```
Now run `trunk serve --open`. Trunk should automatically compile your app and open it in your default browser. If you make edits to `main.rs`, Trunk will recompile your source code and live-reload the page.
Your directory structure should now look something like this
```
leptos_tutorial
├── src
│ └── main.rs
├── Cargo.html
├── index.html
```
Now run `trunk serve --open` from the root of the `leptos-tutorial` directory.
Trunk should automatically compile your app and open it in your default browser.
If you make edits to `main.rs`, Trunk will recompile your source code and
live-reload the page.

View File

@@ -1,49 +0,0 @@
# Templating: Building User Interfaces
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch03_building_ui).
## RSX and the `view!` macro
Okay, that “Hello, world!” was a little boring. Were going to be building a todo app, so lets look at something a little more complicated.
As you noticed in the first example, Leptos lets you describe your user interface with a declarative `view!` macro. It looks something like this:
```
view! {
cx, // this is the "reactive scope": more on that in the next chapter
<p>"..."</p> // this is some HTML-ish stuff
}
```
The “HTML-ish stuff” is what we call “RSX”: XML in Rust. (You may recognize the similarity to JSX, which is the mixed JavaScript/XML syntax used by frameworks like React.)
Heres a more in-depth example:
```rust
{{#include ../project/ch03_building_ui/src/main.rs}}
```
Youll probably notice a few things right away:
1. Elements without children need to be explicit closed with a `/` (`<input/>`, not `<input>`)
2. Text nodes are formatted as strings, i.e., wrapped in quotation marks (`"My Tasks"`)
3. Dynamic blocks can be inserted as children of elements, if wrapped in curly braces (`<h2>"by " {name}</h2>`)
4. Attributes can be given Rust expressions as values. This could be a string literal as in HTML (`<input type="text" .../>)` or a variable or block (`data-user=userid` or `on:click=move |_| { ... }`)
5. Unlike in HTML, whitespace is ignored and should be manually added (its `<h2>"by " {name}</h2>`, not `<h2>"by" {name}</h2>`; the space between `"by"` and `{name}` is ignored.)
6. Normal attributes work exactly like you'd think they would.
7. There are also special, prefixed attributes.
- `class:` lets you make targeted updates to a single class
- `on:` lets you add an event listener
- `prop:` lets you set a property on a DOM element
- `_ref` stores the DOM element youre creating in a variable
> You can find more information in the [reference docs for the `view!` macro](https://docs.rs/leptos/0.0.15/leptos/macro.view.html).
## But, wait...
This example shows some parts of the Leptos templating syntax. But its completely static.
How do you actually make the user interface interactive?
In the next chapter, well talk about “fine-grained reactivity,” which is the core of the Leptos framework.

View File

@@ -1,240 +0,0 @@
# Reactivity
## What is reactivity?
A few months ago, I completely baffled a friend by trying to explain what I was working on. “You have two variables, right? Call them `a` and `b`. And then you have a third variable, `c`. And when you update `a` or `b`, the value of `c` just _automatically changes_. And it changes _on the screen_! Automatically!”
“Isnt that just... how computers work?” she asked me, puzzled. If your programming experience is limited to something like spreadsheets, its a reasonable enough assumption. This is, after all, how math works.
But you know this isn't how ordinary imperative programming works.
```rust,should_panic
let mut a = 0;
let mut b = 0;
let c = a + b;
assert_eq!(c, 0); // sanity check
a = 2;
b = 2;
// now c = 4, right?
assert_eq!(c, 4); // nope. we all know this is wrong!
```
But thats _exactly_ how reactive programming works.
```rust
use leptos::*;
run_scope(create_runtime(), |cx| {
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
let c = move || a() + b();
assert_eq!(c(), 0); // yep, still true
set_a(2);
set_b(2);
assert_eq!(c(), 4); // ohhhhh yeah.
});
```
Hopefully, this makes some intuitive sense. After all, `c` is a closure. Calling it again causes it to access its values a second time. This isnt _that_ cool.
```rust
use leptos::*;
run_scope(create_runtime(), |cx| {
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
let c = move || a() + b();
create_effect(cx, move |_| {
println!("c = {}", c()); // prints "c = 0"
});
set_a(2); // prints "c = 2"
set_b(2); // prints "c = 4"
});
```
This examples a little different. [`create_effect`](https://docs.rs/leptos/latest/leptos/fn.create_effect.html) defines a “side effect,” a bridge between the reactive system of signals and the outside world. Effects synchronize the reactive system with everything else: the console, the filesystem, an HTTP request, whatever.
Because the closure `c` is called within the effect and in turns calls the signals `a` and `b`, the effect automatically subscribes to the signals `a` and `b`. This means that whenever `a` or `b` is updated, the effect will re-run, logging the value again.
You can picture the reactive graph for this system like this:
```mermaid
graph TD;
A-->C;
B-->C;
C-->Effect;
```
This is the foundation on which _everything_ else is built.
## Reactive Primitives
### Overview
The reactive system is built on the interaction between these two halves: **signals** and **effects**. When a signal is called inside an effect, the effect automatically subscribes to the signal. When a signals value is updated, it automatically notifies all its subscribers, and they re-run.
The following simple example contains most of the core reactive concepts:
```rust
{{#include ../project/ch04_reactivity/src/main.rs}}
```
This creates a reactive graph like this:
```mermaid
graph TD;
count-->double_count;
count-->memoized_square;
count-->effect;
double_count-->effect;
memoized_square-->effect;
```
**Signals** are reactive values created using [`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html) or [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html).
**Derived Signals** computations in ordinary closures that rely on other signals. The computation re-runs whenever you access its value.
**Memos** are computations that are memoized with [create_memo](https://docs.rs/leptos/latest/leptos/fn.create_memo.html). Memos only re-run when one of their signal dependencies has changed.
And **effects** (created with [create_effect](<(https://docs.rs/leptos/latest/leptos/fn.create_effect.html)>) synchronize the reactive system with something outside it.
The rest of this chapter will walk through each of these concepts in more depth.
### Signals
A **signal** is a piece of data that may change over time, and notifies other code when it has changed. This is the core primitive of Leptoss reactive system.
Creating a signal is very simple. You call `create_signal`, passing in the reactive scope and the default value, and receive a tuple containing a `ReadSignal` and a `WriteSignal`.
```rust
let (value, set_value) = create_signal(cx, 0);
```
> If youve used signals in Sycamore or Solid, observables in MobX or Knockout, or a similar primitive in reactive library, you probably have a pretty good idea of how signals work in Leptos. If youre familiar with React, Yew, or Dioxus, you may recognize a similar pattern to their `use_state` hooks.
#### `ReadSignal<T>`
The [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) half of this tuple allows you to get the current value of the signal. Reading that value in a reactive context automatically subscribes to any further changes. You can access the value by simply calling the `ReadSignal` as a function.
```rust
let (value, set_value) = create_signal(cx, 0);
// calling value() with return the current value of the signal,
// and automatically track changes if you're in a reactive context
assert_eq!(value(), 0);
```
> Here, a **reactive context** means anywhere within an `Effect`. Leptoss templating system is built on top of its reactive system, so if youre reading the signals value within the template, the template will automatically subscribe to the signal and update exactly the value that needs to change in the DOM.
Calling a `ReadSignal` clones the value it contains. If thats too expensive, use [`ReadSignal::with()`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html#method.with) to borrow the value and do whatever you need.
```rust
struct MySuperExpensiveStruct {
a: String,
b: StructThatsSuperExpensiveToClone
}
let (value, set_value) = create_signal(cx, MySuperExpensiveStruct::default());
// ❌ this is going to clone the `StructThatsSuperExpensiveToClone` unnecessarily!
let lowercased = move || value().a.to_lowercase();
// ✅ only use what we need
let lowercased = move || value.with(|value: &MySuperExpensiveStruct| value.a.to_lowercase());
```
#### `WriteSignal<T>`
The [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) half of this tuple allows you to update the value of the signal, which will automatically notify anything thats listening to the value that something has changed. If you simply call the `WriteSignal` as a function, its value will be set to the argument you pass. If you want to mutate the value in place instead of replacing it, you can call [`WriteSignal::update`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html#method.update) instead.
```rust
// often you just want to replace the value
let (value, set_value) = create_signal(cx, 0);
set_value(1);
assert_eq!(value(), 1);
// sometimes you want to mutate something in place, like a Vec. Just call update()
let (items, set_items) = create_signal(cx, vec![0]);
set_items.update(|items: &mut Vec<i32>| items.push(1));
assert_eq!(items(), vec![1]);
```
> Under the hood, `set_value(1)` is just syntactic sugar for `set_value.update(|n| *n = 1)`.
#### `RwSignal<T>`
This kind of “read-write segregation,” in which the getter and the setter are stored in separate variables, may be familiar from the tuple-based ”hooks” pattern in libraries like React, Solid, Yew, or Dioxus. It encourages clear contracts between components. For example, if a child component only needs to be able to read a signal, but shouldnt be able to update it (and therefore trigger changes in other parts of the application), you can pass it only the `ReadSignal`.
Sometimes, however, you may prefer to keep the getter and setter combined in one variable. For example, its awkward and repetitive to store both halves of a signal in another data structure:
```rust
# use leptos::*;
// pretty repetitive
struct AppState {
count: ReadSignal<i32>,
set_count: WriteSignal<i32>,
name: ReadSignal<String>,
set_name: WriteSignal<String>
}
#[component]
fn App(cx: Scope) {
let (count, set_count) = create_signal(cx, 0);
let (name, set_name) = create_signal(cx, "Alice".to_string());
provide_context(cx, AppState {
count,
set_count,
name,
set_name
})
todo!()
}
```
Or maybe you just like to keep your getters and setters in one place.
In this case, you can use [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html) and the [`RwSignal`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html) type. This returns a **R**ead-**w**rite Signal, which has the same [`get`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get), [`with`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.with), [`set`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.set), and [`update`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.update) functions as the `ReadSignal` and `WriteSignal` halves.
```rust
# use leptos::*;
// better
struct AppState {
count: RwSignal<i32>,
name: RwSignal<String>,
}
#[component]
fn App(cx: Scope) {
let count = create_rw_signal(cx, 0);
let name = create_rw_signal(cx, "Alice".to_string());
provide_context(cx, AppState {
count,
name,
})
todo!()
}
```
If you still want to hand off read-only access to another part of the app, you can get a `ReadSignal` with [`RwSignal::read_only()`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get).
### Derived Signals
(todo)
### Memos
(todo)
### Effects
(todo)

View File

@@ -0,0 +1,110 @@
# Responding to Changes with `create_effect`
Believe it or not, weve made it this far without having mentioned half of the reactive system: effects.
Leptos is built on a fine-grained reactive system, which means that individual reactive values (“signals,” sometimes known as observables) trigger rerunning the code that reacts to them (“effects,” sometimes known as observers). These two halves of the reactive system are inter-dependent. Without effects, signals can change within the reactive system but never be observed in a way that interacts with the outside world. Without signals, effects run once but never again, as theres no observable value to subscribe to.
[`create_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_effect.html) takes a function as its argument. It immediately runs the function. If you access any reactive signal inside that function, it registers the fact that the effect depends on that signal with the reactive runtime. Whenever one of the signals that the effect depends on changes, the effect runs again.
```rust
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
create_effect(cx, move |_| {
// immediately prints "Value: 0" and subscribes to `a`
log::debug!("Value: {}", a());
});
```
The effect function is called with an argument containing whatever value it returned the last time it ran. On the initial run, this is `None`.
By default, effects **do not run on the server**. This means you can call browser-specific APIs within the effect function without causing issues. If you need an effect to run on the server, use [`create_isomorphic_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_isomorphic_effect.html).
## Autotracking and Dynamic Dependencies
If youre familiar with a framework like React, you might notice one key difference. React and similar frameworks typically require you to pass a “dependency array,” an explicit set of variables that determine when the effect should rerun.
Because Leptos comes from the tradition of synchronous reactive programming, we dont need this explicit dependency list. Instead, we automatically track dependencies depending on which signals are accessed within the effect.
This has two effects (no pun intended). Dependencies are
1. **Automatic**: You dont need to maintain a dependency list, or worry about what should or shouldnt be included. The framework simply tracks which signals might cause the effect to rerun, and handles it for you.
2. **Dynamic**: The dependency list is cleared and updated every time the effect runs. If your effect contains a conditional (for example), only signals that are used in the current branch are tracked. This means that effects rerun the absolute minimum number of times.
> If this sounds like magic, and if you want a deep dive into how automatic dependency tracking works, [check out this video](https://www.youtube.com/watch?v=GWB3vTWeLd4). (Apologies for the low volume!)
## Effects as Zero-Cost-ish Abstraction
While theyre not a “zero-cost abstraction” in the most technical sense—they require some additional memory use, exist at runtime, etc.—at a higher level, from the perspective of whatever expensive API calls or other work youre doing within them, effects are a zero-cost abstraction. They rerun the absolute minimum number of times necessary, given how youve described them.
Imagine that Im creating some kind of chat software, and I want people to be able to display their full name, or just their first name, and to notify the server whenever their name changes:
```rust
let (first, set_first) = create_signal(cx, String::new());
let (last, set_last) = create_signal(cx, String::new());
let (use_last, set_use_last) = create_signal(cx, true);
// this will add the name to the log
// any time one of the source signals changes
create_effect(cx, move |_| {
log(
cx,
if use_last() {
format!("{} {}", first(), last())
} else {
first()
},
)
});
```
If `use_last` is `true`, effect should rerun whenever `first`, `last`, or `use_last` changes. But if I toggle `use_last` to `false`, a change in `last` will never cause the full name to change. In fact, `last` will be removed from the dependency list until `use_last` toggles again. This saves us from sending multiple unnecessary requests to the API if I change `last` multiple times while `use_last` is still `false`.
## To `create_effect`, or not to `create_effect`?
Effects are intended to run _side-effects_ of the system, not to synchronize state _within_ the system. In other words: dont write to signals within effects.
If you need to define a signal that depends on the value of other signals, use a derived signal or [`create_memo`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_memo.html).
If you need to synchronize some reactive value with the non-reactive world outside—like a web API, the console, the filesystem, or the DOM—create an effect.
> If youre curious for more information about when you should and shouldnt use `create_effect`, [check out this video](https://www.youtube.com/watch?v=aQOFJQ2JkvQ) for a more in-depth consideration!
## Effects and Rendering
Weve managed to get this far without mentioning effects because theyre built into the Leptos DOM renderer. Weve seen that you can create a signal and pass it into the `view` macro, and it will update the relevant DOM node whenever the signal changes:
```rust
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<p>{count}</p>
}
```
This works because the framework essentially creates an effect wrapping this update. You can imagine Leptos translating this view into something like this:
```rust
let (count, set_count) = create_signal(cx, 0);
// create a DOM element
let p = create_element("p");
// create an effect to reactively update the text
create_effect(cx, move |prev_value| {
// first, access the signals value and convert it to a string
let text = count().to_string();
// if this is different from the previous value, update the node
if prev_value != Some(text) {
p.set_text_content(&text);
}
// return this value so we can memoize the next update
text
});
```
Every time `count` is updated, this effect wil rerun. This is what allows reactive, fine-grained updates to the DOM.
<iframe src="https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,171 @@
# Global State Management
So far, we've only been working with local state in components
We've only seen how to communicate between parent and child components
But there are also more general ways to manage global state
The three best approaches to global state are
1. Using the router to drive global state via the URL
2. Passing signals through context
3. Creating a global state struct and creating lenses into it with `create_slice`
## Option #1: URL as Global State
The next few sections of the tutorial will be about the router.
So for now, we'll just look at options #2 and #3.
## Option #2: Passing Signals through Context
In virtual DOM libraries like React, using the Context API to manage global
state is a bad idea: because the entire app exists in a tree, changing
some value provided high up in the tree can cause the whole app to render.
In fine-grained reactive libraries like Leptos, this is simply not the case.
You can create a signal in the root of your app and pass it down to other
components using provide_context(). Changing it will only cause rerendering
in the specific places it is actually used, not the whole app.
We start by creating a signal in the root of the app and providing it to
all its children and descendants using `provide_context`.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
// here we create a signal in the root that can be consumed
// anywhere in the app.
let (count, set_count) = create_signal(cx, 0);
// we'll pass the setter to specific components,
// but provide the count itself to the whole app via context
provide_context(cx, count);
view! { cx,
// SetterButton is allowed to modify the count
<SetterButton set_count/>
// These consumers can only read from it
// But we could give them write access by passing `set_count` if we wanted
<FancyMath/>
<ListItems/>
}
}
```
`<SetterButton/>` is the kind of counter weve written several times now.
(See the sandbox below if you dont understand what I mean.)
`<FancyMath/>` and `<ListItems/>` both consume the signal were providing via
`use_context` and do something with it.
```rust
/// A component that does some "fancy" math with the global count
#[component]
fn FancyMath(cx: Scope) -> impl IntoView {
// here we consume the global count signal with `use_context`
let count = use_context::<ReadSignal<u32>>(cx)
// we know we just provided this in the parent component
.expect("there to be a `count` signal provided");
let is_even = move || count() & 1 == 0;
view! { cx,
<div class="consumer blue">
"The number "
<strong>{count}</strong>
{move || if is_even() {
" is"
} else {
" is not"
}}
" even."
</div>
}
}
```
This kind of “provide a signal in a parent, consume it in a child” should be familiar
from the chapter on [parent-child interactions](./view/08_parent_child.md). The same
pattern you use to communicate between parents and children works for grandparents and
grandchildren, or any ancestors and descendents: in other words, between “global” state
in the root component of your app and any other components anywhere else in the app.
Because of the fine-grained nature of updates, this is usually all you need. However,
in some cases with more complex state changes, you may want to use a slightly more
structured approach to global state.
## Option #3: Create a Global State Struct
You can use this approach to build a single global data structure
that holds the state for your whole app, and then access it by
taking fine-grained slices using
[`create_slice`](https://docs.rs/leptos/latest/leptos/fn.create_slice.html)
or [`create_memo`](https://docs.rs/leptos/latest/leptos/fn.create_memo.html),
so that changing one part of the state doesn't cause parts of your
app that depend on other parts of the state to change.
You can begin by defining a simple state struct:
```rust
#[derive(Default, Clone, Debug)]
struct GlobalState {
count: u32,
name: String,
}
```
Provide it in the root of your app so its available everywhere.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
// we'll provide a single signal that holds the whole state
// each component will be responsible for creating its own "lens" into it
let state = create_rw_signal(cx, GlobalState::default());
provide_context(cx, state);
// ...
```
Then child components can access “slices” of that state with fine-grained
updates via `create_slice`. Each slice signal only updates when the particular
piece of the larger struct it accesses updates. This means you can create a single
root signal, and then take independent, fine-grained slices of it in different
components, each of which can update without notifying the others of changes.
```rust
/// A component that updates the count in the global state.
