mirror of
https://github.com/leptos-rs/leptos.git
synced 2025-12-27 16:54:41 -05:00
Compare commits
149 Commits
fix-node-r
...
v0.2.2
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8f94c8e6b1 | ||
|
|
604ba3ff90 | ||
|
|
2e671887d9 | ||
|
|
e7d56b76b8 | ||
|
|
87d5bddb21 | ||
|
|
9d46b7bcb0 | ||
|
|
591212a56a | ||
|
|
1a3c1e9e52 | ||
|
|
94998aa95e | ||
|
|
c782017578 | ||
|
|
d291cdb968 | ||
|
|
29fb1842a5 | ||
|
|
b085a6c38e | ||
|
|
17c12823db | ||
|
|
81401a738c | ||
|
|
c9476af063 | ||
|
|
1f95eb1e1d | ||
|
|
1584ab6b72 | ||
|
|
c63c8ac447 | ||
|
|
1a0e2b509e | ||
|
|
c66b673067 | ||
|
|
a13468228a | ||
|
|
bb0324fd48 | ||
|
|
369ea8531f | ||
|
|
9cc28943aa | ||
|
|
10bdff7d4b | ||
|
|
27fb430900 | ||
|
|
207dedab6e | ||
|
|
0052b10df3 | ||
|
|
08d98691a3 | ||
|
|
34aa0e014b | ||
|
|
55ce805b60 | ||
|
|
1e0adcd89a | ||
|
|
4e67b3aef8 | ||
|
|
02e2948e00 | ||
|
|
bd86125629 | ||
|
|
11d9018e4f | ||
|
|
553e38ba15 | ||
|
|
c8e6d18139 | ||
|
|
e29f6a884f | ||
|
|
10a2ada42a | ||
|
|
2dd9116a20 | ||
|
|
2ee323135f | ||
|
|
cebc824fbe | ||
|
|
dd0bcb950a | ||
|
|
bb5ad101a2 | ||
|
|
df90f183fd | ||
|
|
0c261c0fb0 | ||
|
|
f46084723a | ||
|
|
08ad6832af | ||
|
|
700a110350 | ||
|
|
33b5d8c4fb | ||
|
|
ceb7bd398d | ||
|
|
7f72c804f4 | ||
|
|
be0a793179 | ||
|
|
e1625106b8 | ||
|
|
abef12279b | ||
|
|
578853877a | ||
|
|
04eae63e39 | ||
|
|
4b98ece2b4 | ||
|
|
1b2a0fe2ad | ||
|
|
ab6ddc1194 | ||
|
|
b153ab51ee | ||
|
|
34f7b90177 | ||
|
|
3648af0d9d | ||
|
|
3d50ca32cd | ||
|
|
e576d93f83 | ||
|
|
e71779b8a6 | ||
|
|
0301c7f1cf | ||
|
|
46e6e7629c | ||
|
|
a985ae5660 | ||
|
|
efe29fd057 | ||
|
|
05b5b25c0e | ||
|
|
46f6deddbf | ||
|
|
e9c4b490e5 | ||
|
|
f7d0eea04d | ||
|
|
bf246a62e7 | ||
|
|
b8acfd758d | ||
|
|
dc8fd37461 | ||
|
|
cc2b310e4c | ||
|
|
884348d7f8 | ||
|
|
dafd6e51c5 | ||
|
|
322041917d | ||
|
|
a2eaf9b3ee | ||
|
|
4032bfc210 | ||
|
|
4ff08f042b | ||
|
|
ce4b0ecbe1 | ||
|
|
6c31d09eb2 | ||
|
|
59ad6a4725 | ||
|
|
884dacbc6c | ||
|
|
9c572f7617 | ||
|
|
487dba90d8 | ||
|
|
20f24d2f3a | ||
|
|
20cbc240ee | ||
|
|
f2f52b2533 | ||
|
|
46d6e3f78c | ||
|
|
586f524015 | ||
|
|
79781ec20c | ||
|
|
91f6d9a404 | ||
|
|
76a74ecde2 | ||
|
|
0071a48b8a | ||
|
|
8d42e91eb8 | ||
|
|
00a796d204 | ||
|
|
bde585dc3e | ||
|
|
0a534bd7fd | ||
|
|
50d8eae694 | ||
|
|
e732a4952b | ||
|
|
8a99623fd6 | ||
|
|
7d6c4930e4 | ||
|
|
81d6689cc0 | ||
|
|
989b5b93c3 | ||
|
|
ca510f72c1 | ||
|
|
6dd3be75d1 | ||
|
|
51e11e756a | ||
|
|
1dbcfe2861 | ||
|
|
db3f46c501 | ||
|
|
1cba54d47e | ||
|
|
d1ae3b49cc | ||
|
|
6bab4ad966 | ||
|
|
d4648da5c6 | ||
|
|
cf7deaaea3 | ||
|
|
d0cacecfc6 | ||
|
|
ce2c3ec97c | ||
|
|
b9f05f94ce | ||
|
|
fe7aacb0c8 | ||
|
|
3fd3e73a10 | ||
|
|
7dca740e47 | ||
|
|
73420affed | ||
|
|
7c25f59a68 | ||
|
|
c24874d9c8 | ||
|
|
4759dfcb60 | ||
|
|
ca9419b53f | ||
|
|
765006158a | ||
|
|
8a1adaefaf | ||
|
|
086326324e | ||
|
|
e59ee6329e | ||
|
|
a2b31a51d9 | ||
|
|
b0a98d8b4f | ||
|
|
6931d3904b | ||
|
|
e380097a9e | ||
|
|
44c18da324 | ||
|
|
256cf0c59b | ||
|
|
0765e51db8 | ||
|
|
45d4ebccd8 | ||
|
|
352601aa42 | ||
|
|
7f77910e91 | ||
|
|
76aeb573bf | ||
|
|
e0bf8f5b6d | ||
|
|
5ace580edb |
48
.github/workflows/check-examples.yml
vendored
Normal file
48
.github/workflows/check-examples.yml
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
name: Test
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
branches: [main]
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: Test on ${{ matrix.os }} (using rustc ${{ matrix.rust }})
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
rust:
|
||||
- nightly
|
||||
os:
|
||||
- ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Setup Rust
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: ${{ matrix.rust }}
|
||||
override: true
|
||||
components: rustfmt
|
||||
|
||||
- name: Add wasm32-unknown-unknown
|
||||
run: rustup target add wasm32-unknown-unknown
|
||||
|
||||
- name: Setup cargo-make
|
||||
uses: davidB/rust-cargo-make@v1
|
||||
|
||||
- name: Cargo generate-lockfile
|
||||
run: cargo generate-lockfile
|
||||
|
||||
- name: Run Rustfmt
|
||||
run: cargo fmt -- --check
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run cargo check on all examples
|
||||
run: cargo make check-examples
|
||||
48
.github/workflows/check.yml
vendored
Normal file
48
.github/workflows/check.yml
vendored
Normal file
@@ -0,0 +1,48 @@
|
||||
name: Test
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
pull_request:
|
||||
branches: [main]
|
||||
|
||||
env:
|
||||
CARGO_TERM_COLOR: always
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: Test on ${{ matrix.os }} (using rustc ${{ matrix.rust }})
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
rust:
|
||||
- nightly
|
||||
os:
|
||||
- ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Setup Rust
|
||||
uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: ${{ matrix.rust }}
|
||||
override: true
|
||||
components: rustfmt
|
||||
|
||||
- name: Add wasm32-unknown-unknown
|
||||
run: rustup target add wasm32-unknown-unknown
|
||||
|
||||
- name: Setup cargo-make
|
||||
uses: davidB/rust-cargo-make@v1
|
||||
|
||||
- name: Cargo generate-lockfile
|
||||
run: cargo generate-lockfile
|
||||
|
||||
- name: Run Rustfmt
|
||||
run: cargo fmt -- --check
|
||||
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run cargo check on all libraries
|
||||
run: cargo make check
|
||||
6
.github/workflows/test.yml
vendored
6
.github/workflows/test.yml
vendored
@@ -30,6 +30,9 @@ jobs:
|
||||
override: true
|
||||
components: rustfmt
|
||||
|
||||
- name: Add wasm32-unknown-unknown
|
||||
run: rustup target add wasm32-unknown-unknown
|
||||
|
||||
- name: Setup cargo-make
|
||||
uses: davidB/rust-cargo-make@v1
|
||||
|
||||
@@ -42,5 +45,4 @@ jobs:
|
||||
- uses: Swatinem/rust-cache@v2
|
||||
|
||||
- name: Run tests with all features
|
||||
run: cargo make ci
|
||||
|
||||
run: cargo make test
|
||||
|
||||
34
Cargo.toml
34
Cargo.toml
@@ -4,37 +4,43 @@ members = [
|
||||
"leptos",
|
||||
"leptos_dom",
|
||||
"leptos_config",
|
||||
"leptos_hot_reload",
|
||||
"leptos_macro",
|
||||
"leptos_reactive",
|
||||
"leptos_server",
|
||||
"server_fn",
|
||||
"server_fn_macro",
|
||||
"server_fn/server_fn_macro_default",
|
||||
|
||||
# integrations
|
||||
"integrations/actix",
|
||||
"integrations/axum",
|
||||
"integrations/viz",
|
||||
"integrations/utils",
|
||||
|
||||
# libraries
|
||||
"meta",
|
||||
"router",
|
||||
|
||||
# book
|
||||
"docs/book/project/ch02_getting_started",
|
||||
"docs/book/project/ch03_building_ui",
|
||||
"docs/book/project/ch04_reactivity",
|
||||
]
|
||||
exclude = ["benchmarks", "examples"]
|
||||
|
||||
[workspace.package]
|
||||
version = "0.1.3"
|
||||
version = "0.2.2"
|
||||
|
||||
[workspace.dependencies]
|
||||
leptos = { path = "./leptos", default-features = false, version = "0.1.3" }
|
||||
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.1.3" }
|
||||
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.1.3" }
|
||||
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.1.3" }
|
||||
leptos_server = { path = "./leptos_server", default-features = false, version = "0.1.3" }
|
||||
leptos_config = { path = "./leptos_config", default-features = false, version = "0.1.3" }
|
||||
leptos_router = { path = "./router", version = "0.1.3" }
|
||||
leptos_meta = { path = "./meta", default-feature = false, version = "0.1.3" }
|
||||
leptos = { path = "./leptos", default-features = false, version = "0.2.2" }
|
||||
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.2.2" }
|
||||
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.2.2" }
|
||||
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.2.2" }
|
||||
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.2.2" }
|
||||
leptos_server = { path = "./leptos_server", default-features = false, version = "0.2.2" }
|
||||
server_fn = { path = "./server_fn", default-features = false, version = "0.2.2" }
|
||||
server_fn_macro = { path = "./server_fn_macro", default-features = false, version = "0.2.2" }
|
||||
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", default-features = false, version = "0.2.2" }
|
||||
leptos_config = { path = "./leptos_config", default-features = false, version = "0.2.2" }
|
||||
leptos_router = { path = "./router", version = "0.2.2" }
|
||||
leptos_meta = { path = "./meta", default-feature = false, version = "0.2.2" }
|
||||
leptos_integration_utils = { path = "./integrations/utils", version = "0.2.2" }
|
||||
|
||||
[profile.release]
|
||||
codegen-units = 1
|
||||
|
||||
@@ -8,17 +8,21 @@
|
||||
default_to_workspace = false
|
||||
|
||||
[tasks.ci]
|
||||
dependencies = ["build", "check-examples", "test"]
|
||||
dependencies = ["check", "check-examples", "test"]
|
||||
|
||||
[tasks.build]
|
||||
[tasks.check]
|
||||
clear = true
|
||||
dependencies = ["build-all"]
|
||||
dependencies = ["check-all", "check-wasm"]
|
||||
|
||||
[tasks.build-all]
|
||||
[tasks.check-all]
|
||||
command = "cargo"
|
||||
args = ["+nightly", "build-all-features"]
|
||||
args = ["+nightly", "check-all-features"]
|
||||
install_crate = "cargo-all-features"
|
||||
|
||||
[tasks.check-wasm]
|
||||
clear = true
|
||||
dependencies = [{ name = "check-wasm", path = "leptos" }]
|
||||
|
||||
[tasks.check-examples]
|
||||
clear = true
|
||||
dependencies = [
|
||||
@@ -27,15 +31,21 @@ dependencies = [
|
||||
{ name = "check", path = "examples/counter_without_macros" },
|
||||
{ name = "check", path = "examples/counters" },
|
||||
{ name = "check", path = "examples/counters_stable" },
|
||||
{ name = "check", path = "examples/error_boundary" },
|
||||
{ name = "check", path = "examples/errors_axum" },
|
||||
{ name = "check", path = "examples/fetch" },
|
||||
{ name = "check", path = "examples/hackernews" },
|
||||
{ name = "check", path = "examples/hackernews_axum" },
|
||||
{ name = "check", path = "examples/login_with_token_csr_only" },
|
||||
{ name = "check", path = "examples/parent_child" },
|
||||
{ name = "check", path = "examples/router" },
|
||||
{ name = "check", path = "examples/session_auth_axum" },
|
||||
{ name = "check", path = "examples/ssr_modes" },
|
||||
{ name = "check", path = "examples/ssr_modes_axum" },
|
||||
{ name = "check", path = "examples/tailwind" },
|
||||
{ name = "check", path = "examples/todo_app_sqlite" },
|
||||
{ name = "check", path = "examples/todo_app_sqlite_axum" },
|
||||
{ name = "check", path = "examples/todo_app_sqlite_viz" },
|
||||
{ name = "check", path = "examples/todomvc" },
|
||||
]
|
||||
|
||||
|
||||
@@ -78,7 +78,7 @@ rustup target add wasm32-unknown-unknown
|
||||
|
||||
If you’re on `stable`, note the following:
|
||||
|
||||
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0-alpha", features = ["stable"] }`
|
||||
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0", features = ["stable"] }`
|
||||
2. `nightly` enables the function call syntax for accessing and setting signals. If you’re using `stable`,
|
||||
you’ll just call `.get()`, `.set()`, or `.update()` manually. Check out the
|
||||
[`counters_stable` example](https://github.com/leptos-rs/leptos/blob/main/examples/counters_stable/src/main.rs)
|
||||
@@ -99,6 +99,10 @@ Open browser on [http://localhost:3000/](http://localhost:3000/)
|
||||
|
||||
## FAQs
|
||||
|
||||
### What’s up with the name?
|
||||
|
||||
*Leptos* (λεπτός) is an ancient Greek word meaning “thin, light, refine, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
|
||||
|
||||
### Is it production ready?
|
||||
|
||||
People usually mean one of three things by this question.
|
||||
|
||||
2
docs/book/.gitignore
vendored
2
docs/book/.gitignore
vendored
@@ -1 +1 @@
|
||||
book
|
||||
book
|
||||
14
docs/book/README.md
Normal file
14
docs/book/README.md
Normal file
@@ -0,0 +1,14 @@
|
||||
This project contains the core of a new introductory guide to Leptos.
|
||||
|
||||
It is built using `mdbook`. You can view a local copy by installing `mdbook`
|
||||
|
||||
```bash
|
||||
cargo install mdbook
|
||||
```
|
||||
|
||||
and run the book with
|
||||
```
|
||||
mdbook serve
|
||||
```
|
||||
|
||||
It should be available at `http://localhost:3000`.
|
||||
@@ -1,16 +0,0 @@
|
||||
[book]
|
||||
authors = ["Greg Johnston"]
|
||||
language = "en"
|
||||
multilingual = false
|
||||
src = "src"
|
||||
title = "The Leptos Guide"
|
||||
|
||||
[preprocessor]
|
||||
|
||||
[preprocessor.mermaid]
|
||||
command = "mdbook-mermaid"
|
||||
|
||||
[output]
|
||||
|
||||
[output.html]
|
||||
additional-js = ["mermaid.min.js", "mermaid-init.js"]
|
||||
@@ -1 +0,0 @@
|
||||
mermaid.initialize({startOnLoad:true});
|
||||
4
docs/book/mermaid.min.js
vendored
4
docs/book/mermaid.min.js
vendored
File diff suppressed because one or more lines are too long
@@ -1,7 +0,0 @@
|
||||
[package]
|
||||
name = "ch02_getting_started"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
leptos = "0.1"
|
||||
@@ -1,14 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Leptos • Todos</title>
|
||||
|
||||
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
|
||||
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
|
||||
<link data-trunk rel="rust" data-wasm-opt="z" />
|
||||
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
||||
@@ -1,5 +0,0 @@
|
||||
use leptos::*;
|
||||
|
||||
fn main() {
|
||||
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
|
||||
}
|
||||
@@ -1,7 +0,0 @@
|
||||
[package]
|
||||
name = "ch03_building_ui"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
leptos = "0.1"
|
||||
@@ -1,14 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Leptos • Todos</title>
|
||||
|
||||
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
|
||||
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
|
||||
<link data-trunk rel="rust" data-wasm-opt="z" />
|
||||
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
||||
@@ -1,41 +0,0 @@
|
||||
use leptos::*;
|
||||
|
||||
fn main() {
|
||||
mount_to_body(|cx| {
|
||||
let name = "gbj";
|
||||
let userid = 0;
|
||||
|
||||
// This will be filled by _ref=input below.
|
||||
let input_element = NodeRef::<HtmlElement<Input>>::new(cx);
|
||||
|
||||
view! {
|
||||
cx,
|
||||
<main>
|
||||
<h1>"My Tasks"</h1> // text nodes are wrapped in quotation marks
|
||||
<h2>"by " {name}</h2>
|
||||
<input
|
||||
type="text" // attributes work just like they do in HTML
|
||||
name="new-todo"
|
||||
prop:value="todo" // `prop:` lets you set a property on a DOM node
|
||||
value="initial" // side note: the DOM `value` attribute only sets *initial* value
|
||||
// this is very important when working with forms!
|
||||
_ref=input_element // `_ref` stores tis element in a variable
|
||||
/>
|
||||
<ul data-user=userid> // attributes can take expressions as values
|
||||
<li class="todo my-todo" // here we set the `class` attribute
|
||||
class:completed=true // `class:` also lets you toggle individual classes
|
||||
on:click=|_| todo!() // `on:` adds an event listener
|
||||
>
|
||||
"Buy milk."
|
||||
</li>
|
||||
<li class="todo my-todo" class:completed=false>
|
||||
"???"
|
||||
</li>
|
||||
<li class="todo my-todo" class:completed=false>
|
||||
"Profit!!!"
|
||||
</li>
|
||||
</ul>
|
||||
</main>
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -1,7 +0,0 @@
|
||||
[package]
|
||||
name = "ch04_reactivity"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
leptos = "0.1"
|
||||
@@ -1,28 +0,0 @@
|
||||
use leptos::*;
|
||||
|
||||
fn main() {
|
||||
run_scope(create_runtime(), |cx| {
|
||||
// signal
|
||||
let (count, set_count) = create_signal(cx, 1);
|
||||
|
||||
// derived signal
|
||||
let double_count = move || count() * 2;
|
||||
|
||||
// memo
|
||||
let memoized_square = create_memo(cx, move |_| count() * count());
|
||||
|
||||
// effect
|
||||
create_effect(cx, move |_| {
|
||||
println!(
|
||||
"count =\t\t{} \ndouble_count = \t{}, \nsquare = \t{}",
|
||||
count(),
|
||||
double_count(),
|
||||
memoized_square()
|
||||
);
|
||||
});
|
||||
|
||||
set_count(1);
|
||||
set_count(2);
|
||||
set_count(3);
|
||||
});
|
||||
}
|
||||
@@ -1,10 +1,19 @@
|
||||
# Introduction
|
||||
|
||||
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework. Together, we’ll build a simple todo app—first as a client-side app, then as a full-stack app.
|
||||
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework.
|
||||
It will walk through the fundamental concepts you need to build applications,
|
||||
beginning with a simple application rendered in the browser, and building toward a
|
||||
full-stack application with server-side rendering and hydration.
|
||||
|
||||
The guide doesn’t assume you know anything about fine-grained reactivity or the details of modern Web frameworks. It does assume you are familiar with the Rust programming language, HTML, CSS, and the DOM and other Web APIs.
|
||||
The guide doesn’t assume you know anything about fine-grained reactivity or the
|
||||
details of modern Web frameworks. It does assume you are familiar with the Rust
|
||||
programming language, HTML, CSS, and the DOM and basic Web APIs.
|
||||
|
||||
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript) and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities to other frameworks like React (JavaScript), Yew (Rust), and Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to understand Leptos.
|
||||
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript)
|
||||
and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities
|
||||
to other frameworks like React (JavaScript), Svelte (JavaScript), Yew (Rust), and
|
||||
Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to
|
||||
understand Leptos.
|
||||
|
||||
You can find more detailed docs for each part of the API at [Docs.rs](https://docs.rs/leptos/latest/leptos/).
|
||||
|
||||
|
||||
@@ -1,37 +1,70 @@
|
||||
# Getting Started
|
||||
|
||||
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch02_getting_started).
|
||||
There are two basic paths to getting started with Leptos:
|
||||
|
||||
The easiest way to get started using Leptos is to use [Trunk](https://trunkrs.dev/), as many of our [examples](https://github.com/leptos-rs/leptos/tree/main/examples) do. (Trunk is a simple build tool that includes a dev server.)
|
||||
1. Client-side rendering with [Trunk](https://trunkrs.dev/)
|
||||
2. Full-stack rendering with [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos)
|
||||
|
||||
For the early examples, it will be easiest to begin with Trunk. We’ll introduce
|
||||
`cargo-leptos` a little later in this series.
|
||||
|
||||
If you don’t already have it installed, you can install Trunk by running
|
||||
|
||||
```bash
|
||||
cargo install --lock trunk
|
||||
cargo install trunk
|
||||
```
|
||||
|
||||
Create a basic Rust binary project
|
||||
|
||||
```bash
|
||||
cargo init leptos-todo
|
||||
cargo init leptos-tutorial
|
||||
```
|
||||
|
||||
Add `leptos` as a dependency to your `Cargo.toml` with the `csr` featured enabled. (That stands for “client-side rendering.” We’ll talk more about Leptos’s support for server-side rendering and hydration later.)
|
||||
> We recommend using `nightly` Rust, as it enables [a few nice features](https://github.com/leptos-rs/leptos#nightly-note). To use `nightly` Rust with WebAssembly, you can run
|
||||
>
|
||||
> ```bash
|
||||
> rustup toolchain install nightly
|
||||
> rustup default nightly
|
||||
> rustup target add wasm32-unknown-unknown
|
||||
> ```
|
||||
|
||||
```toml
|
||||
leptos = "0.0"
|
||||
`cd` into your new `leptos-tutorial` project and add `leptos` as a dependency
|
||||
|
||||
```bash
|
||||
cargo add leptos
|
||||
```
|
||||
|
||||
You’ll want to set up a basic `index.html` with the following content:
|
||||
Create a simple `index.html` in the root of the `leptos-tutorial` directory
|
||||
|
||||
```html
|
||||
{{#include ../project/ch02_getting_started/index.html}}
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head></head>
|
||||
<body></body>
|
||||
</html>
|
||||
```
|
||||
|
||||
Let’s start with a very simple `main.rs`
|
||||
And add a simple “Hello, world!” to your `main.rs`
|
||||
|
||||
```rust
|
||||
{{#include ../project/ch02_getting_started/src/main.rs}}
|
||||
use leptos::*;
|
||||
|
||||
fn main() {
|
||||
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
|
||||
}
|
||||
```
|
||||
|
||||
Now run `trunk serve --open`. Trunk should automatically compile your app and open it in your default browser. If you make edits to `main.rs`, Trunk will recompile your source code and live-reload the page.
|
||||
Your directory structure should now look something like this
|
||||
|
||||
```
|
||||
leptos_tutorial
|
||||
├── src
|
||||
│ └── main.rs
|
||||
├── Cargo.html
|
||||
├── index.html
|
||||
```
|
||||
|
||||
Now run `trunk serve --open` from the root of the `leptos-tutorial` directory.
|
||||
Trunk should automatically compile your app and open it in your default browser.
|
||||
If you make edits to `main.rs`, Trunk will recompile your source code and
|
||||
live-reload the page.
|
||||
|
||||
@@ -1,49 +0,0 @@
|
||||
# Templating: Building User Interfaces
|
||||
|
||||
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch03_building_ui).
|
||||
|
||||
## RSX and the `view!` macro
|
||||
|
||||
Okay, that “Hello, world!” was a little boring. We’re going to be building a todo app, so let’s look at something a little more complicated.
|
||||
|
||||
As you noticed in the first example, Leptos lets you describe your user interface with a declarative `view!` macro. It looks something like this:
|
||||
|
||||
```
|
||||
view! {
|
||||
cx, // this is the "reactive scope": more on that in the next chapter
|
||||
<p>"..."</p> // this is some HTML-ish stuff
|
||||
}
|
||||
```
|
||||
|
||||
The “HTML-ish stuff” is what we call “RSX”: XML in Rust. (You may recognize the similarity to JSX, which is the mixed JavaScript/XML syntax used by frameworks like React.)