#[component]
fn GlobalStateCounter(cx: Scope) -> impl IntoView {
let state = use_context::<RwSignal<GlobalState>>(cx).expect("state to have been provided");
// `create_slice` lets us create a "lens" into the data
let (count, set_count) = create_slice(
cx,
// we take a slice *from* `state`
state,
// our getter returns a "slice" of the data
|state| state.count,
// our setter describes how to mutate that slice, given a new value
|state, n| state.count = n,
);
view! { cx,
<div class="consumer blue">
<button
on:click=move |_| {
set_count(count() + 1);
}
>
"Increment Global Count"
</button>
<br/>
<span>"Count is: " {count}</span>
</div>
}
}
```
Clicking this button only updates `state.count`, so if we create another slice
somewhere else that only takes `state.name`, clicking the button wont cause
that other slice to update. This allows you to combine the benefits of a top-down
data flow and of fine-grained reactive updates.
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px">

View File

@@ -2,5 +2,42 @@
- [Introduction](./01_introduction.md)
- [Getting Started](./02_getting_started.md)
- [Templating: Building User Interfaces](./03_building_ui.md)
- [Reactivity: Making Things Interactive](./04_reactivity.md)
- [Building User Interfaces](./view/README.md)
- [A Basic Component](./view/01_basic_component.md)
- [Dynamic Attributes](./view/02_dynamic_attributes.md)
- [Components and Props](./view/03_components.md)
- [Iteration](./view/04_iteration.md)
- [Forms and Inputs](./view/05_forms.md)
- [Control Flow](./view/06_control_flow.md)
- [Error Handling](./view/07_errors.md)
- [Parent-Child Communication](./view/08_parent_child.md)
- [Passing Children to Components](./view/09_component_children.md)
- [Interlude: Reactivity and Functions](./interlude_functions.md)
- [Testing](./testing.md)
- [Async](./async/README.md)
- [Loading Data with Resources](./async/10_resources.md)
- [Suspense](./async/11_suspense.md)
- [Transition](./async/12_transition.md)
- [Actions](./async/13_actions.md)
- [Responding to Changes with `create_effect`](./14_create_effect.md)
- [Global State Management](./15_global_state.md)
- [Router]()
- [Fundamentals]()
- [defining `<Routes/>`]()
- [`<A/>`]()
- [`<Form/>`]()
- [Interlude: Styling — CSS, Tailwind, Style.rs, and more]()
- [Metadata]()
- [SSR]()
- [Models of SSR]()
- [`cargo-leptos`]()
- [Hydration Footguns]()
- [Request/Response]()
- [Headers]()
- [Cookies]()
- [Server Functions]()
- [Actions]()
- [Forms]()
- [`<ActionForm/>`s]()
- [Turning off WebAssembly]()
- [Advanced Reactivity]()

View File

@@ -0,0 +1,53 @@
# Loading Data with Resources
A [Resource](https://docs.rs/leptos/latest/leptos/struct.Resource.html) is a reactive data structure that reflects the current state of an asynchronous task, allowing you to integrate asynchronous `Future`s into the synchronous reactive system. Rather than waiting for its data to load with `.await`, you transform the `Future` into a signal that returns `Some(T)` if it has resolved, and `None` if its still pending.
You do this by using the [`create_resource`](https://docs.rs/leptos/latest/leptos/fn.create_resource.html) function. This takes two arguments (other than the ubiquitous `cx`):
1. a source signal, which will generate a new `Future` whenever it changes
2. a fetcher function, which takes the data from that signal and returns a `Future`
Heres an example
```rust
// our source signal: some synchronous, local state
let (count, set_count) = create_signal(cx, 0);
// our resource
let async_data = create_resource(cx,
count,
// every time `count` changes, this will run
|value| async move {
log!("loading data from API");
load_data(value).await
},
);
```
To create a resource that simply runs once, you can pass a non-reactive, empty source signal:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
```
To access the value you can use `.read(cx)` or `.with(cx, |data| /* */)`. These work just like `.get()` and `.with()` on a signal—`read` clones the value and returns it, `with` applies a closure to it—but with two differences
1. For any `Resource<_, T>`, they always return `Option<T>`, not `T`: because its always possible that your resource is still loading.
2. They take a `Scope` argument. Youll see why in the next chapter, on `<Suspense/>`.
So, you can show the current state of a resource in your view:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
Resources also provide a `refetch()` method that allows you to manually reload the data (for example, in response to a button click) and a `loading()` method that returns a `ReadSignal<bool>` indicating whether the resource is currently loading or not.
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,72 @@
# `<Suspense/>`
In the previous chapter, we showed how you can create a simple loading screen to show some fallback while a resource is loading.
```rust
let (count, set_count) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
But what if we have two resources, and want to wait for both of them?
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match (a.read(cx), b.read(cx)) {
_ => view! { cx, <p>"Loading..."</p> }.into_view(cx),
(Some(a), Some(b)) => view! { cx,
<ShowA a/>
<ShowA b/>
}.into_view(cx)
}}
}
```
Thats not _so_ bad, but its kind of annoying. What if we could invert the flow of control?
The [`<Suspense/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html) component lets us do exactly that. You give it a `fallback` prop and children, one or more of which usually involves reading from a resource. Reading from a resource “under” a `<Suspense/>` (i.e., in one of its children) registers that resource with the `<Suspense/>`. If its still waiting for resources to load, it shows the `fallback`. When theyve all loaded, it shows the children.
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
<Suspense
fallback=move || view! { cx, <p>"Loading..."</p> }
>
<h2>"My Data"</h2>
<h3>"A"</h3>
{move || {
a.read(cx)
.map(|a| view! { cx, <ShowA a/> })
}}
<h3>"B"</h3>
{move || {
b.read(cx)
.map(|b| view! { cx, <ShowB b/> })
}}
</Suspense>
}
```
Every time one of the resources is reloading, the `"Loading..."` fallback will show again.
This inversion of the flow of control makes it easier to add or remove individual resources, as you dont need to handle the matching yourself. It also unlocks some massive performance improvements during server-side rendering, which well talk about during a later chapter.
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,9 @@
# `<Transition/>`
Youll notice in the `<Suspense/>` example that if you keep reloading the data, it keeps flickering back to `"Loading..."`. Sometimes this is fine. For other times, theres [`<Transition/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html).
`<Transition/>` behaves exactly the same as `<Suspense/>`, but instead of falling back every time, it only shows the fallback the first time. On all subsequent loads, it continues showing the old data until the new data are ready. This can be really handy to prevent the flickering effect, and to allow users to continue interacting with your application.
This example shows how you can create a simple tabbed contact list with `<Transition/>`. When you select a new tab, it continues showing the current contact until the new data laods. This can be a much better user experience than constantly falling back to a loading message.
<iframe src="https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,94 @@
# Mutating Data with Actions
Weve talked about how to load `async` data with resources. Resources immediately load data and work closely with `<Suspense/>` and `<Transition/>` components to show whether data is loading in your app. But what if you just want to call some arbitrary `async` function and keep track of what its doing?
Well, you could always use [`spawn_local`](https://docs.rs/leptos/latest/leptos/fn.spawn_local.html). This allows you to just spawn an `async` task in a synchronous environment by handing the `Future` off to the browser (or, on the server, Tokio or whatever other runtime youre using). But how do you know if its still pending? Well, you could just set a signal to show whether its loading, and another one to show the result...
All of this is true. Or you could use the final `async` primitive: [`create_action`](https://docs.rs/leptos/latest/leptos/fn.create_action.html).
Actions and resources seem similar, but they represent fundamentally different things. If youre trying to load data by running an `async` function, either once or when some other value changes, you probably want to use `create_resource`. If youre trying to occasionally run an `async` function in response to something like a user clicking a button, you probably want to use `create_action`.
Say we have some `async` function we want to run.
```rust
async fn add_todo(new_title: &str) -> Uuid {
/* do some stuff on the server to add a new todo */
}
```
`create_action` takes a reactive `Scope` and an `async` function that takes a reference to a single argument, which you could think of as its “input type.”
> The input is always a single type. If you want to pass in multiple arguments, you can do it with a struct or tuple.
>
> ```rust
> // if there's a single argument, just use that
> let action1 = create_action(cx, |input: &String| {
> let input = input.clone();
> async move { todo!() }
> });
>
> // if there are no arguments, use the unit type `()`
> let action2 = create_action(cx, |input: &()| async { todo!() });
>
> // if there are multiple arguments, use a tuple
> let action3 = create_action(cx,
> |input: &(usize, String)| async { todo!() }
> );
> ```
>
> Because the action function takes a reference but the `Future` needs to have a `'static` lifetime, youll usually need to clone the value to pass it into the `Future`. This is admittedly awkward but it unlocks some powerful features like optimistic UI. Well see a little more about that in future chapters.
So in this case, all we need to do to create an action is
```rust
let add_todo = create_action(cx, |input: &String| {
let input = input.to_owned();
async move { add_todo(&input).await }
});
```
Rather than calling `add_todo` directly, well call it with `.dispatch()`, as in
```rust
add_todo.dispatch("Some value".to_string());
```
You can do this from an event listener, a timeout, or anywhere; because `.dispatch()` isnt an `async` function, it can be called from a synchronous context.
Actions provide access to a few signals that synchronize between the asynchronous action youre calling and the synchronous reactive system:
```rust
let submitted = add_todo.input(); // RwSignal<Option<String>>
let pending = add_todo.pending(); // ReadSignal<bool>
let todo_id = add_todo.value(); // RwSignal<Option<Uuid>>
```
This makes it easy to track the current state of your request, show a loading indicator, or do “optimistic UI” based on the assumption that the submission will succeed.
```rust
let input_ref = create_node_ref::<Input>(cx);
view! { cx,
<form
on:submit=move |ev| {
ev.prevent_default(); // don't reload the page...
let input = input_ref.get().expect("input to exist");
add_todo.dispatch(input.value());
}
>
<label>
"What do you need to do?"
<input type="text"
node_ref=input_ref
/>
</label>
<button type="submit">"Add Todo"</button>
</form>
// use our loading state
<p>{move || pending().then("Loading...")}</p>
}
```
Now, theres a chance this all seems a little over-complicated, or maybe too restricted. I wanted to include actions here, alongside resources, as the missing piece of the puzzle. In a real Leptos app, youll actually most often use actions alongside server functions, [`create_server_action`](https://docs.rs/leptos/latest/leptos/fn.create_server_action.html), and the [`<ActionForm/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.ActionForm.html) component to create really powerful progressively-enhanced forms. So if this primitive seems useless to you... Dont worry! Maybe it will make sense later. (Or check out our [`todo_app_sqlite`](https://github.com/leptos-rs/leptos/blob/main/examples/todo_app_sqlite/src/todo.rs) example now.)
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,9 @@
# Working with `async`
So far weve only been working with synchronous users interfaces: You provide some input,
the app immediately process it and updates the interface. This is great, but is a tiny
subset of what web applications do. In particular, most web apps have to deal with some kind
of asynchronous data loading, usually loading something from an API.
Asynchronous data is notoriously hard to integrate with the synchronous parts of your code.
In this chapter, well see how Leptos helps smooth out that process for you.

View File

@@ -0,0 +1,76 @@
# Interlude: Reactivity and Functions
One of our core contributors said to me recently: “I never used closures this often
until I started using Leptos.” And its true. Closures are at the heart of any Leptos
application. It sometimes looks a little silly:
```rust
// a signal holds a value, and can be updated
let (count, set_count) = create_signal(cx, 0);
// a derived signal is a function that accesses other signals
let double_count = move || count() * 2;
let count_is_odd = move || count() & 1 == 1;
let text = move || if count_is_odd() {
"odd"
} else {
"even"
};
// an effect automatically tracks the signals it depends on
// and reruns when they change
create_effect(cx, move |_| {
log!("text = {}", text());
});
view! { cx,
<p>{move || text().to_uppercase()}</p>
}
```
Closures, closures everywhere!
But why?
## Functions and UI Frameworks
Functions are at the heart of every UI framework. And this makes perfect sense. Creating a user interface is basically divided into two phases:
1. initial rendering
2. updates
In a web framework, the framework does some kind of initial rendering. Then it hands control back over to the browser. When certain events fire (like a mouse click) or asynchronous tasks finish (like an HTTP request finishing), the browser wakes the framework back up to update something. The framework runs some kind of code to update your user interface, and goes back asleep until the browser wakes it up again.
The key phrase here is “runs some kind of code.” The natural way to “run some kind of code” at an arbitrary point in time—in Rust or in any other programming language—is to call a function. And in fact every UI framework is based on rerunning some kind of function over and over:
1. virtual DOM (VDOM) frameworks like React, Yew, or Dioxus rerun a component or render function over and over, to generate a virtual DOM tree that can be reconciled with the previous result to patch the DOM
2. compiled frameworks like Angular and Svelte divide your component templates into “create” and “update” functions, rerunning the update function when they detect a change to the components state
3. in fine-grained reactive frameworks like SolidJS, Sycamore, or Leptos, _you_ define the functions that rerun
Thats what all our components are doing.
Take our typical `<SimpleCounter/>` example in its simplest form:
```rust
#[component]
pub fn SimpleCounter(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, 0);
let increment = move |_| set_value.update(|value| *value += 1);
view! { cx,
<button on:click=increment>
{value}
</button>
}
}
```
The `SimpleCounter` function itself runs once. The `value` signal is created once. The framework hands off the `increment` function to the browser as an event listener. When you click the button, the browser calls `increment`, which updates `value` via `set_value`. And that updates the single text node represented in our view by `{value}`.
Closures are key to reactivity. They provide the framework with the ability to rerun the smallest possible unit of your application in responsive to a change.
So remember two things:
1. Your component function is a setup function, not a render function: it only runs once.
2. For values in your view template to be reactive, they must be functions: either signals (which implement the `Fn` traits) or closures.

180
docs/book/src/testing.md Normal file
View File

@@ -0,0 +1,180 @@
# Testing Your Components
Testing user interfaces can be relatively tricky, but really important. This article
will discuss a couple principles and approaches for testing a Leptos app.
## 1. Test business logic with ordinary Rust tests
In many cases, it makes sense to pull the logic out of your components and test
it separately. For some simple components, theres no particular logic to test, but
for many its worth using a testable wrapping type and implementing the logic in
ordinary Rust `impl` blocks.
For example, instead of embedding logic in a component directly like this:
```rust
#[component]
pub fn TodoApp(cx: Scope) -> impl IntoView {
let (todos, set_todos) = create_signal(cx, vec![Todo { /* ... */ }]);
// ⚠️ this is hard to test because it's embedded in the component
let num_remaining = move || todos.with(|todos| {
todos.iter().filter(|todo| !todo.completed).sum()
});
}
```
You could pull that logic out into a separate data structure and test it:
```rust
pub struct Todos(Vec<Todo>);
impl Todos {
pub fn num_remaining(&self) -> usize {
todos.iter().filter(|todo| !todo.completed).sum()
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_remaining {
// ...
}
}
#[component]
pub fn TodoApp(cx: Scope) -> impl IntoView {
let (todos, set_todos) = create_signal(cx, Todos(vec![Todo { /* ... */ }]));
// ✅ this has a test associated with it
let num_remaining = move || todos.with(Todos::num_remaining);
}
```
In general, the less of your logic is wrapped into your components themselves, the
more idiomatic your code will feel and the easier it will be to test.
## 2. Test components with `wasm-bindgen-test`
[`wasm-bindgen-test`](https://crates.io/crates/wasm-bindgen-test) is a great utility
for integrating or end-to-end testing WebAssembly apps in a headless browser.
To use this testing utility, you need to add `wasm-bindgen-test` to your `Cargo.toml`:
```toml
[dev-dependencies]
wasm-bindgen-test = "0.3.0"
```
You should create tests in a separate `tests` directory. You can then run your tests in the browser of your choice:
```bash
wasm-pack test --firefox
```
> To see the full setup, check out the tests for the [`counter`](https://github.com/leptos-rs/leptos/tree/main/examples/counter) example.
### Writing Your Tests
Most tests will involve some combination of vanilla DOM manipulation and comparison to a `view`. For example, heres a test [for the
`counter` example](https://github.com/leptos-rs/leptos/blob/main/examples/counter/tests/mod.rs).
First, we set up the testing environment.
```rust
use wasm_bindgen_test::*;
use counter::*;
use leptos::*;
use web_sys::HtmlElement;
// tell the test runner to run tests in the browser
wasm_bindgen_test_configure!(run_in_browser);
```
Im going to create a simpler wrapper for each test case, and mount it there.
This makes it easy to encapsulate the test results.
```rust
// like marking a regular test with #[test]
#[wasm_bindgen_test]
fn clear() {
let document = leptos::document();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
// start by rendering our counter and mounting it to the DOM
// note that we start at the initial value of 10
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
);
```
Well use some manual DOM operations to grab the `<div>` that wraps
the whole component, as well as the `clear` button.
```rust
// now we extract the buttons by iterating over the DOM
// this would be easier if they had IDs
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = test_wrapper
.query_selector("button")
.unwrap()
.unwrap()
.unchecked_into::<web_sys::HtmlElement>();
```
Now we can use ordinary DOM APIs to simulate user interaction.
```rust
// now let's click the `clear` button
clear.click();
```
You can test individual DOM element attributes or text node values. Sometimes
I like to test the whole view at once. We can do this by testing the elements
`outerHTML` against our expectations.
```rust
assert_eq!(
div.outer_html(),
// here we spawn a mini reactive system to render the test case
run_scope(create_runtime(), |cx| {
// it's as if we're creating it with a value of 0, right?
let (value, set_value) = create_signal(cx, 0);
// we can remove the event listeners because they're not rendered to HTML
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
// the view returned an HtmlElement<Div>, which is a smart pointer for
// a DOM element. So we can still just call .outer_html()
.outer_html()
})
);
```
That test involved us manually replicating the `view` thats inside the component.
There's actually an easier way to do this... We can just test against a `<SimpleCounter/>`
with the initial value `0`. This is where our wrapping element comes in: Ill just test
the wrappers `innerHTML` against another comparison case.
```rust
assert_eq!(test_wrapper.inner_html(), {
let comparison_wrapper = document.create_element("section").unwrap();
leptos::mount_to(
comparison_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
);
comparison_wrapper.inner_html()
});
}
```
This is only a very limited introduction to testing. But I hope its useful as you begin to build applications.
> For more, see [the testing section of the `wasm-bindgen` guide](https://rustwasm.github.io/wasm-bindgen/wasm-bindgen-test/index.html#testing-on-wasm32-unknown-unknown-with-wasm-bindgen-test).

View File

@@ -0,0 +1,143 @@
# A Basic Component
That “Hello, world!” was a *very* simple example. Lets move on to something a
little more like an ordinary app.
First, lets edit the `main` function so that, instead of rendering the whole
app, it just renders an `<App/>` component. Components are the basic unit of
composition and design in most web frameworks, and Leptos is no exception.
Conceptually, they are similar to HTML elements: they represent a section of the
DOM, with self-contained, defined behavior. Unlike HTML elements, they are in
`PascalCase`, so most Leptos applications will start with something like an
`<App/>` component.
```rust
fn main() {
leptos::mount_to_body(|cx| view! { cx, <App/> })
}
```
Now lets define our `<App/>` component itself. Because its relatively simple,
Ill give you the whole thing up front, then walk through it line by line.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button
on:click=move |_| {
set_count.update(|n| *n += 1);
}
>
"Click me: "
{move || count.get()}
</button>
}
}
```
## The Component Signature
```rust
#[component]
```
Like all component definitions, this begins with the [`#[component]`](https://docs.rs/leptos/latest/leptos/attr.component.html) macro. `#[component]` annotates a function so it can be
used as a component in your Leptos application. Well see some of the other features of
this macro in a couple chapters.
```rust
fn App(cx: Scope) -> impl IntoView
```
Every component is a function with the following characteristics
1. It takes a reactive [`Scope`](https://docs.rs/leptos/latest/leptos/struct.Scope.html)