|
||||
|
||||
Here’s a more in-depth example:
|
||||
|
||||
```rust
|
||||
{{#include ../project/ch03_building_ui/src/main.rs}}
|
||||
```
|
||||
|
||||
You’ll probably notice a few things right away:
|
||||
|
||||
1. Elements without children need to be explicit closed with a `/` (`<input/>`, not `<input>`)
|
||||
2. Text nodes are formatted as strings, i.e., wrapped in quotation marks (`"My Tasks"`)
|
||||
3. Dynamic blocks can be inserted as children of elements, if wrapped in curly braces (`<h2>"by " {name}</h2>`)
|
||||
4. Attributes can be given Rust expressions as values. This could be a string literal as in HTML (`<input type="text" .../>)` or a variable or block (`data-user=userid` or `on:click=move |_| { ... }`)
|
||||
5. Unlike in HTML, whitespace is ignored and should be manually added (it’s `<h2>"by " {name}</h2>`, not `<h2>"by" {name}</h2>`; the space between `"by"` and `{name}` is ignored.)
|
||||
6. Normal attributes work exactly like you'd think they would.
|
||||
7. There are also special, prefixed attributes.
|
||||
|
||||
- `class:` lets you make targeted updates to a single class
|
||||
- `on:` lets you add an event listener
|
||||
- `prop:` lets you set a property on a DOM element
|
||||
- `_ref` stores the DOM element you’re creating in a variable
|
||||
|
||||
> You can find more information in the [reference docs for the `view!` macro](https://docs.rs/leptos/0.0.15/leptos/macro.view.html).
|
||||
|
||||
## But, wait...
|
||||
|
||||
This example shows some parts of the Leptos templating syntax. But it’s completely static.
|
||||
|
||||
How do you actually make the user interface interactive?
|
||||
|
||||
In the next chapter, we’ll talk about “fine-grained reactivity,” which is the core of the Leptos framework.
|
||||
@@ -1,240 +0,0 @@
|
||||
# Reactivity
|
||||
|
||||
## What is reactivity?
|
||||
|
||||
A few months ago, I completely baffled a friend by trying to explain what I was working on. “You have two variables, right? Call them `a` and `b`. And then you have a third variable, `c`. And when you update `a` or `b`, the value of `c` just _automatically changes_. And it changes _on the screen_! Automatically!”
|
||||
|
||||
“Isn’t that just... how computers work?” she asked me, puzzled. If your programming experience is limited to something like spreadsheets, it’s a reasonable enough assumption. This is, after all, how math works.
|
||||
|
||||
But you know this isn't how ordinary imperative programming works.
|
||||
|
||||
```rust,should_panic
|
||||
let mut a = 0;
|
||||
let mut b = 0;
|
||||
let c = a + b;
|
||||
|
||||
assert_eq!(c, 0); // sanity check
|
||||
|
||||
a = 2;
|
||||
b = 2;
|
||||
|
||||
// now c = 4, right?
|
||||
assert_eq!(c, 4); // nope. we all know this is wrong!
|
||||
```
|
||||
|
||||
But that’s _exactly_ how reactive programming works.
|
||||
|
||||
```rust
|
||||
use leptos::*;
|
||||
|
||||
run_scope(create_runtime(), |cx| {
|
||||
let (a, set_a) = create_signal(cx, 0);
|
||||
let (b, set_b) = create_signal(cx, 0);
|
||||
let c = move || a() + b();
|
||||
|
||||
assert_eq!(c(), 0); // yep, still true
|
||||
|
||||
set_a(2);
|
||||
set_b(2);
|
||||
|
||||
assert_eq!(c(), 4); // ohhhhh yeah.
|
||||
});
|
||||
```
|
||||
|
||||
Hopefully, this makes some intuitive sense. After all, `c` is a closure. Calling it again causes it to access its values a second time. This isn’t _that_ cool.
|
||||
|
||||
```rust
|
||||
use leptos::*;
|
||||
|
||||
run_scope(create_runtime(), |cx| {
|
||||
let (a, set_a) = create_signal(cx, 0);
|
||||
let (b, set_b) = create_signal(cx, 0);
|
||||
let c = move || a() + b();
|
||||
|
||||
create_effect(cx, move |_| {
|
||||
println!("c = {}", c()); // prints "c = 0"
|
||||
});
|
||||
|
||||
set_a(2); // prints "c = 2"
|
||||
set_b(2); // prints "c = 4"
|
||||
});
|
||||
```
|
||||
|
||||
This example’s a little different. [`create_effect`](https://docs.rs/leptos/latest/leptos/fn.create_effect.html) defines a “side effect,” a bridge between the reactive system of signals and the outside world. Effects synchronize the reactive system with everything else: the console, the filesystem, an HTTP request, whatever.
|
||||
|
||||
Because the closure `c` is called within the effect and in turns calls the signals `a` and `b`, the effect automatically subscribes to the signals `a` and `b`. This means that whenever `a` or `b` is updated, the effect will re-run, logging the value again.
|
||||
|
||||
You can picture the reactive graph for this system like this:
|
||||
|
||||
```mermaid
|
||||
graph TD;
|
||||
A-->C;
|
||||
B-->C;
|
||||
C-->Effect;
|
||||
```
|
||||
|
||||
This is the foundation on which _everything_ else is built.
|
||||
|
||||
## Reactive Primitives
|
||||
|
||||
### Overview
|
||||
|
||||
The reactive system is built on the interaction between these two halves: **signals** and **effects**. When a signal is called inside an effect, the effect automatically subscribes to the signal. When a signal’s value is updated, it automatically notifies all its subscribers, and they re-run.
|
||||
|
||||
The following simple example contains most of the core reactive concepts:
|
||||
|
||||
```rust
|
||||
{{#include ../project/ch04_reactivity/src/main.rs}}
|
||||
```
|
||||
|
||||
This creates a reactive graph like this:
|
||||
|
||||
```mermaid
|
||||
graph TD;
|
||||
count-->double_count;
|
||||
count-->memoized_square;
|
||||
count-->effect;
|
||||
double_count-->effect;
|
||||
memoized_square-->effect;
|
||||
```
|
||||
|
||||
**Signals** are reactive values created using [`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html) or [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html).
|
||||
|
||||
**Derived Signals** computations in ordinary closures that rely on other signals. The computation re-runs whenever you access its value.
|
||||
|
||||
**Memos** are computations that are memoized with [create_memo](https://docs.rs/leptos/latest/leptos/fn.create_memo.html). Memos only re-run when one of their signal dependencies has changed.
|
||||
|
||||
And **effects** (created with [create_effect](<(https://docs.rs/leptos/latest/leptos/fn.create_effect.html)>) synchronize the reactive system with something outside it.
|
||||
|
||||
The rest of this chapter will walk through each of these concepts in more depth.
|
||||
|
||||
### Signals
|
||||
|
||||
A **signal** is a piece of data that may change over time, and notifies other code when it has changed. This is the core primitive of Leptos’s reactive system.
|
||||
|
||||
Creating a signal is very simple. You call `create_signal`, passing in the reactive scope and the default value, and receive a tuple containing a `ReadSignal` and a `WriteSignal`.
|
||||
|
||||
```rust
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
```
|
||||
|
||||
> If you’ve used signals in Sycamore or Solid, observables in MobX or Knockout, or a similar primitive in reactive library, you probably have a pretty good idea of how signals work in Leptos. If you’re familiar with React, Yew, or Dioxus, you may recognize a similar pattern to their `use_state` hooks.
|
||||
|
||||
#### `ReadSignal<T>`
|
||||
|
||||
The [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) half of this tuple allows you to get the current value of the signal. Reading that value in a reactive context automatically subscribes to any further changes. You can access the value by simply calling the `ReadSignal` as a function.
|
||||
|
||||
```rust
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
// calling value() with return the current value of the signal,
|
||||
// and automatically track changes if you're in a reactive context
|
||||
assert_eq!(value(), 0);
|
||||
```
|
||||
|
||||
> Here, a **reactive context** means anywhere within an `Effect`. Leptos’s templating system is built on top of its reactive system, so if you’re reading the signal’s value within the template, the template will automatically subscribe to the signal and update exactly the value that needs to change in the DOM.
|
||||
|
||||
Calling a `ReadSignal` clones the value it contains. If that’s too expensive, use [`ReadSignal::with()`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html#method.with) to borrow the value and do whatever you need.
|
||||
|
||||
```rust
|
||||
struct MySuperExpensiveStruct {
|
||||
a: String,
|
||||
b: StructThatsSuperExpensiveToClone
|
||||
}
|
||||
let (value, set_value) = create_signal(cx, MySuperExpensiveStruct::default());
|
||||
|
||||
// ❌ this is going to clone the `StructThatsSuperExpensiveToClone` unnecessarily!
|
||||
let lowercased = move || value().a.to_lowercase();
|
||||
// ✅ only use what we need
|
||||
let lowercased = move || value.with(|value: &MySuperExpensiveStruct| value.a.to_lowercase());
|
||||
```
|
||||
|
||||
#### `WriteSignal<T>`
|
||||
|
||||
The [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) half of this tuple allows you to update the value of the signal, which will automatically notify anything that’s listening to the value that something has changed. If you simply call the `WriteSignal` as a function, its value will be set to the argument you pass. If you want to mutate the value in place instead of replacing it, you can call [`WriteSignal::update`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html#method.update) instead.
|
||||
|
||||
```rust
|
||||
// often you just want to replace the value
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
set_value(1);
|
||||
assert_eq!(value(), 1);
|
||||
|
||||
// sometimes you want to mutate something in place, like a Vec. Just call update()
|
||||
let (items, set_items) = create_signal(cx, vec![0]);
|
||||
set_items.update(|items: &mut Vec<i32>| items.push(1));
|
||||
assert_eq!(items(), vec![1]);
|
||||
```
|
||||
|
||||
> Under the hood, `set_value(1)` is just syntactic sugar for `set_value.update(|n| *n = 1)`.
|
||||
|
||||
#### `RwSignal<T>`
|
||||
|
||||
This kind of “read-write segregation,” in which the getter and the setter are stored in separate variables, may be familiar from the tuple-based ”hooks” pattern in libraries like React, Solid, Yew, or Dioxus. It encourages clear contracts between components. For example, if a child component only needs to be able to read a signal, but shouldn’t be able to update it (and therefore trigger changes in other parts of the application), you can pass it only the `ReadSignal`.
|
||||
|
||||
Sometimes, however, you may prefer to keep the getter and setter combined in one variable. For example, it’s awkward and repetitive to store both halves of a signal in another data structure:
|
||||
|
||||
```rust
|
||||
# use leptos::*;
|
||||
|
||||
// pretty repetitive
|
||||
struct AppState {
|
||||
count: ReadSignal<i32>,
|
||||
set_count: WriteSignal<i32>,
|
||||
name: ReadSignal<String>,
|
||||
set_name: WriteSignal<String>
|
||||
}
|
||||
|
||||
#[component]
|
||||
fn App(cx: Scope) {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let (name, set_name) = create_signal(cx, "Alice".to_string());
|
||||
provide_context(cx, AppState {
|
||||
count,
|
||||
set_count,
|
||||
name,
|
||||
set_name
|
||||
})
|
||||
|
||||
todo!()
|
||||
}
|
||||
```
|
||||
|
||||
Or maybe you just like to keep your getters and setters in one place.
|
||||
|
||||
In this case, you can use [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html) and the [`RwSignal`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html) type. This returns a **R**ead-**w**rite Signal, which has the same [`get`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get), [`with`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.with), [`set`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.set), and [`update`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.update) functions as the `ReadSignal` and `WriteSignal` halves.
|
||||
|
||||
```rust
|
||||
# use leptos::*;
|
||||
|
||||
// better
|
||||
struct AppState {
|
||||
count: RwSignal<i32>,
|
||||
name: RwSignal<String>,
|
||||
}
|
||||
|
||||
#[component]
|
||||
fn App(cx: Scope) {
|
||||
let count = create_rw_signal(cx, 0);
|
||||
let name = create_rw_signal(cx, "Alice".to_string());
|
||||
provide_context(cx, AppState {
|
||||
count,
|
||||
name,
|
||||
})
|
||||
|
||||
todo!()
|
||||
}
|
||||
```
|
||||
|
||||
If you still want to hand off read-only access to another part of the app, you can get a `ReadSignal` with [`RwSignal::read_only()`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get).