as its first argument. This `Scope` is our entrypoint into the reactive system.
By convention, its usually named `cx`.
2. You can include other arguments, which will be available as component “props.”
3. Component functions return `impl IntoView`, which is an opaque type that includes
anything you could return from a Leptos `view`.
## The Component Body
The body of the component function is a set-up function that runs once, not a
render function that reruns multiple times. Youll typically use it to create a
few reactive variables, define any side effects that run in response to those values
changing, and describe the user interface.
```rust
let (count, set_count) = create_signal(cx, 0);
```
[`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html)
creates a signal, the basic unit of reactive change and state management in Leptos.
This returns a `(getter, setter)` tuple. To access the current value, youll
use `count.get()` (or, on `nightly` Rust, the shorthand `count()`). To set the
current value, youll call `set_count.set(...)` (or `set_count(...)`).
> `.get()` clones the value and `.set()` overwrites it. In many cases, its more
efficient to use `.with()` or `.update()`; check out the docs for [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) and [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) if youd like to learn more about those trade-offs at this point.
## The View
Leptos defines user interfaces using a JSX-like format via the [`view`](https://docs.rs/leptos/latest/leptos/macro.view.html) macro.
```rust
view! { cx,
<button
// define an event listener with on:
on:click=move |_| {
set_count.update(|n| *n += 1);
}
>
// text nodes are wrapped in quotation marks
"Click me: "
// blocks can include Rust code
{move || count.get()}
</button>
}
```
This should mostly be easy to understand: it looks like HTML, with a special
`on:click` to define a `click` event listener, a text node thats formatted like
a Rust string, and then...
```rust
{move || count.get()}
```
whatever that is.
People sometimes joke that they use more closures in their first Leptos application
than theyve ever used in their lives. And fair enough. Basically, passing a function
into the view tells the framework: “Hey, this is something that might change.”
When we click the button and call `set_count`, the `count` signal is updated. This
`move || count.get()` closure, whose value depends on the value of `count`, reruns,
and the framework makes a targeted update to that one specific text node, touching
nothing else in your application. This is what allows for extremely efficient updates
to the DOM.
Now, if you have Clippy on—or if you have a particularly sharp eye—you might notice
that this closure is redundant, at least if youre in `nightly` Rust. If youre using
Leptos with `nightly` Rust, signals are already functions, so the closure is unnecessary.
As a result, you can write a simpler view:
```rust
view! { cx,
<button /* ... */>
"Click me: "
// identical to {move || count.get()}
{count}
</button>
}
```
Remember—and this is *very important*—only functions are reactive. This means that
`{count}` and `{count()}` do very different things in your view. `{count}` passes
in a function, telling the framework to update the view every time `count` changes.
`{count()}` access the value of `count` once, and passes an `i32` into the view,
rendering it once, unreactively. You can see the difference in the CodeSandbox below!
> Throughout this tutorial, well use CodeSandbox to show interactive examples. To
show the browser in the sandbox, you may need to click `Add DevTools >
Other Previews > 8080.` Hover over any of the variables to show Rust-Analyzer details
and docs for whats going on. Feel free to fork the examples to play with them yourself!
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-3d74p3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A31%2C%22endLineNumber%22%3A19%2C%22startColumn%22%3A31%2C%22startLineNumber%22%3A19%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,104 @@
# `view`: Dynamic Attributes and Classes
So far weve seen how to use the `view` macro to create event listeners and to
create dynamic text by passing a function (such as a signal) into the view.
But of course there are other things you might want to update in your user interface.
In this section, well look at how to update attributes and classes dynamically,
and well introduce the concept of a **derived signal**.
Lets start with a simple component that should be familiar: click a button to
increment a counter.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button
on:click=move |_| {
set_count.update(|n| *n += 1);
}
```
So far, this is just the example from the last chapter.
## Dynamic Classes
Now lets say Id like to update the list of CSS classes on this element dynamically.
For example, lets say I want to add the class `red` when the count is odd. I can
do this using the `class:` syntax.
```rust
class:red=move || count() & 1 == 1
```
`class:` attributes take
1. the class name, following the colon (`red`)
2. a value, which can be a `bool` or a function that returns a `bool`
When the value is `true`, the class is added. When the value is `false`, the class
is removed. And if the value is a function that accesses a signal, the class will
reactively update when the signal changes.
Now every time I click the button, the text should toggle between red and black as
the number switches between even and odd.
## Dynamic Attributes
The same applies to plain attributes. Passing a plain string or primitive value to
an attribute gives it a static value. Passing a function (including a signal) to
an attribute causes it to update its value reactively. Lets add another element
to our view:
```rust
<progress
max="50"
// signals are functions, so this <=> `move || count.get()`
value=count
/>
```
Now every time we set the count, not only will the `class` of the `<button>` be
toggled, but the `value` of the `<progress>` bar will increase, which means that
our progress bar will move forward.
## Derived Signals
Lets go one layer deeper, just for fun.
You already know that we create reactive interfaces just by passing functions into
the `view`. This means that we can easily change our progress bar. For example,
suppose we want it to move twice as fast:
```rust
<progress
max="50"
value=move || count() * 2
/>
```
But imagine we want to reuse that calculation in more than one place. You can do this
using a **derived signal**: a closure that accesses a signal.
```rust
let double_count = move || count() * 2;
/* insert the rest of the view */
<progress
max="50"
// we use it once here
value=double_count
/>
<p>
"Double Count: "
// and again here
{double_count}
</p>
```
Derived signals let you create reactive computed values that can be used in multiple
places in your application with minimal overhead.
> Note: Using a derived signal like this means that the calculation runs once per
signal change per place we access `double_count`; in other words, twice. This is a
very cheap calculation, so thats fine. Well look at memos in a later chapter, which
are designed to solve this problem for expensive calculations.
<iframe src="https://codesandbox.io/p/sandbox/2-dynamic-attribute-pqyvzl?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,317 @@
# Components and Props
So far, weve been building our whole application in a single component. This
is fine for really tiny examples, but in any real application youll need to
break the user interface out into multiple components, so you can break your
interface down into smaller, reusable, composable chunks.
Lets take our progress bar example. Imagine that you want two progress bars
instead of one: one that advances one tick per click, one that advances two ticks
per click.
You _could_ do this by just creating two `<progress>` elements:
```rust
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! {
<progress
max="50"
value=count
/>
<progress
max="50"
value=double_count
/>
```
But of course, this doesnt scale very well. If you want to add a third progress
bar, you need to add this code another time. And if you want to edit anything
about it, you need to edit it in triplicate.
Instead, lets create a `<ProgressBar/>` component.
```rust
#[component]
fn ProgressBar(
cx: Scope
) -> impl IntoView {
view! { cx,
<progress
max="50"
// hmm... where will we get this from?
value=progress
/>
}
}
```
Theres just one problem: `progress` is not defined. Where should it come from?
When we were defining everything manually, we just used the local variable names.
Now we need some way to pass an argument into the component.
## Component Props
We do this using component properties, or “props.” If youve used another frontend
framework, this is probably a familiar idea. Basically, properties are to components
as attributes are to HTML elements: they let you pass additional information into
the component.
In Leptos, you define props by giving additional arguments to the component function.
```rust
#[component]
fn ProgressBar(
cx: Scope,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max="50"
// now this works
value=progress
/>
}
}
```
Now we can use our component in the main `<App/>` components view.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
// now we use our component!
<ProgressBar progress=count/>
}
}
```
Using a component in the view looks a lot like using an HTML element. Youll
notice that you can easily tell the difference between an element and a component
because components always have `PascalCase` names. You pass the `progress` prop
in as if it were an HTML element attribute. Simple.
> ### Important Note
> For every `Component`, Leptos generates a corresponding `ComponentProps` type. This
is what allows us to have named props, when Rust does not have named function parameters.
If youre defining a component in one module and importing it into another, make
sure you include this `ComponentProps` type:
>
> `use progress_bar::{ProgressBar, ProgressBarProps};`
### Reactive and Static Props
Youll notice that throughout this example, `progress` takes a reactive
`ReadSignal<i32>`, and not a plain `i32`. This is **very important**.
Component props have no special meaning attached to them. A component is simply
a function that runs once to set up the user interface. The only way to tell the
interface to respond to changing is to pass it a signal type. So if you have a
component property that will change over time, like our `progress`, it should
be a signal.
### `optional` Props
Right now the `max` setting is hard-coded. Lets take that as a prop too. But
lets add a catch: lets make this prop optional by annotating the particular
argument to the component function with `#[prop(optional)]`.
```rust
#[component]
fn ProgressBar(
cx: Scope,
// mark this prop optional
// you can specify it or not when you use <ProgressBar/>
#[prop(optional)]
max: u16,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
Now, we can use `<ProgressBar max=50 value=count/>`, or we can omit `max`
to use the default value (i.e., `<ProgressBar value=count/>`). The default value
on an `optional` is its `Default::default()` value, which for a `u16` is going to
be `0`. In the case of a progress bar, a max value of `0` is not very useful.
So lets give it a particular default value instead.
### `default` props
You can specify a default value other than `Default::default()` pretty simply
with `#[prop(default = ...)`.
```rust
#[component]
fn ProgressBar(
cx: Scope,
#[prop(default = 100)]
max: u16,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
### Generic Props
This is great. But we began with two counters, one driven by `count`, and one by
the derived signal `double_count`. Lets recreate that by using `double_count`
as the `progress` prop on another `<ProgressBar/>`.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
<ProgressBar progress=count/>
// add a second progress bar
<ProgressBar progress=double_count/>
}
}
```
Hm... this wont compile. It should be pretty easy to understand why: weve declared
that the `progress` prop takes `ReadSignal<i32>`, and `double_count` is not
`ReadSignal<i32>`. As rust-analyzer will tell you, its type is `|| -> i32`, i.e.,
its a closure that returns an `i32`.
There are a couple ways to handle this. One would be to say: “Well, I know that
a `ReadSignal` is a function, and I know that a closure is a function; maybe I
could just take any function?” If youre savvy, you may know that both these
implement the trait `Fn() -> i32`. So you could use a generic component:
```rust
#[component]
fn ProgressBar<F>(
cx: Scope,
#[prop(default = 100)]
max: u16,
progress: F
) -> impl IntoView
where
F: Fn() -> i32 + 'static,
{
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
This is a perfectly reasonable way to write this component: `progress` now takes
any value that implements this `Fn()` trait.
> Note that generic component props _cannot_ be specified inline (as `<F: Fn() -> i32>`)
or as `progress: impl Fn() -> i32 + 'static,`, in part because theyre actually used to generate
a `struct ProgressBarProps`, and struct fields cannot be `impl` types.
### `into` Props
Theres one more way we could implement this, and it would be to use `#[prop(into)]`.
This attribute automatically calls `.into()` on the values you pass as props,
which allows you to easily pass props with different values.
In this case, its helpful to know about the
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html) type. `Signal`
is a enumerated type that represents any kind of readable reactive signal. It can
be useful when defining APIs for components youll want to reuse while passing
different sorts of signals. The [`MaybeSignal`](https://docs.rs/leptos/latest/leptos/enum.MaybeSignal.html) type is useful when you want to be able to take either a static or
reactive value.
```rust
#[component]
fn ProgressBar(
cx: Scope,
#[prop(default = 100)]
max: u16,
#[prop(into)]
progress: Signal<i32>
) -> impl IntoView
{
view! { cx,
<progress
max=max
value=progress
/>
}
}
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
// .into() converts `ReadSignal` to `Signal`
<ProgressBar progress=count/>
// use `Signal::derive()` to wrap a derived signal
<ProgressBar progress=Signal::derive(cx, double_count)/>
}
}
```
## Documenting Components
This is one of the least essential but most important sections of this book.
Its not strictly necessary to document your components and their props. It may
be very important, depending on the size of your team and your app. But its very
easy, and bears immediate fruit.
To document a component and its props, you can simply add doc comments on the
component function, and each one of the props:
```rust
/// Shows progress toward a goal.
#[component]
fn ProgressBar(
cx: Scope,
/// The maximum value of the progress bar.
#[prop(default = 100)]
max: u16,
/// How much progress should be displayed.
#[prop(into)]
progress: Signal<i32>,
) -> impl IntoView {
/* ... */
}
```
Thats all you need to do. These behave like ordinary Rust doc comments, except
that you can document individual component props, which cant be done with Rust
function arguments.
This will automatically generate documentation for your component, its `Props`
type, and each of the fields used to add props. It can be a little hard to
understand how powerful this is until you hover over the component name or props
and see the power of the `#[component]` macro combined with rust-analyzer here.
<iframe src="https://codesandbox.io/p/sandbox/3-components-50t2e7?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A7%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A7%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,88 @@
# Iteration
Whether youre listing todos, displaying a table, or showing product images,
iterating over a list of items is a common task in web applications. Reconciling
the differences between changing sets of items can also be one of the trickiest
tasks for a framework to handle well.
Leptos supports to two different patterns for iterating over items:
1. For static views: `Vec<_>`
2. For dynamic lists: `<For/>`
## Static Views with `Vec<_>`
Sometimes you need to show an item repeatedly, but the list youre drawing from
does not often change. In this case, its important to know that you can insert
any `Vec<IV> where IV: IntoView` into your view. In other words, if you can render
`T`, you can render `Vec<T>`.
```rust
let values = vec![0, 1, 2];
view! { cx,
// this will just render "012"
<p>{values.clone()}</p>
// or we can wrap them in <li>
<ul>
{values.into_iter()
.map(|n| view! { cx, <li>{n}</li>})
.collect::<Vec<_>>()}
</ul>
}
```
The fact that the _list_ is static doesnt mean the interface needs to be static.
You can render dynamic items as part of a static list.
```rust
// create a list of N signals
let counters = (1..=length).map(|idx| create_signal(cx, idx));
// each item manages a reactive view
// but the list itself will never change
let counter_buttons = counters
.map(|(count, set_count)| {
view! { cx,
<li>
<button
on:click=move |_| set_count.update(|n| *n += 1)
>
{count}
</button>
</li>
}
})
.collect::<Vec<_>>();
view! { cx,
<ul>{counter_buttons}</ul>
}
```
You _can_ render a `Fn() -> Vec<_>` reactively as well. But note that every time
it changes, this will rerender every item in the list. This is quite inefficient!
Fortunately, theres a better way.
## Dynamic Rendering with the `<For/>` Component
The [`<For/>`](https://docs.rs/leptos/latest/leptos/fn.For.html) component is a
keyed dynamic list. It takes three props:
- `each`: a function (such as a signal) that returns the items `T` to be iterated over
- `key`: a key function that takes `&T` and returns a stable, unique key or ID
- `view`: renders each `T` into a view
`key` is, well, the key. You can add, remove, and move items within the list. As
long as each items key is stable over time, the framework does not need to rerender
any of the items, unless they are new additions, and it can very efficiently add,
remove, and move items as they change. This allows for extremely efficient updates
to the list as it changes, with minimal additional work.
Creating a good `key` can be a little tricky. You generally do _not_ want to use
an index for this purpose, as it is not stable—if you remove or move items, their
indices change.
But its a great idea to do something like generating a unique ID for each row as
it is generated, and using that as an ID for the key function.
Check out the `<DynamicList/>` component below for an example.
<iframe src="https://codesandbox.io/p/sandbox/4-iteration-sglt1o?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A6%2C%22endLineNumber%22%3A55%2C%22startColumn%22%3A5%2C%22startLineNumber%22%3A31%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,107 @@
# Forms and Inputs
Forms and form inputs are an important part of interactive apps. There are two
basic patterns for interacting with inputs in Leptos, which you may recognize
if youre familiar with React, SolidJS, or a similar framework: using **controlled**
or **uncontrolled** inputs.
## Controlled Inputs
In a "controlled input," the framework controls the state of the input
element. On every `input` event, it updates a local signal that holds the current
state, which in turn updates the `value` prop of the input.
There are two important things to remember:
1. The `input` event fires on (almost) every change to the element, while the
`change` event fires (more or less) when you unfocus the input. You probably
want `on:input`, but we give you the freedom to choose.
2. The `value` *attribute* only sets the initial value of the input, i.e., it
only updates the input up to the point that you begin typing. The `value`
*property* continues updating the input after that. You usually want to set
`prop:value` for this reason.
```rust
let (name, set_name) = create_signal(cx, "Controlled".to_string());
view! { cx,
<input type="text"
on:input=move |ev| {
// event_target_value is a Leptos helper function
// it functions the same way as event.target.value
// in JavaScript, but smooths out some of the typecasting
// necessary to make this work in Rust
set_name(event_target_value(&ev));
}
// the `prop:` syntax lets you update a DOM property,
// rather than an attribute.
prop:value=name
/>
<p>"Name is: " {name}</p>
}
```
## Uncontrolled Inputs
In an "uncontrolled input," the browser controls the state of the input element.
Rather than continuously updating a signal to hold its value, we use a
[`NodeRef`](https://docs.rs/leptos/latest/leptos/struct.NodeRef.html) to access
the input once when we want to get its value.
In this example, we only notify the framework when the `<form>` fires a `submit`
event.
```rust
let (name, set_name) = create_signal(cx, "Uncontrolled".to_string());
let input_element: NodeRef<Input> = create_node_ref(cx);
```
`NodeRef` is a kind of reactive smart pointer: we can use it to access the
underlying DOM node. Its value will be set when the element is rendered.
```rust
let on_submit = move |ev: SubmitEvent| {
// stop the page from reloading!
ev.prevent_default();
// here, we'll extract the value from the input
let value = input_element()
// event handlers can only fire after the view
// is mounted to the DOM, so the `NodeRef` will be `Some`
.expect("<input> to exist")
// `NodeRef` implements `Deref` for the DOM element type
// this means we can call`HtmlInputElement::value()`
// to get the current value of the input
.value();
set_name(value);
};
```
Our `on_submit` handler will access the inputs value and use it to call `set_name`.
To access the DOM node stored in the `NodeRef`, we can simply call it as a function
(or using `.get()`). This will return `Option<web_sys::HtmlInputElement>`, but we
know it will already have been filled when we rendered the view, so its safe to
unwrap here.
We can then call `.value()` to get the value out of the input, because `NodeRef`
gives us access to a correctly-typed HTML element.
```rust
view! { cx,
<form on:submit=on_submit>
<input type="text"
value=name
node_ref=input_element
/>
<input type="submit" value="Submit"/>
</form>
<p>"Name is: " {name}</p>
}
```
The view should be pretty self-explanatory by now. Note two things:
1. Unlike in the controlled input example, we use `value` (not `prop:value`).
This is because were just setting the initial value of the input, and letting
the browser control its state. (We could use `prop:value` instead.)
2. We use `node_ref` to fill the `NodeRef`. (Older examples sometimes use `_ref`.
They are the same thing, but `node_ref` has better rust-analyzer support.)
<iframe src="https://codesandbox.io/p/sandbox/5-form-inputs-ih9m62?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A12%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A12%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,285 @@
# Control Flow
In most applications, you sometimes need to make a decision: Should I render this
part of the view, or not? Should I render `<ButtonA/>` or `<WidgetB/>`? This is
**control flow**.
## A Few Tips
When thinking about how to do this with Leptos, its important to remember a few
things:
1. Rust is an expression-oriented language: control-flow expressions like
`if x() { y } else { z }` and `match x() { ... }` return their values. This
makes them very useful for declarative user interfaces.
2. For any `T` that implements `IntoView`—in other words, for any type that Leptos
knows how to render—`Option<T>` and `Result<T, impl Error>` _also_ implement
`IntoView`. And just as `Fn() -> T` renders a reactive `T`, `Fn() -> Option<T>`
and `Fn() -> Result<T, impl Error>` are reactive.
3. Rust has lots of handy helpers like [Option::map](https://doc.rust-lang.org/std/option/enum.Option.html#method.map),
[Option::and_then](https://doc.rust-lang.org/std/option/enum.Option.html#method.and_then),
[Option::ok_or](https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or),
[Result::map](https://doc.rust-lang.org/std/result/enum.Result.html#method.map),
[Result::ok](https://doc.rust-lang.org/std/result/enum.Result.html#method.ok), and
[bool::then](https://doc.rust-lang.org/std/primitive.bool.html#method.then) that
allow you to convert, in a declarative way, between a few different standard types,
all of which can be rendered. Spending time in the `Option` and `Result` docs in particular
is one of the best ways to level up your Rust game.
4. And always remember: to be reactive, values must be functions. Youll see me constantly
wrap things in a `move ||` closure, below. This is to ensure that they actually rerun
when the signal they depend on changes, keeping the UI reactive.
## So What?
To connect the dots a little: this means that you can actually implement most of
your control flow with native Rust code, without any control-flow components or
special knowledge.
For example, lets start with a simple signal and derived signal:
```rust
let (value, set_value) = create_signal(cx, 0);
let is_odd = move || value() & 1 == 1;
```
> If you dont recognize whats going on with `is_odd`, dont worry about it
> too much. Its just a simple way to test whether an integer is odd by doing a
> bitwise `AND` with `1`.
We can use these signals and ordinary Rust to build most control flow.
### `if` statements
Lets say I want to render some text if the number is odd, and some other text
if its even. Well, how about this?
```rust
view! { cx,
<p>
{move || if is_odd() {
"Odd"
} else {
"Even"
}}
</p>
}
```
An `if` expression returns its value, and a `&str` implements `IntoView`, so a
`Fn() -> &str` implements `IntoView`, so this... just works!
### `Option<T>`
Lets say we want to render some text if its odd, and nothing if its even.
```rust
let message = move || {
if is_odd() {
Some("Ding ding ding!")
} else {
None
}
};
view! { cx,
<p>{message}</p>
}
```
This works fine. We can make it a little shorter if wed like, using `bool::then()`.
```rust
let message = move || is_odd().then(|| "Ding ding ding!");
view! { cx,
<p>{message}</p>
}
```
You could even inline this if youd like, although personally I sometimes like the
better `cargo fmt` and `rust-analyzer` support I get by pulling things out of the `view`.
### `match` statements
Were still just writing ordinary Rust code, right? So you have all the power of Rusts
pattern matching at your disposal.
```rust
let message = move || {
match value() {
0 => "Zero",
1 => "One",
n if is_odd() => "Odd",
_ => "Even"
}
};
view! { cx,
<p>{message}</p>
}
```
And why not? YOLO, right?
## Preventing Over-Rendering
Not so YOLO.
Everything weve just done is basically fine. But theres one thing you should remember
and try to be careful with. Each one of the control-flow functions weve created so far
is basically a derived signal: it will rerun every time the value changes. In the examples
above, where the value switches from even to odd on every change, this is fine.
But consider the following example:
```rust
let (value, set_value) = create_signal(cx, 0);
let message = move || if value() > 5 {
"Big"
} else {
"Small"
};
view! { cx,
<p>{message}</p>
}
```
This _works_, for sure. But if you added a log, you might be surprised
```rust
let message = move || if value() > 5 {
log!("{}: rendering Big", value());
"Big"
} else {
log!("{}: rendering Small", value());
"Small"
};
```
As a user clicks a button, youd see something like this:
```
1: rendering Small
2: rendering Small
3: rendering Small
4: rendering Small
5: rendering Small
6: rendering Big
7: rendering Big
8: rendering Big
... ad infinitum
```
Every time `value` changes, it reruns the `if` statement. This makes sense, with
how reactivity works. But it has a downside. For a simple text node, rerunning
the `if` statement and rerendering isnt a big deal. But imagine it were
like this:
```rust
let message = move || if value() > 5 {
<Big/>
} else {
<Small/>
};
```
This rerenders `<Small/>` five times, then `<Big/>` infinitely. If theyre
loading resources, creating signals, or even just creating DOM nodes, this is
unnecessary work.
### `<Show/>`
The [`<Show/>`](https://docs.rs/leptos/latest/leptos/fn.Show.html) component is
the answer. You pass it a `when` condition function, a `fallback` to be shown if
the `when` function returns `false`, and children to be rendered if `when` is `true`.
```rust
let (value, set_value) = create_signal(cx, 0);
view! { cx,
<Show
when=move || value() > 5
fallback=|cx| view! { cx, <Small/> }
>
<Big/>
</Show>
}
```
`<Show/>` memoizes the `when` condition, so it only renders its `<Small/>` once,
continuing to show the same component until `value` is greater than five;
then it renders `<Big/>` once, continuing to show it indefinitely.
This is a helpful tool to avoid rerendering when using dynamic `if` expressions.
As always, there's some overhead: for a very simple node (like updating a single
text node, or updating a class or attribute), a `move || if ...` will be more
efficient. But if its at all expensive to render either branch, reach for
`<Show/>`.
## Note: Type Conversions
Theres one final thing its important to say in this section.
The `view` macro doesnt return the most-generic wrapping type
[`View`](https://docs.rs/leptos/latest/leptos/enum.View.html).
Instead, it returns things with types like `Fragment` or `HtmlElement<Input>`. This
can be a little annoying if youre returning different HTML elements from
different branches of a conditional:
```rust,compile_error
view! { cx,
<main>
{move || match is_odd() {
true if value() == 1 => {
// returns HtmlElement<Pre>
view! { cx, <pre>"One"</pre> }
},
false if value() == 2 => {
// returns HtmlElement<P>
view! { cx, <p>"Two"</p> }
}
// returns HtmlElement<Textarea>
_ => view! { cx, <textarea>{value()}</textarea> }
}}
</main>
}
```
This strong typing is actually very powerful, because
[`HtmlElement`](https://docs.rs/leptos/0.1.3/leptos/struct.HtmlElement.html) is,
among other things, a smart pointer: each `HtmlElement<T>` type implements
`Deref` for the appropriate underlying `web_sys` type. In other words, in the browser
your `view` returns real DOM elements, and you can access native DOM methods on
them.
But it can be a little annoying in conditional logic like this, because you cant
return different types from different branches of a condition in Rust. There are two ways
to get yourself out of this situation:
1. If you have multiple `HtmlElement` types, convert them to `HtmlElement<AnyElement>`
with [`.into_any()`](https://docs.rs/leptos/latest/leptos/struct.HtmlElement.html#method.into_any)
2. If you have a variety of view types that are not all `HtmlElement`, convert them to
`View`s with [`.into_view(cx)`](https://docs.rs/leptos/latest/leptos/trait.IntoView.html#tymethod.into_view).
Heres the same example, with the conversion added:
```rust,compile_error
view! { cx,
<main>
{move || match is_odd() {
true if value() == 1 => {
// returns HtmlElement<Pre>
view! { cx, <pre>"One"</pre> }.into_any()
},
false if value() == 2 => {
// returns HtmlElement<P>
view! { cx, <p>"Two"</p> }.into_any()
}
// returns HtmlElement<Textarea>
_ => view! { cx, <textarea>{value()}</textarea> }.into_any()
}}
</main>
}
```
<iframe src="https://codesandbox.io/p/sandbox/6-control-flow-in-view-zttwfx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,113 @@
# Error Handling
[In the last chapter](./06_control_flow.md), we saw that you can render `Option<T>`:
in the `None` case, it will render nothing, and in the `T` case, it will render `T`
(that is, if `T` implements `IntoView`). You can actually do something very similar
with a `Result<T, E>`. In the `Err(_)` case, it will render nothing. In the `Ok(T)`
case, it will render the `T`.
Lets start with a simple component to capture a number input.
```rust
#[component]
fn NumericInput(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
// when input changes, try to parse a number from the input
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<label>
"Type a number (or not!)"
<input type="number" on:input=on_input/>
<p>
"You entered "
<strong>{value}</strong>
</p>
</label>
}
}
```
Every time you change the input, `on_input` will attempt to parse its value into a 32-bit
integer (`i32`), and store it in our `value` signal, which is a `Result<i32, _>`. If you
type the number `42`, the UI will display
```
You entered 42
```
But if you type the string`foo`, it will display
```
You entered
```
This is not great. It saves us using `.unwrap_or_default()` or something, but it would be
much nicer if we could catch the error and do something with it.
You can do that, with the [`<ErrorBoundary/>`](https://docs.rs/leptos/latest/leptos/fn.ErrorBoundary.html)
component.
## `<ErrorBoundary/>`
An `<ErrorBoundary/>` is a little like the `<Show/>` component we saw in the last chapter.
If everythings okay—which is to say, if everything is `Ok(_)`—it renders its children.
But if theres an `Err(_)` rendered among those children, it will trigger the
`<ErrorBoundary/>`s `fallback`.
Lets add an `<ErrorBoundary/>` to this example.
```rust
#[component]
fn NumericInput(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<h1>"Error Handling"</h1>
<label>
"Type a number (or something that's not a number!)"
<input type="number" on:input=on_input/>
<ErrorBoundary
// the fallback receives a signal containing current errors
fallback=|cx, errors| view! { cx,
<div class="error">
<p>"Not a number! Errors: "</p>
// we can render a list of errors as strings, if we'd like
<ul>
{move || errors.get()
.into_iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
}
</ul>
</div>
}
>
<p>"You entered " <strong>{value}</strong></p>
</ErrorBoundary>
</label>
}
}
```
Now, if you type `42`, `value` is `Ok(42)` and youll see
```
You entered 42
```
If you type `foo`, value is `Err(_)` and the `fallback` will render. Weve chosen to render
the list of errors as a `String`, so youll see something like
```
Not a number! Errors:
- cannot parse integer from empty string
```
If you fix the error, the error message will disappear and the content youre wrapping in
an `<ErrorBoundary/>` will appear again.
<iframe src="https://codesandbox.io/p/sandbox/7-error-handling-and-error-boundaries-sroncx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,288 @@
# Parent-Child Communication
You can think of your application as a nested tree of components. Each component
handles its own local state and manages a section of the user interface, so
components tend to be relatively self-contained.
Sometimes, though, youll want to communicate between a parent component and its
child. For example, imagine youve defined a `<FancyButton/>` component that adds
some styling, logging, or something else to a `<button/>`. You want to use a
`<FancyButton/>` in your `<App/>` component. But how can you communicate between
the two?
Its easy to communicate state from a parent component to a child component. We
covered some of this in the material on [components and props](./03_components.md).
Basically if you want the parent to communicate to the child, you can pass a
[`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html), a
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html), or even a
[`MaybeSignal`](https://docs.rs/leptos/latest/leptos/struct.MaybeSignal.html) as a prop.
But what about the other direction? How can a child send notifications about events
or state changes back up to the parent?
There are four basic patterns of parent-child communication in Leptos.
## 1. Pass a [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html)
One approach is simply to pass a `WriteSignal` from the parent down to the child, and update
it in the child. This lets you manipulate the state of the parent from the child.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<ButtonA setter=set_toggled/>
}
}
#[component]
pub fn ButtonA(cx: Scope, setter: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<button
on:click=move |_| setter.update(|value| *value = !*value)
>
"Toggle"
</button>
}
}
```
This pattern is simple, but you should be careful with it: passing around a `WriteSignal`
can make it hard to reason about your code. In this example, its pretty clear when you
read `<App/>` that you are handing off the ability to mutate `toggled`, but its not at
all clear when or how it will change. In this small, local example its easy to understand,
but if you find yourself passing around `WriteSignal`s like this throughout your code,
you should really consider whether this is making it too easy to write spaghetti code.
## 2. Use a Callback
Another approach would be to pass a callback to the child: say, `on_click`.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<ButtonB on_click=move |_| set_toggled.update(|value| *value = !*value)/>
}
}
#[component]
pub fn ButtonB<F>(
cx: Scope,
on_click: F,
) -> impl IntoView
where
F: Fn(MouseEvent) + 'static,
{
view! { cx,
<button on:click=on_click>
"Toggle"
</button>
}
}
```
Youll notice that whereas `<ButtonA/>` was given a `WriteSignal` and decided how to mutate it,
`<ButtonB/>` simply fires an event: the mutation happens back in `<App/>`. This has the advantage
of keeping local state local, preventing the problem of spaghetti mutation. But it also means
the logic to mutate that signal needs to exist up in `<App/>`, not down in `<ButtonB/>`. These
are real trade-offs, not a simple right-or-wrong choice.
> Note the way we declare the generic type `F` here for the callback. If youre
> confused, look back at the [generic props](./03_components.html#generic-props) section
> of the chapter on components.
## 3. Use an Event Listener
You can actually write Option 2 in a slightly different way. If the callback maps directly onto
a native DOM event, you can add an `on:` listener directly to the place you use the component
in your `view` macro in `<App/>`.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
// note the on:click instead of on_click
// this is the same syntax as an HTML element event listener
<ButtonC on:click=move |_| set_toggled.update(|value| *value = !*value)/>
}
}
#[component]
pub fn ButtonC<F>(cx: Scope) -> impl IntoView {
view! { cx,
<button>"Toggle"</button>
}
}
```
This lets you write way less code in `<ButtonC/>` than you did for `<ButtonB/>`,
and still gives a correctly-typed event to the listener. This works by adding an
`on:` event listener to each element that `<ButtonC/>` returns: in this case, just
the one `<button>`.
Of course, this only works for actual DOM events that youre passing directly through
to the elements youre rendering in the component. For more complex logic that
doesnt map directly onto an element (say you create `<ValidatedForm/>` and want an
`on_valid_form_submit` callback) you should use Option 2.
## 4. Providing a Context
This version is actually a variant on Option 1. Say you have a deeply-nested component
tree:
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout/>
}
}
#[component]
pub fn Layout(cx: Scope) -> impl IntoView {
view! { cx,
<header>
<h1>"My Page"</h1>
</header>
<main>
<Content/>
</main>
}
}
#[component]
pub fn Content(cx: Scope) -> impl IntoView {
view! { cx,
<div class="content">
<ButtonD/>
</div>
}
}
#[component]
pub fn ButtonD<F>(cx: Scope) -> impl IntoView {
todo!()
}
```
Now `<ButtonD/>` is no longer a direct child of `<App/>`, so you cant simply
pass your `WriteSignal` to its props. You could do whats sometimes called
“prop drilling,” adding a prop to each layer between the two:
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout set_toggled/>
}
}
#[component]
pub fn Layout(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<header>
<h1>"My Page"</h1>
</header>
<main>
<Content set_toggled/>
</main>
}
}
#[component]
pub fn Content(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<div class="content">
<ButtonD set_toggled/>
</div>
}
}
#[component]
pub fn ButtonD<F>(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
todo!()
}
```
This is a mess. `<Layout/>` and `<Content/>` dont need `set_toggled`; they just
pass it through to `<ButtonD/>`. But I need to declare the prop in triplicate.
This is not only annoying but hard to maintain: imagine we add a “half-toggled”
option and the type of `set_toggled` needs to change to an `enum`. We have to change
it in three places!
Isnt there some way to skip levels?
There is!
### The Context API
You can provide data that skips levels by using [`provide_context`](https://docs.rs/leptos/latest/leptos/fn.provide_context.html)
and [`use_context`](https://docs.rs/leptos/latest/leptos/fn.use_context.html). Contexts are identified
by the type of the data you provide (in this example, `WriteSignal<bool>`), and they exist in a top-down
tree that follows the contours of your UI tree. In this example, we can use context to skip the
unnecessary prop drilling.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
// share `set_toggled` with all children of this component
provide_context(cx, set_toggled);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout/>
}
}
// <Layout/> and <Content/> omitted
#[component]
pub fn ButtonD(cx: Scope) -> impl IntoView {
// use_context searches up the context tree, hoping to
// find a `WriteSignal<bool>`
// in this case, I .expect() because I know I provided it
let setter = use_context::<WriteSignal<bool>>(cx)
.expect("to have found the setter provided");
view! { cx,
<button
on:click=move |_| setter.update(|value| *value = !*value)
>
"Toggle"
</button>
}
}
```
The same caveats apply to this as to `<ButtonA/>`: passing a `WriteSignal`
around should be done with caution, as it allows you to mutate state from
arbitrary parts of your code. But when done carefully, this can be one of
the most effective techniques for global state management in Leptos: simply
provide the state at the highest level youll need it, and use it wherever
you need it lower down.
Note that there are no performance downsides to this approach. Because you
are passing a fine-grained reactive signal, _nothing happens_ in the intervening
components (`<Layout/>` and `<Content/>`) when you update it. You are communicating
directly between `<ButtonD/>` and `<App/>`. In fact—and this is the power of
fine-grained reactivity—you are communicating directly between a button click
in `<ButtonD/>` and a single text node in `<App/>`. Its as if the components
themselves dont exist at all. And, well... at runtime, they dont. Its just
signals and effects, all the way down.
<iframe src="https://codesandbox.io/p/sandbox/8-parent-child-communication-84we8m?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,126 @@
# Component Children
Its pretty common to want to pass children into a component, just as you can pass
children into an HTML element. For example, imagine I have a `<FancyForm/>` component
that enhances an HTML `<form>`. I need some way to pass all its inputs.
```rust
view! { cx,
<Form>
<fieldset>
<label>
"Some Input"
<input type="text" name="something"/>
</label>
</fieldset>
<button>"Submit"</button>
</Form>
}
```
How can you do this in Leptos? There are basically two ways to pass components to
other components:
1. **render props**: properties that are functions that return a view
2. the **`children`** prop: a special component property that includes anything
you pass as a child to the component.
In fact, youve already seen these both in action in the [`<Show/>`](/view/06_control_flow.html#show) component:
```rust
view! { cx,
<Show
// `when` is a normal prop
when=move || value() > 5
// `fallback` is a "render prop": a function that returns a view
fallback=|cx| view! { cx, <Small/> }
>
// `<Big/>` (and anything else here)
// will be given to the `children` prop
<Big/>
</Show>
}
```
Lets define a component that takes some children and a render prop.
```rust
#[component]
pub fn TakesChildren<F, IV>(
cx: Scope,
/// Takes a function (type F) that returns anything that can be
/// converted into a View (type IV)
render_prop: F,
/// `children` takes the `Children` type
children: Children,
) -> impl IntoView
where
F: Fn() -> IV,
IV: IntoView,
{
view! { cx,
<h2>"Render Prop"</h2>
{render_prop()}
<h2>"Children"</h2>
{children(cx)}
}
}
```
`render_prop` and `children` are both functions, so we can call them to generate
the appropriate views. `children`, in particular, is an alias for
`Box<dyn FnOnce(Scope) -> Fragment>`. (Aren't you glad we named it `Children` instead?)
> If you need a `Fn` or `FnMut` here because you need to call `children` more than once,
> we also provide `ChildrenFn` and `ChildrenMut` aliases.
We can use the component like this:
```rust
view! { cx,
<TakesChildren render_prop=|| view! { cx, <p>"Hi, there!"</p> }>
// these get passed to `children`
"Some text"
<span>"A span"</span>
</TakesChildren>
}
```
## Manipulating Children
The [`Fragment`](https://docs.rs/leptos/latest/leptos/struct.Fragment.html) type is
basically a way of wrapping a `Vec<View>`. You can insert it anywhere into your view.
But you can also access those inner views directly to manipulate them. For example, heres
a component that takes its children and turns them into an unordered list.
```rust
#[component]
pub fn WrapsChildren(cx: Scope, children: Children) -> impl IntoView {
// Fragment has `nodes` field that contains a Vec<View>
let children = children(cx)
.nodes
.into_iter()
.map(|child| view! { cx, <li>{child}</li> })
.collect::<Vec<_>>();
view! { cx,
<ul>{children}</ul>
}
}
```
Calling it like this will create a list:
```rust
view! { cx,
<WrappedChildren>
"A"
"B"
"C"
</WrappedChildren>
}
```
<iframe src="https://codesandbox.io/p/sandbox/9-component-children-2wrdfd?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A12%2C%22endLineNumber%22%3A19%2C%22startColumn%22%3A12%2C%22startLineNumber%22%3A19%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,5 @@
# Building User Interfaces
This first section will introduce you to the basic tools you need to build a reactive
user interface using Leptos. By the end of this section, you should be able to
build a simple, synchronous application that is rendered in the browser.