|
||||
|
||||
### Derived Signals
|
||||
|
||||
(todo)
|
||||
|
||||
### Memos
|
||||
|
||||
(todo)
|
||||
|
||||
### Effects
|
||||
|
||||
(todo)
|
||||
110
docs/book/src/14_create_effect.md
Normal file
110
docs/book/src/14_create_effect.md
Normal file
@@ -0,0 +1,110 @@
|
||||
# Responding to Changes with `create_effect`
|
||||
|
||||
Believe it or not, we’ve made it this far without having mentioned half of the reactive system: effects.
|
||||
|
||||
Leptos is built on a fine-grained reactive system, which means that individual reactive values (“signals,” sometimes known as observables) trigger rerunning the code that reacts to them (“effects,” sometimes known as observers). These two halves of the reactive system are inter-dependent. Without effects, signals can change within the reactive system but never be observed in a way that interacts with the outside world. Without signals, effects run once but never again, as there’s no observable value to subscribe to.
|
||||
|
||||
[`create_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_effect.html) takes a function as its argument. It immediately runs the function. If you access any reactive signal inside that function, it registers the fact that the effect depends on that signal with the reactive runtime. Whenever one of the signals that the effect depends on changes, the effect runs again.
|
||||
|
||||
```rust
|
||||
let (a, set_a) = create_signal(cx, 0);
|
||||
let (b, set_b) = create_signal(cx, 0);
|
||||
|
||||
create_effect(cx, move |_| {
|
||||
// immediately prints "Value: 0" and subscribes to `a`
|
||||
log::debug!("Value: {}", a());
|
||||
});
|
||||
```
|
||||
|
||||
The effect function is called with an argument containing whatever value it returned the last time it ran. On the initial run, this is `None`.
|
||||
|
||||
By default, effects **do not run on the server**. This means you can call browser-specific APIs within the effect function without causing issues. If you need an effect to run on the server, use [`create_isomorphic_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_isomorphic_effect.html).
|
||||
|
||||
## Autotracking and Dynamic Dependencies
|
||||
|
||||
If you’re familiar with a framework like React, you might notice one key difference. React and similar frameworks typically require you to pass a “dependency array,” an explicit set of variables that determine when the effect should rerun.
|
||||
|
||||
Because Leptos comes from the tradition of synchronous reactive programming, we don’t need this explicit dependency list. Instead, we automatically track dependencies depending on which signals are accessed within the effect.
|
||||
|
||||
This has two effects (no pun intended). Dependencies are
|
||||
|
||||
1. **Automatic**: You don’t need to maintain a dependency list, or worry about what should or shouldn’t be included. The framework simply tracks which signals might cause the effect to rerun, and handles it for you.
|
||||
2. **Dynamic**: The dependency list is cleared and updated every time the effect runs. If your effect contains a conditional (for example), only signals that are used in the current branch are tracked. This means that effects rerun the absolute minimum number of times.
|
||||
|
||||
> If this sounds like magic, and if you want a deep dive into how automatic dependency tracking works, [check out this video](https://www.youtube.com/watch?v=GWB3vTWeLd4). (Apologies for the low volume!)
|
||||
|
||||
## Effects as Zero-Cost-ish Abstraction
|
||||
|
||||
While they’re not a “zero-cost abstraction” in the most technical sense—they require some additional memory use, exist at runtime, etc.—at a higher level, from the perspective of whatever expensive API calls or other work you’re doing within them, effects are a zero-cost abstraction. They rerun the absolute minimum number of times necessary, given how you’ve described them.
|
||||
|
||||
Imagine that I’m creating some kind of chat software, and I want people to be able to display their full name, or just their first name, and to notify the server whenever their name changes:
|
||||
|
||||
```rust
|
||||
let (first, set_first) = create_signal(cx, String::new());
|
||||
let (last, set_last) = create_signal(cx, String::new());
|
||||
let (use_last, set_use_last) = create_signal(cx, true);
|
||||
|
||||
// this will add the name to the log
|
||||
// any time one of the source signals changes
|
||||
create_effect(cx, move |_| {
|
||||
log(
|
||||
cx,
|
||||
if use_last() {
|
||||
format!("{} {}", first(), last())
|
||||
} else {
|
||||
first()
|
||||
},
|
||||
)
|
||||
});
|
||||
```
|
||||
|
||||
If `use_last` is `true`, effect should rerun whenever `first`, `last`, or `use_last` changes. But if I toggle `use_last` to `false`, a change in `last` will never cause the full name to change. In fact, `last` will be removed from the dependency list until `use_last` toggles again. This saves us from sending multiple unnecessary requests to the API if I change `last` multiple times while `use_last` is still `false`.
|
||||
|
||||
## To `create_effect`, or not to `create_effect`?
|
||||
|
||||
Effects are intended to run _side-effects_ of the system, not to synchronize state _within_ the system. In other words: don’t write to signals within effects.
|
||||
|
||||
If you need to define a signal that depends on the value of other signals, use a derived signal or [`create_memo`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_memo.html).
|
||||
|
||||
If you need to synchronize some reactive value with the non-reactive world outside—like a web API, the console, the filesystem, or the DOM—create an effect.
|
||||
|
||||
> If you’re curious for more information about when you should and shouldn’t use `create_effect`, [check out this video](https://www.youtube.com/watch?v=aQOFJQ2JkvQ) for a more in-depth consideration!
|
||||
|
||||
## Effects and Rendering
|
||||
|
||||
We’ve managed to get this far without mentioning effects because they’re built into the Leptos DOM renderer. We’ve seen that you can create a signal and pass it into the `view` macro, and it will update the relevant DOM node whenever the signal changes:
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
view! { cx,
|
||||
<p>{count}</p>
|
||||
}
|
||||
```
|
||||
|
||||
This works because the framework essentially creates an effect wrapping this update. You can imagine Leptos translating this view into something like this:
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
// create a DOM element
|
||||
let p = create_element("p");
|
||||
|
||||
// create an effect to reactively update the text
|
||||
create_effect(cx, move |prev_value| {
|
||||
// first, access the signal’s value and convert it to a string
|
||||
let text = count().to_string();
|
||||
|
||||
// if this is different from the previous value, update the node
|
||||
if prev_value != Some(text) {
|
||||
p.set_text_content(&text);
|
||||
}
|
||||
|
||||
// return this value so we can memoize the next update
|
||||
text
|
||||
});
|
||||
```
|
||||
|
||||
Every time `count` is updated, this effect wil rerun. This is what allows reactive, fine-grained updates to the DOM.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>
|
||||
171
docs/book/src/15_global_state.md
Normal file
171
docs/book/src/15_global_state.md
Normal file
@@ -0,0 +1,171 @@
|
||||
# Global State Management
|
||||
|
||||
So far, we've only been working with local state in components
|
||||
We've only seen how to communicate between parent and child components
|
||||
But there are also more general ways to manage global state
|
||||
|
||||
The three best approaches to global state are
|
||||
|
||||
1. Using the router to drive global state via the URL
|
||||
2. Passing signals through context
|
||||
3. Creating a global state struct and creating lenses into it with `create_slice`
|
||||
|
||||
## Option #1: URL as Global State
|
||||
|
||||
The next few sections of the tutorial will be about the router.
|
||||
So for now, we'll just look at options #2 and #3.
|
||||
|
||||
## Option #2: Passing Signals through Context
|
||||
|
||||
In virtual DOM libraries like React, using the Context API to manage global
|
||||
state is a bad idea: because the entire app exists in a tree, changing
|
||||
some value provided high up in the tree can cause the whole app to render.
|
||||
|
||||
In fine-grained reactive libraries like Leptos, this is simply not the case.
|
||||
You can create a signal in the root of your app and pass it down to other
|
||||
components using provide_context(). Changing it will only cause rerendering
|
||||
in the specific places it is actually used, not the whole app.
|
||||
|
||||
We start by creating a signal in the root of the app and providing it to
|
||||
all its children and descendants using `provide_context`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
// here we create a signal in the root that can be consumed
|
||||
// anywhere in the app.
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
// we'll pass the setter to specific components,
|
||||
// but provide the count itself to the whole app via context
|
||||
provide_context(cx, count);
|
||||
|
||||
view! { cx,
|
||||
// SetterButton is allowed to modify the count
|
||||
<SetterButton set_count/>
|
||||
// These consumers can only read from it
|
||||
// But we could give them write access by passing `set_count` if we wanted
|
||||
<FancyMath/>
|
||||
<ListItems/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
`<SetterButton/>` is the kind of counter we’ve written several times now.
|
||||
(See the sandbox below if you don’t understand what I mean.)
|
||||
|
||||
`<FancyMath/>` and `<ListItems/>` both consume the signal we’re providing via
|
||||
`use_context` and do something with it.
|
||||
|
||||
```rust
|
||||
/// A component that does some "fancy" math with the global count
|
||||
#[component]
|
||||
fn FancyMath(cx: Scope) -> impl IntoView {
|
||||
// here we consume the global count signal with `use_context`
|
||||
let count = use_context::<ReadSignal<u32>>(cx)
|
||||
// we know we just provided this in the parent component
|
||||
.expect("there to be a `count` signal provided");
|
||||
let is_even = move || count() & 1 == 0;
|
||||
|
||||
view! { cx,
|
||||
<div class="consumer blue">
|
||||
"The number "
|
||||
<strong>{count}</strong>
|
||||
{move || if is_even() {
|
||||
" is"
|
||||
} else {
|
||||
" is not"
|
||||
}}
|
||||
" even."
|
||||
</div>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This kind of “provide a signal in a parent, consume it in a child” should be familiar
|
||||
from the chapter on [parent-child interactions](./view/08_parent_child.md). The same
|
||||
pattern you use to communicate between parents and children works for grandparents and
|
||||
grandchildren, or any ancestors and descendents: in other words, between “global” state
|
||||
in the root component of your app and any other components anywhere else in the app.
|
||||
|
||||
Because of the fine-grained nature of updates, this is usually all you need. However,
|
||||
in some cases with more complex state changes, you may want to use a slightly more
|
||||
structured approach to global state.
|
||||
|
||||
## Option #3: Create a Global State Struct
|
||||
|
||||
You can use this approach to build a single global data structure
|
||||
that holds the state for your whole app, and then access it by
|
||||
taking fine-grained slices using
|
||||
[`create_slice`](https://docs.rs/leptos/latest/leptos/fn.create_slice.html)
|
||||
or [`create_memo`](https://docs.rs/leptos/latest/leptos/fn.create_memo.html),
|
||||
so that changing one part of the state doesn't cause parts of your
|
||||
app that depend on other parts of the state to change.
|
||||
|
||||
You can begin by defining a simple state struct:
|
||||
|
||||
```rust
|
||||
#[derive(Default, Clone, Debug)]
|
||||
struct GlobalState {
|
||||
count: u32,
|
||||
name: String,
|
||||
}
|
||||
```
|
||||
|
||||
Provide it in the root of your app so it’s available everywhere.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
// we'll provide a single signal that holds the whole state
|
||||
// each component will be responsible for creating its own "lens" into it
|
||||
let state = create_rw_signal(cx, GlobalState::default());
|
||||
provide_context(cx, state);
|
||||
|
||||
// ...
|
||||
```
|
||||
|
||||
Then child components can access “slices” of that state with fine-grained
|
||||
updates via `create_slice`. Each slice signal only updates when the particular
|
||||
piece of the larger struct it accesses updates. This means you can create a single
|
||||
root signal, and then take independent, fine-grained slices of it in different
|
||||
components, each of which can update without notifying the others of changes.
|
||||
|
||||
```rust
|
||||
/// A component that updates the count in the global state.