View File

@@ -10,5 +10,7 @@ log = "0.4"
console_error_panic_hook = "0.1.7"
[dev-dependencies]
wasm-bindgen = "0.2"
wasm-bindgen-test = "0.3.0"
web-sys ="0.3"

View File

@@ -1,35 +1,105 @@
use counter::*;
use leptos::*;
use wasm_bindgen::JsCast;
use wasm_bindgen_test::*;
wasm_bindgen_test_configure!(run_in_browser);
use leptos::*;
use web_sys::HtmlElement;
use counter::*;
#[wasm_bindgen_test]
fn clear() {
let document = leptos::document();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
// start by rendering our counter and mounting it to the DOM
// note that we start at the initial value of 10
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
);
// now we extract the buttons by iterating over the DOM
// this would be easier if they had IDs
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = test_wrapper
.query_selector("button")
.unwrap()
.unwrap()
.unchecked_into::<web_sys::HtmlElement>();
// now let's click the `clear` button
clear.click();
// now let's test the <div> against the expected value
// we can do this by testing its `outerHTML`
assert_eq!(
div.outer_html(),
// here we spawn a mini reactive system, just to render the
// test case
run_scope(create_runtime(), |cx| {
// it's as if we're creating it with a value of 0, right?
let (value, set_value) = create_signal(cx, 0);
// we can remove the event listeners because they're not rendered to HTML
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
// the view returned an HtmlElement<Div>, which is a smart pointer for
// a DOM element. So we can still just call .outer_html()
.outer_html()
})
);
// There's actually an easier way to do this...
// We can just test against a <SimpleCounter/> with the initial value 0
assert_eq!(test_wrapper.inner_html(), {
let comparison_wrapper = document.create_element("section").unwrap();
leptos::mount_to(
comparison_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
);
comparison_wrapper.inner_html()
});
}
#[wasm_bindgen_test]
fn inc() {
mount_to_body(|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> });
let document = leptos::document();
let div = document.query_selector("div").unwrap().unwrap();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> },
);
// You can do testing with vanilla DOM operations
let document = leptos::document();
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = div
.first_child()
.unwrap()
.dyn_into::<HtmlElement>()
.dyn_into::<web_sys::HtmlElement>()
.unwrap();
let dec = clear
.next_sibling()
.unwrap()
.dyn_into::<HtmlElement>()
.dyn_into::<web_sys::HtmlElement>()
.unwrap();
let text = dec
.next_sibling()
.unwrap()
.dyn_into::<HtmlElement>()
.dyn_into::<web_sys::HtmlElement>()
.unwrap();
let inc = text
.next_sibling()
.unwrap()
.dyn_into::<HtmlElement>()
.dyn_into::<web_sys::HtmlElement>()
.unwrap();
inc.click();
@@ -47,4 +117,40 @@ fn inc() {
clear.click();
assert_eq!(text.text_content(), Some("Value: 0!".to_string()));
// Or you can test against a sample view!
assert_eq!(
div.outer_html(),
run_scope(create_runtime(), |cx| {
let (value, _) = create_signal(cx, 0);
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
}
.outer_html())
);
inc.click();
assert_eq!(
div.outer_html(),
run_scope(create_runtime(), |cx| {
// because we've clicked, it's as if the signal is starting at 1
let (value, _) = create_signal(cx, 1);
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
}
.outer_html())
);
}

View File

@@ -8,7 +8,7 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
actix-files = { version = "0.6", optional = true }
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
actix-web = { version = "4", optional = true, features = ["macros"] }
broadcaster = "1"
console_log = "0.2"
console_error_panic_hook = "0.1"
@@ -25,6 +25,7 @@ leptos_router = { path = "../../router", default-features = false }
log = "0.4"
simple_logger = "4.0.0"
gloo-net = { git = "https://github.com/rustwasm/gloo" }
wasm-bindgen = "0.2"
[features]
default = []

View File

@@ -97,10 +97,10 @@ pub fn Counter(cx: Scope) -> impl IntoView {
|_| get_server_count(),
);
let value = move || counter.read().map(|count| count.unwrap_or(0)).unwrap_or(0);
let value = move || counter.read(cx).map(|count| count.unwrap_or(0)).unwrap_or(0);
let error_msg = move || {
counter
.read()
.read(cx)
.map(|res| match res {
Ok(_) => None,
Err(e) => Some(e),
@@ -143,7 +143,7 @@ pub fn FormCounter(cx: Scope) -> impl IntoView {
let value = move || {
log::debug!("FormCounter looking for value");
counter
.read()
.read(cx)
.map(|n| n.ok())
.flatten()
.map(|n| n)
@@ -194,16 +194,16 @@ pub fn MultiuserCounter(cx: Scope) -> impl IntoView {
use futures::StreamExt;
let mut source = gloo_net::eventsource::futures::EventSource::new("/api/events")
.expect_throw("couldn't connect to SSE stream");
.expect("couldn't connect to SSE stream");
let s = create_signal_from_stream(
cx,
source.subscribe("message").unwrap().map(|value| {
value
.expect_throw("no message event")
.expect("no message event")
.1
.data()
.as_string()
.expect_throw("expected string value")
.expect("expected string value")
}),
);

View File

@@ -37,7 +37,7 @@ cfg_if! {
// when not using cargo-leptos None must be replaced with Some("Cargo.toml")
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
let routes = generate_route_list(|cx| view! { cx, <Counters/> });
HttpServer::new(move || {

View File

@@ -1,4 +1,4 @@
use leptos::{ev, *};
use leptos::{ev, html::*, *};
pub struct Props {
/// The starting value for the counter
@@ -25,7 +25,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
.child((
cx,
button(cx)
.on(ev::click, move |_| set_value.update(|value| *value -= step))
.on(ev::click, move |_| {
set_value.update(|value| *value -= step)
})
.child((cx, "-1")),
))
.child((
@@ -38,7 +40,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
.child((
cx,
button(cx)
.on(ev::click, move |_| set_value.update(|value| *value += step))
.on(ev::click, move |_| {
set_value.update(|value| *value += step)
})
.child((cx, "+1")),
))
}

View File

@@ -1,5 +1,4 @@
use leptos::*;
use leptos::{For, ForProps};
use leptos::{For, ForProps, *};
const MANY_COUNTERS: usize = 1000;
@@ -66,9 +65,8 @@ pub fn Counters(cx: Scope) -> impl IntoView {
<For
each=counters
key=|counter| counter.0
view=move |(id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
view! {
cx,
view=move |cx, (id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
view! { cx,
<Counter id value set_value/>
}
}
@@ -85,9 +83,11 @@ fn Counter(
value: ReadSignal<i32>,
set_value: WriteSignal<i32>,
) -> impl IntoView {
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
let CounterUpdater { set_counters } = use_context(cx).unwrap();
let input = move |ev| set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default());
let input = move |ev| {
set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default())
};
// just an example of how a cleanup function works
// this will run when the scope is disposed, i.e., when this row is deleted

View File

@@ -72,7 +72,7 @@ pub fn Counters(cx: Scope) -> impl IntoView {
<For
each={move || counters.get()}
key={|counter| counter.0}
view=move |(id, (value, set_value))| {
view=move |cx, (id, (value, set_value))| {
view! {
cx,
<Counter id value set_value/>
@@ -91,9 +91,12 @@ fn Counter(
value: ReadSignal<i32>,
set_value: WriteSignal<i32>,
) -> impl IntoView {
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
let CounterUpdater { set_counters } = use_context(cx).unwrap();
let input = move |ev| set_value.set(event_target_value(&ev).parse::<i32>().unwrap_or_default());
let input = move |ev| {
set_value
.set(event_target_value(&ev).parse::<i32>().unwrap_or_default())
};
view! { cx,
<li>

View File

@@ -0,0 +1,10 @@
[package]
name = "error_boundary"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = { path = "../../leptos" }
console_log = "0.2"
log = "0.4"
console_error_panic_hook = "0.1.7"

View File

@@ -0,0 +1,9 @@
[tasks.build]
command = "cargo"
args = ["+nightly", "build-all-features"]
install_crate = "cargo-all-features"
[tasks.check]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"

View File

@@ -0,0 +1,7 @@
# Leptos `<ErrorBoundary/>` Example
This example shows how to handle basic errors using Leptos.
To run it, just issue the `trunk serve --open` command in the example root. This will build the app, run it, and open a new browser to serve it.
> If you don't have `trunk` installed, [click here for install instructions.](https://trunkrs.dev/)

View File

@@ -0,0 +1,8 @@
<!DOCTYPE html>
<html>
<head>
<link data-trunk rel="rust" data-wasm-opt="z"/>
<link data-trunk rel="icon" type="image/ico" href="/public/favicon.ico"/>
</head>
<body></body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1,47 @@
use leptos::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
// when input changes, try to parse a number from the input
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<h1>"Error Handling"</h1>
<label>
"Type a number (or something that's not a number!)"
<input type="number" on:input=on_input/>
// If an `Err(_) had been rendered inside the <ErrorBoundary/>,
// the fallback will be displayed. Otherwise, the children of the
// <ErrorBoundary/> will be displayed.
<ErrorBoundary
// the fallback receives a signal containing current errors
fallback=|cx, errors| view! { cx,
<div class="error">
<p>"Not a number! Errors: "</p>
// we can render a list of errors
// as strings, if we'd like
<ul>
{move || errors.get()
.into_iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
}
</ul>
</div>
}
>
<p>
"You entered "
// because `value` is `Result<i32, _>`,
// it will render the `i32` if it is `Ok`,
// and render nothing and trigger the error boundary
// if it is `Err`. It's a signal, so this will dynamically
// update when `value` changes
<strong>{value}</strong>
</p>
</ErrorBoundary>
</label>
}
}

View File

@@ -0,0 +1,12 @@
use error_boundary::*;
use leptos::*;
pub fn main() {
_ = console_log::init_with_level(log::Level::Debug);
console_error_panic_hook::set_once();
mount_to_body(|cx| {
view! { cx,
<App/>
}
})
}

View File

@@ -13,7 +13,7 @@ console_error_panic_hook = "0.1.7"
futures = "0.3.25"
cfg-if = "1.0.0"
leptos = { path = "../../../leptos/leptos", default-features = false, features = [
"serde",
"serde",
] }
leptos_axum = { path = "../../../leptos/integrations/axum", default-features = false, optional = true }
leptos_meta = { path = "../../../leptos/meta", default-features = false }
@@ -27,50 +27,54 @@ gloo-net = { version = "0.2.5", features = ["http"] }
reqwest = { version = "0.11.13", features = ["json"] }
axum = { version = "0.6.1", optional = true }
tower = { version = "0.4.13", optional = true }
tower-http = { version = "0.3.4", features = ["fs"], optional = true }
tower-http = { version = "0.4", features = ["fs"], optional = true }
tokio = { version = "1.22.0", features = ["full"], optional = true }
http = { version = "0.2.8" }
thiserror = "1.0.38"
tracing = "0.1.37"
wasm-bindgen = "0.2"
[features]
default = ["csr"]
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
ssr = ["dep:axum", "dep:tower", "dep:tower-http", "dep:tokio", "leptos/ssr", "leptos_meta/ssr", "leptos_router/ssr", "dep:leptos_axum"]
ssr = [
"dep:axum",
"dep:tower",
"dep:tower-http",
"dep:tokio",
"leptos/ssr",
"leptos_meta/ssr",
"leptos_router/ssr",
"dep:leptos_axum",
]
[package.metadata.cargo-all-features]
denylist = [
"axum",
"tower",
"tower-http",
"tokio",
"leptos_axum",
]
denylist = ["axum", "tower", "tower-http", "tokio", "leptos_axum"]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "errors_axum"
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "errors_axum"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
# Defaults to pkg
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target

View File

@@ -1,8 +1,6 @@
use crate::errors::AppError;
use cfg_if::cfg_if;
use leptos::Errors;
use leptos::*;
use leptos::{Errors, *};
#[cfg(feature = "ssr")]
use leptos_axum::ResponseOptions;
@@ -23,14 +21,13 @@ pub fn ErrorTemplate(
};
// Get Errors from Signal
let errors = errors.get().0;
// Downcast lets us take a type that implements `std::error::Error`
let errors: Vec<AppError> = errors
.get()
.into_iter()
.filter_map(|(_k, v)| v.downcast_ref::<AppError>().cloned())
.filter_map(|(_, v)| v.downcast_ref::<AppError>().cloned())
.collect();
println!("Errors: {errors:#?}");
log!("Errors: {errors:#?}");
// Only the response code for the first error is actually sent from the server
// this may be customized by the specific application
@@ -47,9 +44,9 @@ pub fn ErrorTemplate(
// a function that returns the items we're iterating over; a signal is fine
each= move || {errors.clone().into_iter().enumerate()}
// a unique key for each item as a reference
key=|(index, _error)| *index
key=|(index, _)| *index
// renders each item to a view
view= move |error| {
view=move |cx, error| {
let error_string = error.1.to_string();
let error_code= error.1.status_code();
view! { cx,

View File

@@ -12,8 +12,7 @@ cfg_if! { if #[cfg(feature = "ssr")] {
use tower_http::services::ServeDir;
use std::sync::Arc;
use leptos::{LeptosOptions, Errors, view};
use crate::error_template::{ErrorTemplate, ErrorTemplateProps};
use crate::errors::AppError;
use crate::landing::{App, AppProps};
pub async fn file_and_error_handler(uri: Uri, Extension(options): Extension<Arc<LeptosOptions>>, req: Request<Body>) -> AxumResponse {
let options = &*options;
@@ -23,9 +22,10 @@ cfg_if! { if #[cfg(feature = "ssr")] {
if res.status() == StatusCode::OK {
res.into_response()
} else{
let mut errors = Errors::default();
errors.insert_with_default_key(AppError::NotFound);
let handler = leptos_axum::render_app_to_stream(options.to_owned(), move |cx| view!{cx, <ErrorTemplate outside_errors=errors.clone()/>});
let handler = leptos_axum::render_app_to_stream(
options.to_owned(),
move |cx| view!{ cx, <App/> }
);
handler(req).await.into_response()
}
}

View File

@@ -29,7 +29,14 @@ pub fn App(cx: Scope) -> impl IntoView {
cx,
<Link rel="shortcut icon" type_="image/ico" href="/favicon.ico"/>
<Stylesheet id="leptos" href="/pkg/errors_axum.css"/>
<Router>
<Router fallback=|cx| {
let mut outside_errors = Errors::default();
outside_errors.insert_with_default_key(AppError::NotFound);
view! { cx,
<ErrorTemplate outside_errors/>
}
.into_view(cx)
}>
<header>
<h1>"Error Examples:"</h1>
</header>

View File

@@ -44,7 +44,7 @@ async fn main() {
// Setting this to None means we'll be using cargo-leptos and its env vars
let conf = get_configuration(None).await.unwrap();
let leptos_options = conf.leptos_options;
let addr = leptos_options.site_address;
let addr = leptos_options.site_addr;
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
// build our application with a route

View File

@@ -9,6 +9,12 @@
max-width: 250px;
height: auto;
}
.error {
border: 1px solid red;
color: red;
background-color: lightpink;
}
</style>
<body></body>
</html>

View File

@@ -1,3 +1,4 @@
use anyhow::Result;
use leptos::*;
use serde::{Deserialize, Serialize};
@@ -6,18 +7,18 @@ pub struct Cat {
url: String,
}
async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
async fn fetch_cats(count: u32) -> Result<Vec<String>> {
if count > 0 {
// make the request
let res = reqwasm::http::Request::get(&format!(
"https://api.thecatapi.com/v1/images/search?limit={}",
count
"https://api.thecatapi.com/v1/images/search?limit={count}",
))
.send()
.await
.map_err(|_| ())?
.await?
// convert it to JSON
.json::<Vec<Cat>>()
.await
.map_err(|_| ())?
.await?
// extract the URL field for each cat
.into_iter()
.map(|cat| cat.url)
.collect::<Vec<_>>();
@@ -29,9 +30,45 @@ async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
pub fn fetch_example(cx: Scope) -> impl IntoView {
let (cat_count, set_cat_count) = create_signal::<u32>(cx, 1);
let cats = create_resource(cx, cat_count, |count| fetch_cats(count));
view! { cx,
// we use local_resource here because
// 1) anyhow::Result isn't serializable/deserializable
// 2) we're not doing server-side rendering in this example anyway
// (during SSR, create_resource will begin loading on the server and resolve on the client)
let cats = create_local_resource(cx, cat_count, fetch_cats);
let fallback = move |cx, errors: RwSignal<Errors>| {
let error_list = move || {
errors.with(|errors| {
errors
.iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
})
};
view! { cx,
<div class="error">
<h2>"Error"</h2>
<ul>{error_list}</ul>
</div>
}
};
// the renderer can handle Option<_> and Result<_> states
// by displaying nothing for None if the resource is still loading
// and by using the ErrorBoundary fallback to catch Err(_)
// so we'll just implement our happy path and let the framework handle the rest
let cats_view = move || {
cats.with(cx, |data| {
data.iter()
.flatten()
.map(|cat| view! { cx, <img src={cat}/> })
.collect::<Vec<_>>()
})
};
view! { cx,
<div>
<label>
"How many cats would you like?"
@@ -43,25 +80,11 @@ pub fn fetch_example(cx: Scope) -> impl IntoView {
}
/>
</label>
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
{move || {
cats.read().map(|data| match data {
Err(_) => view! { cx, <pre>"Error"</pre> }.into_view(cx),
Ok(cats) => view! { cx,
<div>{
cats.iter()
.map(|src| {
view! { cx,
<img src={src}/>
}
})
.collect::<Vec<_>>()
}</div>
}.into_view(cx),
})
}
}
</Transition>
<ErrorBoundary fallback>
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
{cats_view}
</Transition>
</ErrorBoundary>
</div>
}
}