|
||||
#[component]
|
||||
fn GlobalStateCounter(cx: Scope) -> impl IntoView {
|
||||
let state = use_context::<RwSignal<GlobalState>>(cx).expect("state to have been provided");
|
||||
|
||||
// `create_slice` lets us create a "lens" into the data
|
||||
let (count, set_count) = create_slice(
|
||||
cx,
|
||||
// we take a slice *from* `state`
|
||||
state,
|
||||
// our getter returns a "slice" of the data
|
||||
|state| state.count,
|
||||
// our setter describes how to mutate that slice, given a new value
|
||||
|state, n| state.count = n,
|
||||
);
|
||||
|
||||
view! { cx,
|
||||
<div class="consumer blue">
|
||||
<button
|
||||
on:click=move |_| {
|
||||
set_count(count() + 1);
|
||||
}
|
||||
>
|
||||
"Increment Global Count"
|
||||
</button>
|
||||
<br/>
|
||||
<span>"Count is: " {count}</span>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Clicking this button only updates `state.count`, so if we create another slice
|
||||
somewhere else that only takes `state.name`, clicking the button won’t cause
|
||||
that other slice to update. This allows you to combine the benefits of a top-down
|
||||
data flow and of fine-grained reactive updates.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px">
|
||||
@@ -2,5 +2,42 @@
|
||||
|
||||
- [Introduction](./01_introduction.md)
|
||||
- [Getting Started](./02_getting_started.md)
|
||||
- [Templating: Building User Interfaces](./03_building_ui.md)
|
||||
- [Reactivity: Making Things Interactive](./04_reactivity.md)
|
||||
- [Building User Interfaces](./view/README.md)
|
||||
- [A Basic Component](./view/01_basic_component.md)
|
||||
- [Dynamic Attributes](./view/02_dynamic_attributes.md)
|
||||
- [Components and Props](./view/03_components.md)
|
||||
- [Iteration](./view/04_iteration.md)
|
||||
- [Forms and Inputs](./view/05_forms.md)
|
||||
- [Control Flow](./view/06_control_flow.md)
|
||||
- [Error Handling](./view/07_errors.md)
|
||||
- [Parent-Child Communication](./view/08_parent_child.md)
|
||||
- [Passing Children to Components](./view/09_component_children.md)
|
||||
- [Interlude: Reactivity and Functions](./interlude_functions.md)
|
||||
- [Testing](./testing.md)
|
||||
- [Async](./async/README.md)
|
||||
- [Loading Data with Resources](./async/10_resources.md)
|
||||
- [Suspense](./async/11_suspense.md)
|
||||
- [Transition](./async/12_transition.md)
|
||||
- [Actions](./async/13_actions.md)
|
||||
- [Responding to Changes with `create_effect`](./14_create_effect.md)
|
||||
- [Global State Management](./15_global_state.md)
|
||||
- [Router]()
|
||||
- [Fundamentals]()
|
||||
- [defining `<Routes/>`]()
|
||||
- [`<A/>`]()
|
||||
- [`<Form/>`]()
|
||||
- [Interlude: Styling — CSS, Tailwind, Style.rs, and more]()
|
||||
- [Metadata]()
|
||||
- [SSR]()
|
||||
- [Models of SSR]()
|
||||
- [`cargo-leptos`]()
|
||||
- [Hydration Footguns]()
|
||||
- [Request/Response]()
|
||||
- [Headers]()
|
||||
- [Cookies]()
|
||||
- [Server Functions]()
|
||||
- [Actions]()
|
||||
- [Forms]()
|
||||
- [`<ActionForm/>`s]()
|
||||
- [Turning off WebAssembly]()
|
||||
- [Advanced Reactivity]()
|
||||
|
||||
53
docs/book/src/async/10_resources.md
Normal file
53
docs/book/src/async/10_resources.md
Normal file
@@ -0,0 +1,53 @@
|
||||
# Loading Data with Resources
|
||||
|
||||
A [Resource](https://docs.rs/leptos/latest/leptos/struct.Resource.html) is a reactive data structure that reflects the current state of an asynchronous task, allowing you to integrate asynchronous `Future`s into the synchronous reactive system. Rather than waiting for its data to load with `.await`, you transform the `Future` into a signal that returns `Some(T)` if it has resolved, and `None` if it’s still pending.
|
||||
|
||||
You do this by using the [`create_resource`](https://docs.rs/leptos/latest/leptos/fn.create_resource.html) function. This takes two arguments (other than the ubiquitous `cx`):
|
||||
|
||||
1. a source signal, which will generate a new `Future` whenever it changes
|
||||
2. a fetcher function, which takes the data from that signal and returns a `Future`
|
||||
|
||||
Here’s an example
|
||||
|
||||
```rust
|
||||
// our source signal: some synchronous, local state
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
// our resource
|
||||
let async_data = create_resource(cx,
|
||||
count,
|
||||
// every time `count` changes, this will run
|
||||
|value| async move {
|
||||
log!("loading data from API");
|
||||
load_data(value).await
|
||||
},
|
||||
);
|
||||
```
|
||||
|
||||
To create a resource that simply runs once, you can pass a non-reactive, empty source signal:
|
||||
|
||||
```rust
|
||||
let once = create_resource(cx, || (), |_| async move { load_data().await });
|
||||
```
|
||||
|
||||
To access the value you can use `.read(cx)` or `.with(cx, |data| /* */)`. These work just like `.get()` and `.with()` on a signal—`read` clones the value and returns it, `with` applies a closure to it—but with two differences
|
||||
|
||||
1. For any `Resource<_, T>`, they always return `Option<T>`, not `T`: because it’s always possible that your resource is still loading.
|
||||
2. They take a `Scope` argument. You’ll see why in the next chapter, on `<Suspense/>`.
|
||||
|
||||
So, you can show the current state of a resource in your view:
|
||||
|
||||
```rust
|
||||
let once = create_resource(cx, || (), |_| async move { load_data().await });
|
||||
view! { cx,
|
||||
<h1>"My Data"</h1>
|
||||
{move || match once.read(cx) {
|
||||
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
|
||||
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
|
||||
}}
|
||||
}
|
||||
```
|
||||
|
||||
Resources also provide a `refetch()` method that allows you to manually reload the data (for example, in response to a button click) and a `loading()` method that returns a `ReadSignal<bool>` indicating whether the resource is currently loading or not.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>
|
||||
72
docs/book/src/async/11_suspense.md
Normal file
72
docs/book/src/async/11_suspense.md
Normal file
@@ -0,0 +1,72 @@
|
||||
# `<Suspense/>`
|
||||
|
||||
In the previous chapter, we showed how you can create a simple loading screen to show some fallback while a resource is loading.
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let a = create_resource(cx, count, |count| async move { load_a(count).await });
|
||||
|
||||
view! { cx,
|
||||
<h1>"My Data"</h1>
|
||||
{move || match once.read(cx) {
|
||||
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
|
||||
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
|
||||
}}
|
||||
}
|
||||
```
|
||||
|
||||
But what if we have two resources, and want to wait for both of them?
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let (count2, set_count2) = create_signal(cx, 0);
|
||||
let a = create_resource(cx, count, |count| async move { load_a(count).await });
|
||||
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
|
||||
|
||||
view! { cx,
|
||||
<h1>"My Data"</h1>
|
||||
{move || match (a.read(cx), b.read(cx)) {
|
||||
_ => view! { cx, <p>"Loading..."</p> }.into_view(cx),
|
||||
(Some(a), Some(b)) => view! { cx,
|
||||
<ShowA a/>
|
||||
<ShowA b/>
|
||||
}.into_view(cx)
|
||||
}}
|
||||
}
|
||||
```
|
||||
|
||||
That’s not _so_ bad, but it’s kind of annoying. What if we could invert the flow of control?
|
||||
|
||||
The [`<Suspense/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html) component lets us do exactly that. You give it a `fallback` prop and children, one or more of which usually involves reading from a resource. Reading from a resource “under” a `<Suspense/>` (i.e., in one of its children) registers that resource with the `<Suspense/>`. If it’s still waiting for resources to load, it shows the `fallback`. When they’ve all loaded, it shows the children.
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let (count2, set_count2) = create_signal(cx, 0);
|
||||
let a = create_resource(cx, count, |count| async move { load_a(count).await });
|
||||
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
|
||||
|
||||
view! { cx,
|
||||
<h1>"My Data"</h1>
|
||||
<Suspense
|
||||
fallback=move || view! { cx, <p>"Loading..."</p> }
|
||||
>
|
||||
<h2>"My Data"</h2>
|
||||
<h3>"A"</h3>
|
||||
{move || {
|
||||
a.read(cx)
|
||||
.map(|a| view! { cx, <ShowA a/> })
|
||||
}}
|
||||
<h3>"B"</h3>
|
||||
{move || {
|
||||
b.read(cx)
|
||||
.map(|b| view! { cx, <ShowB b/> })
|
||||
}}
|
||||
</Suspense>
|
||||
}
|
||||
```
|
||||
|
||||
Every time one of the resources is reloading, the `"Loading..."` fallback will show again.
|
||||
|
||||
This inversion of the flow of control makes it easier to add or remove individual resources, as you don’t need to handle the matching yourself. It also unlocks some massive performance improvements during server-side rendering, which we’ll talk about during a later chapter.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>
|
||||
9
docs/book/src/async/12_transition.md
Normal file
9
docs/book/src/async/12_transition.md
Normal file
@@ -0,0 +1,9 @@
|
||||
# `<Transition/>`
|
||||
|
||||
You’ll notice in the `<Suspense/>` example that if you keep reloading the data, it keeps flickering back to `"Loading..."`. Sometimes this is fine. For other times, there’s [`<Transition/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html).
|
||||
|
||||
`<Transition/>` behaves exactly the same as `<Suspense/>`, but instead of falling back every time, it only shows the fallback the first time. On all subsequent loads, it continues showing the old data until the new data are ready. This can be really handy to prevent the flickering effect, and to allow users to continue interacting with your application.
|
||||
|
||||
This example shows how you can create a simple tabbed contact list with `<Transition/>`. When you select a new tab, it continues showing the current contact until the new data laods. This can be a much better user experience than constantly falling back to a loading message.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px"></iframe>
|
||||
94
docs/book/src/async/13_actions.md
Normal file
94
docs/book/src/async/13_actions.md
Normal file
@@ -0,0 +1,94 @@
|
||||
# Mutating Data with Actions
|
||||
|
||||
We’ve talked about how to load `async` data with resources. Resources immediately load data and work closely with `<Suspense/>` and `<Transition/>` components to show whether data is loading in your app. But what if you just want to call some arbitrary `async` function and keep track of what it’s doing?
|
||||
|
||||
Well, you could always use [`spawn_local`](https://docs.rs/leptos/latest/leptos/fn.spawn_local.html). This allows you to just spawn an `async` task in a synchronous environment by handing the `Future` off to the browser (or, on the server, Tokio or whatever other runtime you’re using). But how do you know if it’s still pending? Well, you could just set a signal to show whether it’s loading, and another one to show the result...
|
||||
|
||||
All of this is true. Or you could use the final `async` primitive: [`create_action`](https://docs.rs/leptos/latest/leptos/fn.create_action.html).
|
||||
|
||||
Actions and resources seem similar, but they represent fundamentally different things. If you’re trying to load data by running an `async` function, either once or when some other value changes, you probably want to use `create_resource`. If you’re trying to occasionally run an `async` function in response to something like a user clicking a button, you probably want to use `create_action`.
|
||||
|
||||
Say we have some `async` function we want to run.
|
||||
|
||||
```rust
|
||||
async fn add_todo(new_title: &str) -> Uuid {
|
||||
/* do some stuff on the server to add a new todo */
|
||||
}
|
||||
```
|
||||
|
||||
`create_action` takes a reactive `Scope` and an `async` function that takes a reference to a single argument, which you could think of as its “input type.”
|
||||
|
||||
> The input is always a single type. If you want to pass in multiple arguments, you can do it with a struct or tuple.
|
||||
>
|
||||
> ```rust
|
||||
> // if there's a single argument, just use that
|
||||
> let action1 = create_action(cx, |input: &String| {
|
||||
> let input = input.clone();
|
||||
> async move { todo!() }
|
||||
> });
|
||||
>
|
||||
> // if there are no arguments, use the unit type `()`
|
||||
> let action2 = create_action(cx, |input: &()| async { todo!() });
|
||||
>
|
||||
> // if there are multiple arguments, use a tuple
|
||||
> let action3 = create_action(cx,
|
||||
> |input: &(usize, String)| async { todo!() }
|
||||
> );
|
||||
> ```
|
||||
>
|
||||
> Because the action function takes a reference but the `Future` needs to have a `'static` lifetime, you’ll usually need to clone the value to pass it into the `Future`. This is admittedly awkward but it unlocks some powerful features like optimistic UI. We’ll see a little more about that in future chapters.
|
||||
|
||||
So in this case, all we need to do to create an action is
|
||||
|
||||
```rust
|
||||
let add_todo = create_action(cx, |input: &String| {
|
||||
let input = input.to_owned();
|
||||
async move { add_todo(&input).await }
|
||||
});
|
||||
```
|
||||
|
||||
Rather than calling `add_todo` directly, we’ll call it with `.dispatch()`, as in
|
||||
|
||||
```rust
|
||||
add_todo.dispatch("Some value".to_string());
|
||||
```
|
||||
|
||||
You can do this from an event listener, a timeout, or anywhere; because `.dispatch()` isn’t an `async` function, it can be called from a synchronous context.
|
||||
|
||||
Actions provide access to a few signals that synchronize between the asynchronous action you’re calling and the synchronous reactive system:
|
||||
|
||||
```rust
|
||||
let submitted = add_todo.input(); // RwSignal<Option<String>>
|
||||
let pending = add_todo.pending(); // ReadSignal<bool>
|
||||
let todo_id = add_todo.value(); // RwSignal<Option<Uuid>>
|
||||
```
|
||||
|
||||
This makes it easy to track the current state of your request, show a loading indicator, or do “optimistic UI” based on the assumption that the submission will succeed.
|
||||
|
||||
```rust
|
||||
let input_ref = create_node_ref::<Input>(cx);
|
||||
|
||||
view! { cx,
|
||||
<form
|
||||
on:submit=move |ev| {
|
||||
ev.prevent_default(); // don't reload the page...
|
||||
let input = input_ref.get().expect("input to exist");
|
||||
add_todo.dispatch(input.value());
|
||||
}
|
||||
>
|
||||
<label>
|
||||
"What do you need to do?"
|
||||
<input type="text"
|
||||
node_ref=input_ref
|
||||
/>
|
||||
</label>
|
||||
<button type="submit">"Add Todo"</button>
|
||||
</form>
|
||||
// use our loading state
|
||||
<p>{move || pending().then("Loading...")}</p>
|
||||
}
|
||||
```
|
||||
|
||||
Now, there’s a chance this all seems a little over-complicated, or maybe too restricted. I wanted to include actions here, alongside resources, as the missing piece of the puzzle. In a real Leptos app, you’ll actually most often use actions alongside server functions, [`create_server_action`](https://docs.rs/leptos/latest/leptos/fn.create_server_action.html), and the [`<ActionForm/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.ActionForm.html) component to create really powerful progressively-enhanced forms. So if this primitive seems useless to you... Don’t worry! Maybe it will make sense later. (Or check out our [`todo_app_sqlite`](https://github.com/leptos-rs/leptos/blob/main/examples/todo_app_sqlite/src/todo.rs) example now.)