View File

@@ -9,12 +9,14 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
anyhow = "1"
actix-files = { version = "0.6", optional = true }
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
actix-web = { version = "4", optional = true, features = ["macros"] }
console_log = "0.2"
console_error_panic_hook = "0.1"
futures = "0.3"
cfg-if = "1"
leptos = { path = "../../leptos", default-features = false, features = ["serde"] }
leptos = { path = "../../leptos", default-features = false, features = [
"serde",
] }
leptos_meta = { path = "../../meta", default-features = false }
leptos_actix = { path = "../../integrations/actix", default-features = false, optional = true }
leptos_router = { path = "../../router", default-features = false }
@@ -47,26 +49,26 @@ skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "hackernews"
output-name = "hackernews"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target
@@ -87,4 +89,4 @@ lib-features = ["hydrate"]
# If the --no-default-features flag should be used when compiling the lib target
#
# Optional. Defaults to false.
lib-default-features = false
lib-default-features = false

View File

@@ -34,7 +34,7 @@ where
abort_controller.abort()
}
});
T::from_json(&json).ok()
T::de(&json).ok()
}
#[cfg(feature = "ssr")]
@@ -49,7 +49,7 @@ where
.text()
.await
.ok()?;
T::from_json(&json).map_err(|e| log::error!("{e}")).ok()
T::de(&json).map_err(|e| log::error!("{e}")).ok()
}
#[derive(Debug, Deserialize, Serialize, PartialEq, Eq, Clone)]

View File

@@ -24,7 +24,7 @@ cfg_if! {
// Setting this to None means we'll be using cargo-leptos and its env vars.
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
// Generate the list of routes in your Leptos App
let routes = generate_route_list(|cx| view! { cx, <App/> });

View File

@@ -38,7 +38,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
let (pending, set_pending) = create_signal(cx, false);
let hide_more_link =
move || pending() || stories.read().unwrap_or(None).unwrap_or_default().len() < 28;
move || pending() || stories.read(cx).unwrap_or(None).unwrap_or_default().len() < 28;
view! {
cx,
@@ -82,7 +82,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
fallback=move || view! { cx, <p>"Loading..."</p> }
set_pending=set_pending.into()
>
{move || match stories.read() {
{move || match stories.read(cx) {
None => None,
Some(None) => Some(view! { cx, <p>"Error loading stories."</p> }.into_any()),
Some(Some(stories)) => {
@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
<For
each=move || stories.clone()
key=|story| story.id
view=move |story: api::Story| {
view=move |cx, story: api::Story| {
view! { cx,
<Story story/>
}

View File

@@ -17,13 +17,13 @@ pub fn Story(cx: Scope) -> impl IntoView {
}
},
);
let meta_description = move || story.read().and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
let meta_description = move || story.read(cx).and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
view! { cx,
<>
<Meta name="description" content=meta_description/>
<Suspense fallback=|| view! { cx, "Loading..." }>
{move || story.read().map(|story| match story {
{move || story.read(cx).map(|story| match story {
None => view! { cx, <div class="item-view">"Error loading this story."</div> },
Some(story) => view! { cx,
<div class="item-view">
@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
<For
each=move || story.comments.clone().unwrap_or_default()
key=|comment| comment.id
view=move |comment| view! { cx, <Comment comment /> }
view=move |cx, comment| view! { cx, <Comment comment /> }
/>
</ul>
</div>
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
<For
each=move || comments.clone()
key=|comment| comment.id
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
/>
</ul>
}

View File

@@ -19,7 +19,7 @@ pub fn User(cx: Scope) -> impl IntoView {
view! { cx,
<div class="user-view">
<Suspense fallback=|| view! { cx, "Loading..." }>
{move || user.read().map(|user| match user {
{move || user.read(cx).map(|user| match user {
None => view! { cx, <h1>"User not found."</h1> }.into_any(),
Some(user) => view! { cx,
<div>

View File

@@ -13,7 +13,7 @@ console_error_panic_hook = "0.1.7"
futures = "0.3.25"
cfg-if = "1.0.0"
leptos = { path = "../../leptos", default-features = false, features = [
"serde",
"serde",
] }
leptos_axum = { path = "../../integrations/axum", optional = true }
leptos_meta = { path = "../../meta", default-features = false }
@@ -26,7 +26,7 @@ gloo-net = { version = "0.2.5", features = ["http"] }
reqwest = { version = "0.11.13", features = ["json"] }
axum = { version = "0.6.1", optional = true }
tower = { version = "0.4.13", optional = true }
tower-http = { version = "0.3.4", features = ["fs"], optional = true }
tower-http = { version = "0.4", features = ["fs"], optional = true }
tokio = { version = "1.22.0", features = ["full"], optional = true }
http = { version = "0.2.8", optional = true }
web-sys = { version = "0.3", features = ["AbortController", "AbortSignal"] }
@@ -38,15 +38,15 @@ default = ["csr"]
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
ssr = [
"dep:axum",
"dep:tower",
"dep:tower-http",
"dep:tokio",
"dep:http",
"leptos/ssr",
"leptos_axum",
"leptos_meta/ssr",
"leptos_router/ssr",
"dep:axum",
"dep:tower",
"dep:tower-http",
"dep:tokio",
"dep:http",
"leptos/ssr",
"leptos_axum",
"leptos_meta/ssr",
"leptos_router/ssr",
]
[package.metadata.cargo-all-features]
@@ -54,27 +54,27 @@ denylist = ["axum", "tower", "tower-http", "tokio", "http", "leptos_axum"]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "hackernews_axum"
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "hackernews_axum"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
# Defaults to pkg
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target
@@ -95,4 +95,4 @@ lib-features = ["hydrate"]
# If the --no-default-features flag should be used when compiling the lib target
#
# Optional. Defaults to false.
lib-default-features = false
lib-default-features = false

View File

@@ -2,7 +2,7 @@
<html>
<head>
<link data-trunk rel="rust" data-wasm-opt="z"/>
<link data-trunk rel="css" href="./static/style.css"/>
<link data-trunk rel="css" href="/style.css"/>
</head>
<body></body>
</html>

View File

@@ -34,7 +34,7 @@ where
abort_controller.abort()
}
});
T::from_json(&json).ok()
T::de(&json).ok()
}
#[cfg(feature = "ssr")]
@@ -49,7 +49,7 @@ where
.text()
.await
.ok()?;
T::from_json(&json).map_err(|e| log::error!("{e}")).ok()
T::de(&json).map_err(|e| log::error!("{e}")).ok()
}
#[derive(Debug, Deserialize, Serialize, PartialEq, Eq, Clone)]

View File

@@ -1,5 +1,7 @@
use leptos::Errors;
use leptos::{view, For, ForProps, IntoView, RwSignal, Scope, View};
use leptos::{
signal_prelude::*, view, Errors, For, ForProps, IntoView, RwSignal, Scope,
View,
};
// A basic function to display errors served by the error boundaries. Feel free to do more complicated things
// here than just displaying them
@@ -7,21 +9,22 @@ pub fn error_template(cx: Scope, errors: Option<RwSignal<Errors>>) -> View {
let Some(errors) = errors else {
panic!("No Errors found and we expected errors!");
};
view! {cx,
<h1>"Errors"</h1>
<For
// a function that returns the items we're iterating over; a signal is fine
each= move || {errors.get().0.into_iter()}
// a unique key for each item as a reference
key=|error| error.0.clone()
// renders each item to a view
view= move |error| {
let error_string = error.1.to_string();
view! {
cx,
<p>"Error: " {error_string}</p>
<h1>"Errors"</h1>
<For
// a function that returns the items we're iterating over; a signal is fine
each=errors
// a unique key for each item as a reference
key=|(key, _)| key.clone()
// renders each item to a view
view= move |cx, (_, error)| {
let error_string = error.to_string();
view! {
cx,
<p>"Error: " {error_string}</p>
}
}
}
/>
}
.into_view(cx)

View File

@@ -19,7 +19,7 @@ if #[cfg(feature = "ssr")] {
let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
let leptos_options = conf.leptos_options;
let addr = leptos_options.site_address.clone();
let addr = leptos_options.site_addr.clone();
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
simple_logger::init_with_level(log::Level::Debug).expect("couldn't initialize logging");

View File

@@ -38,7 +38,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
let (pending, set_pending) = create_signal(cx, false);
let hide_more_link =
move || pending() || stories.read().unwrap_or(None).unwrap_or_default().len() < 28;
move || pending() || stories.read(cx).unwrap_or(None).unwrap_or_default().len() < 28;
view! {
cx,
@@ -82,7 +82,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
fallback=move || view! { cx, <p>"Loading..."</p> }
set_pending=set_pending.into()
>
{move || match stories.read() {
{move || match stories.read(cx) {
None => None,
Some(None) => Some(view! { cx, <p>"Error loading stories."</p> }.into_any()),
Some(Some(stories)) => {
@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
<For
each=move || stories.clone()
key=|story| story.id
view=move |story: api::Story| {
view=move |cx, story: api::Story| {
view! { cx,
<Story story/>
}

View File

@@ -17,13 +17,13 @@ pub fn Story(cx: Scope) -> impl IntoView {
}
},
);
let meta_description = move || story.read().and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
let meta_description = move || story.read(cx).and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
view! { cx,
<>
<Meta name="description" content=meta_description/>
<Suspense fallback=|| view! { cx, "Loading..." }>
{move || story.read().map(|story| match story {
{move || story.read(cx).map(|story| match story {
None => view! { cx, <div class="item-view">"Error loading this story."</div> },
Some(story) => view! { cx,
<div class="item-view">
@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
<For
each=move || story.comments.clone().unwrap_or_default()
key=|comment| comment.id
view=move |comment| view! { cx, <Comment comment /> }
view=move |cx, comment| view! { cx, <Comment comment /> }
/>
</ul>
</div>
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
<For
each=move || comments.clone()
key=|comment| comment.id
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
/>
</ul>
}

View File

@@ -19,7 +19,7 @@ pub fn User(cx: Scope) -> impl IntoView {
view! { cx,
<div class="user-view">
<Suspense fallback=|| view! { cx, "Loading..." }>
{move || user.read().map(|user| match user {
{move || user.read(cx).map(|user| match user {
None => view! { cx, <h1>"User not found."</h1> }.into_any(),
Some(user) => view! { cx,
<div>

View File

@@ -0,0 +1,7 @@
[workspace]
members = ["client", "api-boundary", "server"]
[patch.crates-io]
leptos = { path = "../../leptos" }
leptos_router = { path = "../../router" }
api-boundary = { path = "api-boundary" }

View File

@@ -0,0 +1,9 @@
[tasks.build]
command = "cargo"
args = ["+nightly", "build-all-features"]
install_crate = "cargo-all-features"
[tasks.check]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"

View File

@@ -0,0 +1,23 @@
# Leptos Login Example
This example demonstrates a scenario of a client-side rendered application
that uses an existing API that you cannot or do not want to change.
The authentications of this example are done using an API token.
## Run
First start the example server:
```
cd server/ && cargo run
```
then use [`trunk`](https://trunkrs.dev) to serve the SPA:
```
cd client/ && trunk serve
```
finally you can visit the web application at `http://localhost:8080`
The `api-boundary` crate contains data structures that are used by the server and the client.

View File

@@ -0,0 +1,8 @@
[package]
name = "api-boundary"
version = "0.0.0"
edition = "2021"
publish = false
[dependencies]
serde = { version = "1.0", features = ["derive"] }

View File

@@ -0,0 +1,22 @@
use serde::{Deserialize, Serialize};
#[derive(Serialize, Deserialize)]
pub struct Credentials {
pub email: String,
pub password: String,
}
#[derive(Clone, Serialize, Deserialize)]
pub struct UserInfo {
pub email: String,
}
#[derive(Clone, Serialize, Deserialize)]
pub struct ApiToken {
pub token: String,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct Error {
pub message: String,
}

View File

@@ -0,0 +1,19 @@
[package]
name = "client"
version = "0.0.0"
edition = "2021"
publish = false
[dependencies]
api-boundary = "*"
leptos = { version = "0.2.0-alpha2", features = ["stable"] }
leptos_router = { version = "0.2.0-alpha2", features = ["stable", "csr"] }
log = "0.4"
console_error_panic_hook = "0.1"
console_log = "0.2"
gloo-net = "0.2"
gloo-storage = "0.2"
serde = "1.0"
thiserror = "1.0"

View File

@@ -0,0 +1,3 @@
[[proxy]]
rewrite = "/api/"
backend = "http://0.0.0.0:3000/"

View File

@@ -0,0 +1,7 @@
<!DOCTYPE html>
<html>
<head>
<link data-trunk rel="rust" data-wasm-opt="z" data-weak-refs/>
</head>
<body></body>
</html>

View File

@@ -0,0 +1,94 @@
use gloo_net::http::{Request, Response};
use serde::de::DeserializeOwned;
use thiserror::Error;
use api_boundary::*;
#[derive(Clone, Copy)]
pub struct UnauthorizedApi {
url: &'static str,
}
#[derive(Clone)]
pub struct AuthorizedApi {
url: &'static str,
token: ApiToken,
}
impl UnauthorizedApi {
pub const fn new(url: &'static str) -> Self {
Self { url }
}
pub async fn register(&self, credentials: &Credentials) -> Result<()> {
let url = format!("{}/users", self.url);
let response = Request::post(&url).json(credentials)?.send().await?;
into_json(response).await
}
pub async fn login(
&self,
credentials: &Credentials,
) -> Result<AuthorizedApi> {
let url = format!("{}/login", self.url);
let response = Request::post(&url).json(credentials)?.send().await?;
let token = into_json(response).await?;
Ok(AuthorizedApi::new(self.url, token))
}
}
impl AuthorizedApi {
pub const fn new(url: &'static str, token: ApiToken) -> Self {
Self { url, token }
}
fn auth_header_value(&self) -> String {
format!("Bearer {}", self.token.token)
}
async fn send<T>(&self, req: Request) -> Result<T>
where
T: DeserializeOwned,
{
let response = req
.header("Authorization", &self.auth_header_value())
.send()
.await?;
into_json(response).await
}
pub async fn logout(&self) -> Result<()> {
let url = format!("{}/logout", self.url);
self.send(Request::post(&url)).await
}
pub async fn user_info(&self) -> Result<UserInfo> {
let url = format!("{}/users", self.url);
self.send(Request::get(&url)).await
}
pub fn token(&self) -> &ApiToken {
&self.token
}
}
type Result<T> = std::result::Result<T, Error>;
#[derive(Debug, Error)]
pub enum Error {
#[error(transparent)]
Fetch(#[from] gloo_net::Error),
#[error("{0:?}")]
Api(api_boundary::Error),
}
impl From<api_boundary::Error> for Error {
fn from(e: api_boundary::Error) -> Self {
Self::Api(e)
}
}
async fn into_json<T>(response: Response) -> Result<T>
where
T: DeserializeOwned,
{
// ensure we've got 2xx status
if response.ok() {
Ok(response.json().await?)
} else {
Err(response.json::<api_boundary::Error>().await?.into())
}
}

View File

@@ -0,0 +1,73 @@
use leptos::{ev, *};
#[component]
pub fn CredentialsForm(
cx: Scope,
title: &'static str,
action_label: &'static str,
action: Action<(String, String), ()>,
error: Signal<Option<String>>,
disabled: Signal<bool>,
) -> impl IntoView {
let (password, set_password) = create_signal(cx, String::new());
let (email, set_email) = create_signal(cx, String::new());
let dispatch_action =
move || action.dispatch((email.get(), password.get()));
let button_is_disabled = Signal::derive(cx, move || {
disabled.get() || password.get().is_empty() || email.get().is_empty()
});
view! { cx,
<form on:submit=|ev|ev.prevent_default()>
<p>{ title }</p>
{move || error.get().map(|err| view!{ cx,
<p style ="color:red;" >{ err }</p>
})}
<input
type = "email"
required
placeholder = "Email address"
prop:disabled = move || disabled.get()
on:keyup = move |ev: ev::KeyboardEvent| {
let val = event_target_value(&ev);
set_email.update(|v|*v = val);
}
// The `change` event fires when the browser fills the form automatically,
on:change = move |ev| {
let val = event_target_value(&ev);
set_email.update(|v|*v = val);
}
/>
<input
type = "password"
required
placeholder = "Password"
prop:disabled = move || disabled.get()
on:keyup = move |ev: ev::KeyboardEvent| {
match &*ev.key() {
"Enter" => {
dispatch_action();
}
_=> {
let val = event_target_value(&ev);
set_password.update(|p|*p = val);
}
}
}
// The `change` event fires when the browser fills the form automatically,
on:change = move |ev| {
let val = event_target_value(&ev);
set_password.update(|p|*p = val);
}
/>
<button
prop:disabled = move || button_is_disabled.get()
on:click = move |_| dispatch_action()
>
{ action_label }
</button>
</form>
}
}

View File

@@ -0,0 +1,4 @@
pub mod credentials;
pub mod navbar;
pub use self::{credentials::*, navbar::*};

View File

@@ -0,0 +1,32 @@
use leptos::*;
use leptos_router::*;
use crate::Page;
#[component]
pub fn NavBar<F>(
cx: Scope,
logged_in: Signal<bool>,
on_logout: F,
) -> impl IntoView
where
F: Fn() + 'static + Clone,
{
view! { cx,
<nav>
<Show
when = move || logged_in.get()
fallback = |cx| view! { cx,
<A href=Page::Login.path() >"Login"</A>
" | "
<A href=Page::Register.path() >"Register"</A>
}
>
<a href="#" on:click={
let on_logout = on_logout.clone();
move |_| on_logout()
}>"Logout"</a>
</Show>
</nav>
}
}

View File

@@ -0,0 +1,130 @@
use gloo_storage::{LocalStorage, Storage};
use leptos::*;
use leptos_router::*;
use api_boundary::*;
mod api;
mod components;
mod pages;
use self::{components::*, pages::*};
const DEFAULT_API_URL: &str = "/api";
const API_TOKEN_STORAGE_KEY: &str = "api-token";
#[component]
pub fn App(cx: Scope) -> impl IntoView {
// -- signals -- //
let authorized_api = create_rw_signal(cx, None::<api::AuthorizedApi>);
let user_info = create_rw_signal(cx, None::<UserInfo>);
let logged_in = Signal::derive(cx, move || authorized_api.get().is_some());
// -- actions -- //
let fetch_user_info = create_action(cx, move |_| async move {
match authorized_api.get() {
Some(api) => match api.user_info().await {
Ok(info) => {
user_info.update(|i| *i = Some(info));
}
Err(err) => {
log::error!("Unable to fetch user info: {err}")
}
},
None => {
log::error!("Unable to fetch user info: not logged in")
}
}
});
let logout = create_action(cx, move |_| async move {
match authorized_api.get() {
Some(api) => match api.logout().await {
Ok(_) => {
authorized_api.update(|a| *a = None);
user_info.update(|i| *i = None);
}
Err(err) => {
log::error!("Unable to logout: {err}")
}
},
None => {
log::error!("Unable to logout user: not logged in")
}
}
});
// -- callbacks -- //
let on_logout = move || {
logout.dispatch(());
};
// -- init API -- //
let unauthorized_api = api::UnauthorizedApi::new(DEFAULT_API_URL);
if let Ok(token) = LocalStorage::get(API_TOKEN_STORAGE_KEY) {
let api = api::AuthorizedApi::new(DEFAULT_API_URL, token);
authorized_api.update(|a| *a = Some(api));
fetch_user_info.dispatch(());
}
log::debug!("User is logged in: {}", logged_in.get());
// -- effects -- //
create_effect(cx, move |_| {
log::debug!("API authorization state changed");
match authorized_api.get() {
Some(api) => {
log::debug!(
"API is now authorized: save token in LocalStorage"
);
LocalStorage::set(API_TOKEN_STORAGE_KEY, api.token())
.expect("LocalStorage::set");
}
None => {
log::debug!("API is no longer authorized: delete token from LocalStorage");
LocalStorage::delete(API_TOKEN_STORAGE_KEY);
}
}
});
view! { cx,
<Router>
<NavBar logged_in on_logout />
<main>
<Routes>
<Route
path=Page::Home.path()
view=move |cx| view! { cx,
<Home user_info = user_info.into() />
}
/>
<Route
path=Page::Login.path()
view=move |cx| view! { cx,
<Login
api = unauthorized_api
on_success = move |api| {
log::info!("Successfully logged in");
authorized_api.update(|v| *v = Some(api));
let navigate = use_navigate(cx);
navigate(Page::Home.path(), Default::default()).expect("Home route");
fetch_user_info.dispatch(());
} />
}
/>
<Route
path=Page::Register.path()
view=move |cx| view! { cx,
<Register api = unauthorized_api />
}
/>
</Routes>
</main>
</Router>
}
}

View File

@@ -0,0 +1,9 @@
use leptos::*;
use client::*;
pub fn main() {
_ = console_log::init_with_level(log::Level::Debug);
console_error_panic_hook::set_once();
mount_to_body(|cx| view! { cx, <App /> })
}

View File

@@ -0,0 +1,20 @@
use crate::Page;
use api_boundary::UserInfo;
use leptos::*;
use leptos_router::*;
#[component]
pub fn Home(cx: Scope, user_info: Signal<Option<UserInfo>>) -> impl IntoView {
view! { cx,
<h2>"Leptos Login example"</h2>
{move || match user_info.get() {
Some(info) => view!{ cx,
<p>"You are logged in with "{ info.email }"."</p>
}.into_view(cx),
None => view!{ cx,
<p>"You are not logged in."</p>
<A href=Page::Login.path() >"Login now."</A>
}.into_view(cx)
}}
}
}

View File

@@ -0,0 +1,66 @@
use leptos::*;
use leptos_router::*;
use api_boundary::*;
use crate::{
api::{self, AuthorizedApi, UnauthorizedApi},
components::credentials::*,
Page,
};
#[component]
pub fn Login<F>(cx: Scope, api: UnauthorizedApi, on_success: F) -> impl IntoView
where
F: Fn(AuthorizedApi) + 'static + Clone,
{
let (login_error, set_login_error) = create_signal(cx, None::<String>);
let (wait_for_response, set_wait_for_response) = create_signal(cx, false);
let login_action =
create_action(cx, move |(email, password): &(String, String)| {
log::debug!("Try to login with {email}");
let email = email.to_string();
let password = password.to_string();
let credentials = Credentials { email, password };
let on_success = on_success.clone();
async move {
set_wait_for_response.update(|w| *w = true);
let result = api.login(&credentials).await;
set_wait_for_response.update(|w| *w = false);
match result {
Ok(res) => {
set_login_error.update(|e| *e = None);
on_success(res);
}
Err(err) => {
let msg = match err {
api::Error::Fetch(js_err) => {
format!("{js_err:?}")
}
api::Error::Api(err) => err.message,
};
error!(
"Unable to login with {}: {msg}",
credentials.email
);
set_login_error.update(|e| *e = Some(msg));
}
}
}
});
let disabled = Signal::derive(cx, move || wait_for_response.get());
view! { cx,
<CredentialsForm
title = "Please login to your account"
action_label = "Login"
action = login_action
error = login_error.into()
disabled
/>
<p>"Don't have an account?"</p>
<A href=Page::Register.path()>"Register"</A>
}
}

View File

@@ -0,0 +1,23 @@
pub mod home;
pub mod login;
pub mod register;
pub use self::{home::*, login::*, register::*};
#[derive(Debug, Clone, Copy, Default)]
pub enum Page {
#[default]
Home,
Login,
Register,
}
impl Page {
pub fn path(&self) -> &'static str {
match self {
Self::Home => "/",
Self::Login => "/login",
Self::Register => "/register",
}
}
}

View File

@@ -0,0 +1,77 @@
use leptos::*;
use leptos_router::*;
use api_boundary::*;
use crate::{
api::{self, UnauthorizedApi},
components::credentials::*,
Page,
};
#[component]
pub fn Register(cx: Scope, api: UnauthorizedApi) -> impl IntoView {
let (register_response, set_register_response) =
create_signal(cx, None::<()>);
let (register_error, set_register_error) =
create_signal(cx, None::<String>);
let (wait_for_response, set_wait_for_response) = create_signal(cx, false);
let register_action =
create_action(cx, move |(email, password): &(String, String)| {
let email = email.to_string();
let password = password.to_string();
let credentials = Credentials { email, password };
log!("Try to register new account for {}", credentials.email);
async move {
set_wait_for_response.update(|w| *w = true);
let result = api.register(&credentials).await;
set_wait_for_response.update(|w| *w = false);
match result {
Ok(res) => {
set_register_response.update(|v| *v = Some(res));
set_register_error.update(|e| *e = None);
}
Err(err) => {
let msg = match err {
api::Error::Fetch(js_err) => {
format!("{js_err:?}")
}
api::Error::Api(err) => err.message,
};
log::warn!(
"Unable to register new account for {}: {msg}",
credentials.email
);
set_register_error.update(|e| *e = Some(msg));
}
}
}
});
let disabled = Signal::derive(cx, move || wait_for_response.get());
view! { cx,
<Show
when = move || register_response.get().is_some()
fallback = move |_| view!{ cx,
<CredentialsForm
title = "Please enter the desired credentials"
action_label = "Register"
action = register_action
error = register_error.into()
disabled
/>
<p>"Your already have an account?"</p>
<A href=Page::Login.path()>"Login"</A>
}
>
<p>"You have successfully registered."</p>
<p>
"You can now "
<A href=Page::Login.path()>"login"</A>
" with your new account."
</p>
</Show>
}
}

View File

@@ -0,0 +1,18 @@
[package]
name = "server"
version = "0.0.0"
edition = "2021"
publish = false
[dependencies]
anyhow = "1.0"
api-boundary = "*"
axum = { version = "0.6", features = ["headers"] }
env_logger = "0.10"
log = "0.4"
mailparse = "0.14"
pwhash = "1.0"
thiserror = "1.0"
tokio = { version = "1.25", features = ["macros", "rt-multi-thread"] }
tower-http = { version = "0.4", features = ["cors"] }
uuid = { version = "1.3", features = ["v4"] }

View File

@@ -0,0 +1,114 @@
use crate::{application::*, Error};
use api_boundary as json;
use axum::{
http::StatusCode,
response::Json,
response::{IntoResponse, Response},
};
use thiserror::Error;
impl From<InvalidEmailAddress> for json::Error {
fn from(_: InvalidEmailAddress) -> Self {
Self {
message: "Invalid email address".to_string(),
}
}
}
impl From<InvalidPassword> for json::Error {
fn from(err: InvalidPassword) -> Self {
let InvalidPassword::TooShort(min_len) = err;
Self {
message: format!("Invalid password (min. length = {min_len})"),
}
}
}
impl From<CreateUserError> for json::Error {
fn from(err: CreateUserError) -> Self {
let message = match err {
CreateUserError::UserExists => "User already exits".to_string(),
};
Self { message }
}
}
impl From<LoginError> for json::Error {
fn from(err: LoginError) -> Self {
let message = match err {
LoginError::InvalidEmailOrPassword => {
"Invalid email or password".to_string()
}
};
Self { message }
}
}
impl From<LogoutError> for json::Error {
fn from(err: LogoutError) -> Self {
let message = match err {
LogoutError::NotLoggedIn => "No user is logged in".to_string(),
};
Self { message }
}
}
impl From<AuthError> for json::Error {
fn from(err: AuthError) -> Self {
let message = match err {
AuthError::NotAuthorized => "Not authorized".to_string(),
};
Self { message }
}
}
impl From<CredentialParsingError> for json::Error {
fn from(err: CredentialParsingError) -> Self {
match err {
CredentialParsingError::EmailAddress(err) => err.into(),
CredentialParsingError::Password(err) => err.into(),
}
}
}
#[derive(Debug, Error)]
pub enum CredentialParsingError {
#[error(transparent)]
EmailAddress(#[from] InvalidEmailAddress),
#[error(transparent)]
Password(#[from] InvalidPassword),
}
impl TryFrom<json::Credentials> for Credentials {
type Error = CredentialParsingError;
fn try_from(
json::Credentials { email, password }: json::Credentials,
) -> Result<Self, Self::Error> {
let email: EmailAddress = email.parse()?;
let password = Password::try_from(password)?;
Ok(Self { email, password })
}
}
impl IntoResponse for Error {
fn into_response(self) -> Response {
let (code, value) = match self {
Self::Logout(err) => {
(StatusCode::BAD_REQUEST, json::Error::from(err))
}
Self::Login(err) => {
(StatusCode::BAD_REQUEST, json::Error::from(err))
}
Self::Credentials(err) => {
(StatusCode::BAD_REQUEST, json::Error::from(err))
}
Self::CreateUser(err) => {
(StatusCode::BAD_REQUEST, json::Error::from(err))
}
Self::Auth(err) => {
(StatusCode::UNAUTHORIZED, json::Error::from(err))
}
};
(code, Json(value)).into_response()
}
}

View File

@@ -0,0 +1,159 @@
use mailparse::addrparse;
use pwhash::bcrypt;
use std::{collections::HashMap, str::FromStr, sync::RwLock};
use thiserror::Error;
use uuid::Uuid;
#[derive(Default)]
pub struct AppState {
users: RwLock<HashMap<EmailAddress, Password>>,
tokens: RwLock<HashMap<Uuid, EmailAddress>>,
}
impl AppState {
pub fn create_user(
&self,
credentials: Credentials,
) -> Result<(), CreateUserError> {
let Credentials { email, password } = credentials;
let user_exists = self.users.read().unwrap().get(&email).is_some();
if user_exists {
return Err(CreateUserError::UserExists);
}
self.users.write().unwrap().insert(email, password);
Ok(())
}
pub fn login(
&self,
email: EmailAddress,
password: &str,
) -> Result<Uuid, LoginError> {
let valid_credentials = self
.users
.read()
.unwrap()
.get(&email)
.map(|hashed_password| hashed_password.verify(password))
.unwrap_or(false);
if !valid_credentials {
Err(LoginError::InvalidEmailOrPassword)
} else {
let token = Uuid::new_v4();
self.tokens.write().unwrap().insert(token, email);
Ok(token)
}
}
pub fn logout(&self, token: &str) -> Result<(), LogoutError> {
let token = token
.parse::<Uuid>()
.map_err(|_| LogoutError::NotLoggedIn)?;
self.tokens.write().unwrap().remove(&token);
Ok(())
}
pub fn authorize_user(
&self,
token: &str,
) -> Result<CurrentUser, AuthError> {
token
.parse::<Uuid>()
.map_err(|_| AuthError::NotAuthorized)
.and_then(|token| {
self.tokens
.read()
.unwrap()
.get(&token)
.cloned()
.map(|email| CurrentUser { email, token })
.ok_or(AuthError::NotAuthorized)
})
}
}
#[derive(Debug, Error)]
pub enum CreateUserError {
#[error("The user already exists")]
UserExists,
}
#[derive(Debug, Error)]
pub enum LoginError {
#[error("Invalid email or password")]
InvalidEmailOrPassword,
}
#[derive(Debug, Error)]
pub enum LogoutError {
#[error("You are not logged in")]
NotLoggedIn,
}
#[derive(Debug, Error)]
pub enum AuthError {
#[error("You are not authorized")]
NotAuthorized,
}
pub struct Credentials {
pub email: EmailAddress,
pub password: Password,
}
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct EmailAddress(String);
#[derive(Debug, Error)]
#[error("The given email address is invalid")]
pub struct InvalidEmailAddress;
impl FromStr for EmailAddress {
type Err = InvalidEmailAddress;
fn from_str(s: &str) -> Result<Self, Self::Err> {
addrparse(s)
.ok()
.and_then(|parsed| parsed.extract_single_info())
.map(|single_info| Self(single_info.addr))
.ok_or(InvalidEmailAddress)
}
}
impl EmailAddress {
pub fn into_string(self) -> String {
self.0
}
}
#[derive(Clone)]
pub struct CurrentUser {
pub email: EmailAddress,
pub token: Uuid,
}
const MIN_PASSWORD_LEN: usize = 3;
pub struct Password(String);
impl Password {
pub fn verify(&self, password: &str) -> bool {
bcrypt::verify(password, &self.0)
}
}
#[derive(Debug, Error)]
pub enum InvalidPassword {
#[error("Password is too short (min. length is {0})")]
TooShort(usize),
}
impl TryFrom<String> for Password {
type Error = InvalidPassword;
fn try_from(p: String) -> Result<Self, Self::Error> {
if p.len() < MIN_PASSWORD_LEN {
return Err(InvalidPassword::TooShort(MIN_PASSWORD_LEN));
}
let hashed = bcrypt::hash(&p).unwrap();
Ok(Self(hashed))
}
}

Some files were not shown because too many files have changed in this diff Show More