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px"></iframe>
|
||||
9
docs/book/src/async/README.md
Normal file
9
docs/book/src/async/README.md
Normal file
@@ -0,0 +1,9 @@
|
||||
# Working with `async`
|
||||
|
||||
So far we’ve only been working with synchronous users interfaces: You provide some input,
|
||||
the app immediately process it and updates the interface. This is great, but is a tiny
|
||||
subset of what web applications do. In particular, most web apps have to deal with some kind
|
||||
of asynchronous data loading, usually loading something from an API.
|
||||
|
||||
Asynchronous data is notoriously hard to integrate with the synchronous parts of your code.
|
||||
In this chapter, we’ll see how Leptos helps smooth out that process for you.
|
||||
76
docs/book/src/interlude_functions.md
Normal file
76
docs/book/src/interlude_functions.md
Normal file
@@ -0,0 +1,76 @@
|
||||
# Interlude: Reactivity and Functions
|
||||
|
||||
One of our core contributors said to me recently: “I never used closures this often
|
||||
until I started using Leptos.” And it’s true. Closures are at the heart of any Leptos
|
||||
application. It sometimes looks a little silly:
|
||||
|
||||
```rust
|
||||
// a signal holds a value, and can be updated
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
// a derived signal is a function that accesses other signals
|
||||
let double_count = move || count() * 2;
|
||||
let count_is_odd = move || count() & 1 == 1;
|
||||
let text = move || if count_is_odd() {
|
||||
"odd"
|
||||
} else {
|
||||
"even"
|
||||
};
|
||||
|
||||
// an effect automatically tracks the signals it depends on
|
||||
// and reruns when they change
|
||||
create_effect(cx, move |_| {
|
||||
log!("text = {}", text());
|
||||
});
|
||||
|
||||
view! { cx,
|
||||
<p>{move || text().to_uppercase()}</p>
|
||||
}
|
||||
```
|
||||
|
||||
Closures, closures everywhere!
|
||||
|
||||
But why?
|
||||
|
||||
## Functions and UI Frameworks
|
||||
|
||||
Functions are at the heart of every UI framework. And this makes perfect sense. Creating a user interface is basically divided into two phases:
|
||||
|
||||
1. initial rendering
|
||||
2. updates
|
||||
|
||||
In a web framework, the framework does some kind of initial rendering. Then it hands control back over to the browser. When certain events fire (like a mouse click) or asynchronous tasks finish (like an HTTP request finishing), the browser wakes the framework back up to update something. The framework runs some kind of code to update your user interface, and goes back asleep until the browser wakes it up again.
|
||||
|
||||
The key phrase here is “runs some kind of code.” The natural way to “run some kind of code” at an arbitrary point in time—in Rust or in any other programming language—is to call a function. And in fact every UI framework is based on rerunning some kind of function over and over:
|
||||
|
||||
1. virtual DOM (VDOM) frameworks like React, Yew, or Dioxus rerun a component or render function over and over, to generate a virtual DOM tree that can be reconciled with the previous result to patch the DOM
|
||||
2. compiled frameworks like Angular and Svelte divide your component templates into “create” and “update” functions, rerunning the update function when they detect a change to the component’s state
|
||||
3. in fine-grained reactive frameworks like SolidJS, Sycamore, or Leptos, _you_ define the functions that rerun
|
||||
|
||||
That’s what all our components are doing.
|
||||
|
||||
Take our typical `<SimpleCounter/>` example in its simplest form:
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn SimpleCounter(cx: Scope) -> impl IntoView {
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
let increment = move |_| set_value.update(|value| *value += 1);
|
||||
|
||||
view! { cx,
|
||||
<button on:click=increment>
|
||||
{value}
|
||||
</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The `SimpleCounter` function itself runs once. The `value` signal is created once. The framework hands off the `increment` function to the browser as an event listener. When you click the button, the browser calls `increment`, which updates `value` via `set_value`. And that updates the single text node represented in our view by `{value}`.
|
||||
|
||||
Closures are key to reactivity. They provide the framework with the ability to rerun the smallest possible unit of your application in responsive to a change.
|
||||
|
||||
So remember two things:
|
||||
|
||||
1. Your component function is a setup function, not a render function: it only runs once.
|
||||
2. For values in your view template to be reactive, they must be functions: either signals (which implement the `Fn` traits) or closures.
|
||||
180
docs/book/src/testing.md
Normal file
180
docs/book/src/testing.md
Normal file
@@ -0,0 +1,180 @@
|
||||
# Testing Your Components
|
||||
|
||||
Testing user interfaces can be relatively tricky, but really important. This article
|
||||
will discuss a couple principles and approaches for testing a Leptos app.
|
||||
|
||||
## 1. Test business logic with ordinary Rust tests
|
||||
|
||||
In many cases, it makes sense to pull the logic out of your components and test
|
||||
it separately. For some simple components, there’s no particular logic to test, but
|
||||
for many it’s worth using a testable wrapping type and implementing the logic in
|
||||
ordinary Rust `impl` blocks.
|
||||
|
||||
For example, instead of embedding logic in a component directly like this:
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn TodoApp(cx: Scope) -> impl IntoView {
|
||||
let (todos, set_todos) = create_signal(cx, vec![Todo { /* ... */ }]);
|
||||
// ⚠️ this is hard to test because it's embedded in the component
|
||||
let num_remaining = move || todos.with(|todos| {
|
||||
todos.iter().filter(|todo| !todo.completed).sum()
|
||||
});
|
||||
}
|
||||
```
|
||||
|
||||
You could pull that logic out into a separate data structure and test it:
|
||||
|
||||
```rust
|
||||
pub struct Todos(Vec<Todo>);
|
||||
|
||||
impl Todos {
|
||||
pub fn num_remaining(&self) -> usize {
|
||||
todos.iter().filter(|todo| !todo.completed).sum()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
#[test]
|
||||
fn test_remaining {
|
||||
// ...
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn TodoApp(cx: Scope) -> impl IntoView {
|
||||
let (todos, set_todos) = create_signal(cx, Todos(vec![Todo { /* ... */ }]));
|
||||
// ✅ this has a test associated with it
|
||||
let num_remaining = move || todos.with(Todos::num_remaining);
|
||||
}
|
||||
```
|
||||
|
||||
In general, the less of your logic is wrapped into your components themselves, the
|
||||
more idiomatic your code will feel and the easier it will be to test.
|
||||
|
||||
## 2. Test components with `wasm-bindgen-test`
|
||||
|
||||
[`wasm-bindgen-test`](https://crates.io/crates/wasm-bindgen-test) is a great utility
|
||||
for integrating or end-to-end testing WebAssembly apps in a headless browser.
|
||||
|
||||
To use this testing utility, you need to add `wasm-bindgen-test` to your `Cargo.toml`:
|
||||
|
||||
```toml
|
||||
[dev-dependencies]
|
||||
wasm-bindgen-test = "0.3.0"
|
||||
```
|
||||
|
||||
You should create tests in a separate `tests` directory. You can then run your tests in the browser of your choice:
|
||||
|
||||
```bash
|
||||
wasm-pack test --firefox
|
||||
```
|
||||
|
||||
> To see the full setup, check out the tests for the [`counter`](https://github.com/leptos-rs/leptos/tree/main/examples/counter) example.
|
||||
|
||||
### Writing Your Tests
|
||||
|
||||
Most tests will involve some combination of vanilla DOM manipulation and comparison to a `view`. For example, here’s a test [for the
|
||||
`counter` example](https://github.com/leptos-rs/leptos/blob/main/examples/counter/tests/mod.rs).
|
||||
|
||||
First, we set up the testing environment.
|
||||
|
||||
```rust
|
||||
use wasm_bindgen_test::*;
|
||||
use counter::*;
|
||||
use leptos::*;
|
||||
use web_sys::HtmlElement;
|
||||
|
||||
// tell the test runner to run tests in the browser
|
||||
wasm_bindgen_test_configure!(run_in_browser);
|
||||
```
|
||||
|
||||
I’m going to create a simpler wrapper for each test case, and mount it there.
|
||||
This makes it easy to encapsulate the test results.
|
||||
|
||||
```rust
|
||||
// like marking a regular test with #[test]
|
||||
#[wasm_bindgen_test]
|
||||
fn clear() {
|
||||
let document = leptos::document();
|
||||
let test_wrapper = document.create_element("section").unwrap();
|
||||
document.body().unwrap().append_child(&test_wrapper);
|
||||
|
||||
// start by rendering our counter and mounting it to the DOM
|
||||
// note that we start at the initial value of 10
|
||||
mount_to(
|
||||
test_wrapper.clone().unchecked_into(),
|
||||
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
|
||||
);
|
||||
```
|
||||
|
||||
We’ll use some manual DOM operations to grab the `<div>` that wraps
|
||||
the whole component, as well as the `clear` button.
|
||||
|
||||
```rust
|
||||
// now we extract the buttons by iterating over the DOM
|
||||
// this would be easier if they had IDs
|
||||
let div = test_wrapper.query_selector("div").unwrap().unwrap();
|
||||
let clear = test_wrapper
|
||||
.query_selector("button")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.unchecked_into::<web_sys::HtmlElement>();
|
||||
```
|
||||
|
||||
Now we can use ordinary DOM APIs to simulate user interaction.
|
||||
|
||||
```rust
|
||||
// now let's click the `clear` button
|
||||
clear.click();
|
||||
```
|
||||
|
||||
You can test individual DOM element attributes or text node values. Sometimes
|
||||
I like to test the whole view at once. We can do this by testing the element’s
|
||||
`outerHTML` against our expectations.
|
||||
|
||||
```rust
|
||||
assert_eq!(
|
||||
div.outer_html(),
|
||||
// here we spawn a mini reactive system to render the test case
|
||||
run_scope(create_runtime(), |cx| {
|
||||
// it's as if we're creating it with a value of 0, right?
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
// we can remove the event listeners because they're not rendered to HTML
|
||||
view! { cx,
|
||||
<div>
|
||||
<button>"Clear"</button>
|
||||
<button>"-1"</button>
|
||||
<span>"Value: " {value} "!"</span>
|
||||
<button>"+1"</button>
|
||||
</div>
|
||||
}
|
||||
// the view returned an HtmlElement<Div>, which is a smart pointer for
|
||||
// a DOM element. So we can still just call .outer_html()
|
||||
.outer_html()
|
||||
})
|
||||
);
|
||||
```
|
||||
|
||||
That test involved us manually replicating the `view` that’s inside the component.
|
||||
There's actually an easier way to do this... We can just test against a `<SimpleCounter/>`
|
||||
with the initial value `0`. This is where our wrapping element comes in: I’ll just test
|
||||
the wrapper’s `innerHTML` against another comparison case.
|
||||
|
||||
```rust
|
||||
assert_eq!(test_wrapper.inner_html(), {
|
||||
let comparison_wrapper = document.create_element("section").unwrap();
|
||||
leptos::mount_to(
|
||||
comparison_wrapper.clone().unchecked_into(),
|
||||
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
|
||||
);
|
||||
comparison_wrapper.inner_html()
|
||||
});
|
||||
}
|
||||
```
|
||||
|
||||
This is only a very limited introduction to testing. But I hope it’s useful as you begin to build applications.
|
||||
|
||||
> For more, see [the testing section of the `wasm-bindgen` guide](https://rustwasm.github.io/wasm-bindgen/wasm-bindgen-test/index.html#testing-on-wasm32-unknown-unknown-with-wasm-bindgen-test).
|
||||
143
docs/book/src/view/01_basic_component.md
Normal file
143
docs/book/src/view/01_basic_component.md
Normal file
@@ -0,0 +1,143 @@
|
||||
# A Basic Component
|
||||
|
||||
That “Hello, world!” was a *very* simple example. Let’s move on to something a
|
||||
little more like an ordinary app.
|
||||
|
||||
First, let’s edit the `main` function so that, instead of rendering the whole
|
||||
app, it just renders an `<App/>` component. Components are the basic unit of
|
||||
composition and design in most web frameworks, and Leptos is no exception.
|
||||
Conceptually, they are similar to HTML elements: they represent a section of the
|
||||
DOM, with self-contained, defined behavior. Unlike HTML elements, they are in
|
||||
`PascalCase`, so most Leptos applications will start with something like an
|
||||
`<App/>` component.
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
leptos::mount_to_body(|cx| view! { cx, <App/> })
|
||||
}
|
||||
```
|
||||
|
||||
Now let’s define our `<App/>` component itself. Because it’s relatively simple,
|
||||
I’ll give you the whole thing up front, then walk through it line by line.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
view! { cx,
|
||||
<button
|
||||
on:click=move |_| {
|
||||
set_count.update(|n| *n += 1);
|
||||
}
|
||||
>
|
||||
"Click me: "
|
||||
{move || count.get()}
|
||||
</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## The Component Signature
|
||||
```rust
|
||||
#[component]
|
||||
```
|
||||
|
||||
Like all component definitions, this begins with the [`#[component]`](https://docs.rs/leptos/latest/leptos/attr.component.html) macro. `#[component]` annotates a function so it can be
|
||||
used as a component in your Leptos application. We’ll see some of the other features of
|
||||
this macro in a couple chapters.
|
||||
|
||||
```rust
|
||||
fn App(cx: Scope) -> impl IntoView
|
||||
```
|
||||
|
||||
Every component is a function with the following characteristics
|
||||
1. It takes a reactive [`Scope`](https://docs.rs/leptos/latest/leptos/struct.Scope.html)
|
||||
as its first argument. This `Scope` is our entrypoint into the reactive system.
|
||||
By convention, it’s usually named `cx`.
|
||||
2. You can include other arguments, which will be available as component “props.”
|
||||
3. Component functions return `impl IntoView`, which is an opaque type that includes
|
||||
anything you could return from a Leptos `view`.
|
||||
|
||||
## The Component Body
|
||||
The body of the component function is a set-up function that runs once, not a
|
||||
render function that reruns multiple times. You’ll typically use it to create a
|
||||
few reactive variables, define any side effects that run in response to those values
|
||||
changing, and describe the user interface.
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
```
|
||||
[`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html)
|
||||
creates a signal, the basic unit of reactive change and state management in Leptos.
|
||||
This returns a `(getter, setter)` tuple. To access the current value, you’ll
|
||||
use `count.get()` (or, on `nightly` Rust, the shorthand `count()`). To set the
|
||||
current value, you’ll call `set_count.set(...)` (or `set_count(...)`).
|
||||
|
||||
> `.get()` clones the value and `.set()` overwrites it. In many cases, it’s more
|
||||
efficient to use `.with()` or `.update()`; check out the docs for [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) and [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) if you’d like to learn more about those trade-offs at this point.
|
||||
|
||||
## The View
|
||||
|
||||
Leptos defines user interfaces using a JSX-like format via the [`view`](https://docs.rs/leptos/latest/leptos/macro.view.html) macro.
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<button
|
||||
// define an event listener with on:
|
||||
on:click=move |_| {
|
||||
set_count.update(|n| *n += 1);
|
||||
}
|
||||
>
|
||||
// text nodes are wrapped in quotation marks
|
||||
"Click me: "
|
||||
// blocks can include Rust code
|
||||
{move || count.get()}
|
||||
</button>
|
||||
}
|
||||
```
|
||||
|
||||
This should mostly be easy to understand: it looks like HTML, with a special
|
||||
`on:click` to define a `click` event listener, a text node that’s formatted like
|
||||
a Rust string, and then...
|
||||
```rust
|
||||
{move || count.get()}
|
||||
```
|
||||
whatever that is.
|
||||
|
||||
People sometimes joke that they use more closures in their first Leptos application
|
||||
than they’ve ever used in their lives. And fair enough. Basically, passing a function
|
||||
into the view tells the framework: “Hey, this is something that might change.”
|
||||
|
||||
When we click the button and call `set_count`, the `count` signal is updated. This
|
||||
`move || count.get()` closure, whose value depends on the value of `count`, reruns,
|
||||
and the framework makes a targeted update to that one specific text node, touching
|
||||
nothing else in your application. This is what allows for extremely efficient updates
|
||||
to the DOM.
|
||||
|
||||
Now, if you have Clippy on—or if you have a particularly sharp eye—you might notice
|
||||
that this closure is redundant, at least if you’re in `nightly` Rust. If you’re using
|
||||
Leptos with `nightly` Rust, signals are already functions, so the closure is unnecessary.
|
||||
As a result, you can write a simpler view:
|
||||
```rust
|
||||
view! { cx,
|
||||
<button /* ... */>
|
||||
"Click me: "
|
||||
// identical to {move || count.get()}
|
||||
{count}
|
||||
</button>
|
||||
}
|
||||
```
|
||||
|
||||
Remember—and this is *very important*—only functions are reactive. This means that
|
||||
`{count}` and `{count()}` do very different things in your view. `{count}` passes
|
||||
in a function, telling the framework to update the view every time `count` changes.
|
||||
`{count()}` access the value of `count` once, and passes an `i32` into the view,
|
||||
rendering it once, unreactively. You can see the difference in the CodeSandbox below!
|
||||
|
||||
> Throughout this tutorial, we’ll use CodeSandbox to show interactive examples. To
|
||||
show the browser in the sandbox, you may need to click `Add DevTools >
|
||||
Other Previews > 8080.` Hover over any of the variables to show Rust-Analyzer details
|
||||
and docs for what’s going on. Feel free to fork the examples to play with them yourself!
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-3d74p3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A31%2C%22endLineNumber%22%3A19%2C%22startColumn%22%3A31%2C%22startLineNumber%22%3A19%7D%5D" width="100%" height="1000px"></iframe>
|
||||
104
docs/book/src/view/02_dynamic_attributes.md
Normal file
104
docs/book/src/view/02_dynamic_attributes.md
Normal file
@@ -0,0 +1,104 @@
|
||||
# `view`: Dynamic Attributes and Classes
|
||||
|
||||
So far we’ve seen how to use the `view` macro to create event listeners and to
|
||||
create dynamic text by passing a function (such as a signal) into the view.
|
||||
|
||||
But of course there are other things you might want to update in your user interface.
|
||||
In this section, we’ll look at how to update attributes and classes dynamically,
|
||||
and we’ll introduce the concept of a **derived signal**.
|
||||
|
||||
Let’s start with a simple component that should be familiar: click a button to
|
||||
increment a counter.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
|
||||
view! { cx,
|
||||
<button
|
||||
on:click=move |_| {
|
||||
set_count.update(|n| *n += 1);
|
||||
}
|
||||
```
|
||||
|
||||
So far, this is just the example from the last chapter.
|
||||
|
||||
## Dynamic Classes
|
||||
|
||||
Now let’s say I’d like to update the list of CSS classes on this element dynamically.
|
||||
For example, let’s say I want to add the class `red` when the count is odd. I can
|
||||
do this using the `class:` syntax.
|
||||
```rust
|
||||
class:red=move || count() & 1 == 1
|
||||
```
|
||||
`class:` attributes take
|
||||
1. the class name, following the colon (`red`)
|
||||
2. a value, which can be a `bool` or a function that returns a `bool`
|
||||
|
||||
When the value is `true`, the class is added. When the value is `false`, the class
|
||||
is removed. And if the value is a function that accesses a signal, the class will
|
||||
reactively update when the signal changes.
|
||||
|
||||
Now every time I click the button, the text should toggle between red and black as
|
||||
the number switches between even and odd.
|
||||
|
||||
## Dynamic Attributes
|
||||
|
||||
The same applies to plain attributes. Passing a plain string or primitive value to
|
||||
an attribute gives it a static value. Passing a function (including a signal) to
|
||||
an attribute causes it to update its value reactively. Let’s add another element
|
||||
to our view:
|
||||
```rust
|
||||
<progress
|
||||
max="50"
|
||||
// signals are functions, so this <=> `move || count.get()`
|
||||
value=count
|
||||
/>
|
||||
```
|
||||
|
||||
Now every time we set the count, not only will the `class` of the `<button>` be
|
||||
toggled, but the `value` of the `<progress>` bar will increase, which means that
|
||||
our progress bar will move forward.
|
||||
|
||||
## Derived Signals
|
||||
|
||||
Let’s go one layer deeper, just for fun.
|
||||
|
||||
You already know that we create reactive interfaces just by passing functions into
|
||||
the `view`. This means that we can easily change our progress bar. For example,
|
||||
suppose we want it to move twice as fast:
|
||||
```rust
|
||||
<progress
|
||||
max="50"
|
||||
value=move || count() * 2
|
||||
/>
|
||||
```
|
||||
|
||||
But imagine we want to reuse that calculation in more than one place. You can do this
|
||||
using a **derived signal**: a closure that accesses a signal.
|
||||
```rust
|
||||
let double_count = move || count() * 2;
|
||||
|
||||
/* insert the rest of the view */
|
||||
<progress
|
||||
max="50"
|
||||
// we use it once here
|
||||
value=double_count
|
||||
/>
|
||||
<p>
|
||||
"Double Count: "
|
||||
// and again here
|
||||
{double_count}
|
||||
</p>
|
||||
```
|
||||
|
||||
Derived signals let you create reactive computed values that can be used in multiple
|
||||
places in your application with minimal overhead.
|
||||
|
||||
> Note: Using a derived signal like this means that the calculation runs once per
|
||||
signal change per place we access `double_count`; in other words, twice. This is a
|
||||
very cheap calculation, so that’s fine. We’ll look at memos in a later chapter, which
|
||||
are designed to solve this problem for expensive calculations.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/2-dynamic-attribute-pqyvzl?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>
|
||||
317
docs/book/src/view/03_components.md
Normal file
317
docs/book/src/view/03_components.md
Normal file
@@ -0,0 +1,317 @@
|
||||
# Components and Props
|
||||
|
||||
So far, we’ve been building our whole application in a single component. This
|
||||
is fine for really tiny examples, but in any real application you’ll need to
|
||||
break the user interface out into multiple components, so you can break your
|
||||
interface down into smaller, reusable, composable chunks.
|
||||
|
||||
Let’s take our progress bar example. Imagine that you want two progress bars
|
||||
instead of one: one that advances one tick per click, one that advances two ticks
|
||||
per click.
|
||||
|
||||
You _could_ do this by just creating two `<progress>` elements:
|
||||
|
||||
```rust
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let double_count = move || count() * 2;
|
||||
|
||||
view! {
|
||||
<progress
|
||||
max="50"
|
||||
value=count
|
||||
/>
|
||||
<progress
|
||||
max="50"
|
||||
value=double_count
|
||||
/>
|
||||
```
|
||||
|
||||
But of course, this doesn’t scale very well. If you want to add a third progress
|
||||
bar, you need to add this code another time. And if you want to edit anything
|
||||
about it, you need to edit it in triplicate.
|
||||
|
||||
Instead, let’s create a `<ProgressBar/>` component.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope
|
||||
) -> impl IntoView {
|
||||
view! { cx,
|
||||
<progress
|
||||
max="50"
|
||||
// hmm... where will we get this from?
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
There’s just one problem: `progress` is not defined. Where should it come from?
|
||||
When we were defining everything manually, we just used the local variable names.
|
||||
Now we need some way to pass an argument into the component.
|
||||
|
||||
## Component Props
|
||||
|
||||
We do this using component properties, or “props.” If you’ve used another frontend
|
||||
framework, this is probably a familiar idea. Basically, properties are to components
|
||||
as attributes are to HTML elements: they let you pass additional information into
|
||||
the component.
|
||||
|
||||
In Leptos, you define props by giving additional arguments to the component function.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope,
|
||||
progress: ReadSignal<i32>
|
||||
) -> impl IntoView {
|
||||
view! { cx,
|
||||
<progress
|
||||
max="50"
|
||||
// now this works
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now we can use our component in the main `<App/>` component’s view.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
view! { cx,
|
||||
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
|
||||
"Click me"
|
||||
</button>
|
||||
// now we use our component!
|
||||
<ProgressBar progress=count/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Using a component in the view looks a lot like using an HTML element. You’ll
|
||||
notice that you can easily tell the difference between an element and a component
|
||||
because components always have `PascalCase` names. You pass the `progress` prop
|
||||
in as if it were an HTML element attribute. Simple.
|
||||
|
||||
> ### Important Note
|
||||
> For every `Component`, Leptos generates a corresponding `ComponentProps` type. This
|
||||
is what allows us to have named props, when Rust does not have named function parameters.
|
||||
If you’re defining a component in one module and importing it into another, make
|
||||
sure you include this `ComponentProps` type:
|
||||
>
|
||||
> `use progress_bar::{ProgressBar, ProgressBarProps};`
|
||||
|
||||
### Reactive and Static Props
|
||||
|
||||
You’ll notice that throughout this example, `progress` takes a reactive
|
||||
`ReadSignal<i32>`, and not a plain `i32`. This is **very important**.
|
||||
|
||||
Component props have no special meaning attached to them. A component is simply
|
||||
a function that runs once to set up the user interface. The only way to tell the
|
||||
interface to respond to changing is to pass it a signal type. So if you have a
|
||||
component property that will change over time, like our `progress`, it should
|
||||
be a signal.
|
||||
|
||||
### `optional` Props
|
||||
|
||||
Right now the `max` setting is hard-coded. Let’s take that as a prop too. But
|
||||
let’s add a catch: let’s make this prop optional by annotating the particular
|
||||
argument to the component function with `#[prop(optional)]`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope,
|
||||
// mark this prop optional
|
||||
// you can specify it or not when you use <ProgressBar/>
|
||||
#[prop(optional)]
|
||||
max: u16,
|
||||
progress: ReadSignal<i32>
|
||||
) -> impl IntoView {
|
||||
view! { cx,
|
||||
<progress
|
||||
max=max
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now, we can use `<ProgressBar max=50 value=count/>`, or we can omit `max`
|
||||
to use the default value (i.e., `<ProgressBar value=count/>`). The default value
|
||||
on an `optional` is its `Default::default()` value, which for a `u16` is going to
|
||||
be `0`. In the case of a progress bar, a max value of `0` is not very useful.
|
||||
|
||||
So let’s give it a particular default value instead.
|
||||
|
||||
### `default` props
|
||||
|
||||
You can specify a default value other than `Default::default()` pretty simply
|
||||
with `#[prop(default = ...)`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope,
|
||||
#[prop(default = 100)]
|
||||
max: u16,
|
||||
progress: ReadSignal<i32>
|
||||
) -> impl IntoView {
|
||||
view! { cx,
|
||||
<progress
|
||||
max=max
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Generic Props
|
||||
|
||||
This is great. But we began with two counters, one driven by `count`, and one by
|
||||
the derived signal `double_count`. Let’s recreate that by using `double_count`
|
||||
as the `progress` prop on another `<ProgressBar/>`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let double_count = move || count() * 2;
|
||||
|
||||
view! { cx,
|
||||
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
|
||||
"Click me"
|
||||
</button>
|
||||
<ProgressBar progress=count/>
|
||||
// add a second progress bar
|
||||
<ProgressBar progress=double_count/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Hm... this won’t compile. It should be pretty easy to understand why: we’ve declared
|
||||
that the `progress` prop takes `ReadSignal<i32>`, and `double_count` is not
|
||||
`ReadSignal<i32>`. As rust-analyzer will tell you, its type is `|| -> i32`, i.e.,
|
||||
it’s a closure that returns an `i32`.
|
||||
|
||||
There are a couple ways to handle this. One would be to say: “Well, I know that
|
||||
a `ReadSignal` is a function, and I know that a closure is a function; maybe I
|
||||
could just take any function?” If you’re savvy, you may know that both these
|
||||
implement the trait `Fn() -> i32`. So you could use a generic component:
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar<F>(
|
||||
cx: Scope,
|
||||
#[prop(default = 100)]
|
||||
max: u16,
|
||||
progress: F
|
||||
) -> impl IntoView
|
||||
where
|
||||
F: Fn() -> i32 + 'static,
|
||||
{
|
||||
view! { cx,
|
||||
<progress
|
||||
max=max
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This is a perfectly reasonable way to write this component: `progress` now takes
|
||||
any value that implements this `Fn()` trait.
|
||||
|
||||
> Note that generic component props _cannot_ be specified inline (as `<F: Fn() -> i32>`)
|
||||
or as `progress: impl Fn() -> i32 + 'static,`, in part because they’re actually used to generate
|
||||
a `struct ProgressBarProps`, and struct fields cannot be `impl` types.
|
||||
|
||||
### `into` Props
|
||||
|
||||
There’s one more way we could implement this, and it would be to use `#[prop(into)]`.
|
||||
This attribute automatically calls `.into()` on the values you pass as props,
|
||||
which allows you to easily pass props with different values.
|
||||
|
||||
In this case, it’s helpful to know about the
|
||||
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html) type. `Signal`
|
||||
is a enumerated type that represents any kind of readable reactive signal. It can
|
||||
be useful when defining APIs for components you’ll want to reuse while passing
|
||||
different sorts of signals. The [`MaybeSignal`](https://docs.rs/leptos/latest/leptos/enum.MaybeSignal.html) type is useful when you want to be able to take either a static or
|
||||
reactive value.
|
||||
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope,
|
||||
#[prop(default = 100)]
|
||||
max: u16,
|
||||
#[prop(into)]
|
||||
progress: Signal<i32>
|
||||
) -> impl IntoView
|
||||
{
|
||||
view! { cx,
|
||||
<progress
|
||||
max=max
|
||||
value=progress
|
||||
/>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
fn App(cx: Scope) -> impl IntoView {
|
||||
let (count, set_count) = create_signal(cx, 0);
|
||||
let double_count = move || count() * 2;
|
||||
|
||||
view! { cx,
|
||||
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
|
||||
"Click me"
|
||||
</button>
|
||||
// .into() converts `ReadSignal` to `Signal`
|
||||
<ProgressBar progress=count/>
|
||||
// use `Signal::derive()` to wrap a derived signal
|
||||
<ProgressBar progress=Signal::derive(cx, double_count)/>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Documenting Components
|
||||
|
||||
This is one of the least essential but most important sections of this book.
|
||||
It’s not strictly necessary to document your components and their props. It may
|
||||
be very important, depending on the size of your team and your app. But it’s very
|
||||
easy, and bears immediate fruit.
|
||||
|
||||
To document a component and its props, you can simply add doc comments on the
|
||||
component function, and each one of the props:
|
||||
|
||||
```rust
|
||||
/// Shows progress toward a goal.
|
||||
#[component]
|
||||
fn ProgressBar(
|
||||
cx: Scope,
|
||||
/// The maximum value of the progress bar.
|
||||
#[prop(default = 100)]
|
||||
max: u16,
|
||||
/// How much progress should be displayed.
|
||||
#[prop(into)]
|
||||
progress: Signal<i32>,
|
||||
) -> impl IntoView {
|
||||
/* ... */
|
||||
}
|
||||
```
|
||||
|
||||
That’s all you need to do. These behave like ordinary Rust doc comments, except
|
||||
that you can document individual component props, which can’t be done with Rust
|
||||
function arguments.
|
||||
|
||||
This will automatically generate documentation for your component, its `Props`
|
||||
type, and each of the fields used to add props. It can be a little hard to
|
||||
understand how powerful this is until you hover over the component name or props
|
||||
and see the power of the `#[component]` macro combined with rust-analyzer here.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/3-components-50t2e7?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A7%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A7%7D%5D" width="100%" height="1000px"></iframe>
|
||||
88
docs/book/src/view/04_iteration.md
Normal file
88
docs/book/src/view/04_iteration.md
Normal file
@@ -0,0 +1,88 @@
|
||||
# Iteration
|
||||
|
||||
Whether you’re listing todos, displaying a table, or showing product images,
|
||||
iterating over a list of items is a common task in web applications. Reconciling
|
||||
the differences between changing sets of items can also be one of the trickiest
|
||||
tasks for a framework to handle well.
|
||||
|
||||
Leptos supports to two different patterns for iterating over items:
|
||||
1. For static views: `Vec<_>`
|
||||
2. For dynamic lists: `<For/>`
|
||||
|
||||
## Static Views with `Vec<_>`
|
||||
|
||||
Sometimes you need to show an item repeatedly, but the list you’re drawing from
|
||||
does not often change. In this case, it’s important to know that you can insert
|
||||
any `Vec<IV> where IV: IntoView` into your view. In other words, if you can render
|
||||
`T`, you can render `Vec<T>`.
|
||||
|
||||
```rust
|
||||
let values = vec![0, 1, 2];
|
||||
view! { cx,
|
||||
// this will just render "012"
|
||||
<p>{values.clone()}</p>
|
||||
// or we can wrap them in <li>
|
||||
<ul>
|
||||
{values.into_iter()
|
||||
.map(|n| view! { cx, <li>{n}</li>})
|
||||
.collect::<Vec<_>>()}
|
||||
</ul>
|
||||
}
|
||||
```
|
||||
|
||||
The fact that the _list_ is static doesn’t mean the interface needs to be static.
|
||||
You can render dynamic items as part of a static list.
|
||||
|
||||
```rust
|
||||
// create a list of N signals
|
||||
let counters = (1..=length).map(|idx| create_signal(cx, idx));
|
||||
|
||||
// each item manages a reactive view
|
||||
// but the list itself will never change
|
||||
let counter_buttons = counters
|
||||
.map(|(count, set_count)| {
|
||||
view! { cx,
|
||||
<li>
|
||||
<button
|
||||
on:click=move |_| set_count.update(|n| *n += 1)
|
||||
>
|
||||
{count}
|
||||
</button>
|
||||
</li>
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
view! { cx,
|
||||
<ul>{counter_buttons}</ul>
|
||||
}
|
||||
```
|
||||
|
||||
You _can_ render a `Fn() -> Vec<_>` reactively as well. But note that every time
|
||||
it changes, this will rerender every item in the list. This is quite inefficient!
|
||||
Fortunately, there’s a better way.
|
||||
|
||||
## Dynamic Rendering with the `<For/>` Component
|
||||
|
||||
The [`<For/>`](https://docs.rs/leptos/latest/leptos/fn.For.html) component is a
|
||||
keyed dynamic list. It takes three props:
|
||||
- `each`: a function (such as a signal) that returns the items `T` to be iterated over
|
||||
- `key`: a key function that takes `&T` and returns a stable, unique key or ID
|
||||
- `view`: renders each `T` into a view
|
||||
|
||||
`key` is, well, the key. You can add, remove, and move items within the list. As
|
||||
long as each item’s key is stable over time, the framework does not need to rerender
|
||||
any of the items, unless they are new additions, and it can very efficiently add,
|
||||
remove, and move items as they change. This allows for extremely efficient updates
|
||||
to the list as it changes, with minimal additional work.
|
||||
|
||||
Creating a good `key` can be a little tricky. You generally do _not_ want to use
|
||||
an index for this purpose, as it is not stable—if you remove or move items, their
|
||||
indices change.
|
||||
|
||||
But it’s a great idea to do something like generating a unique ID for each row as
|
||||
it is generated, and using that as an ID for the key function.
|
||||
|
||||
Check out the `<DynamicList/>` component below for an example.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/4-iteration-sglt1o?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A6%2C%22endLineNumber%22%3A55%2C%22startColumn%22%3A5%2C%22startLineNumber%22%3A31%7D%5D" width="100%" height="1000px"></iframe>
|
||||
107
docs/book/src/view/05_forms.md
Normal file
107
docs/book/src/view/05_forms.md
Normal file
@@ -0,0 +1,107 @@
|
||||
# Forms and Inputs
|
||||
|
||||
Forms and form inputs are an important part of interactive apps. There are two
|
||||
basic patterns for interacting with inputs in Leptos, which you may recognize
|
||||
if you’re familiar with React, SolidJS, or a similar framework: using **controlled**
|
||||
or **uncontrolled** inputs.
|
||||
|
||||
## Controlled Inputs
|
||||
|
||||
In a "controlled input," the framework controls the state of the input
|
||||
element. On every `input` event, it updates a local signal that holds the current
|
||||
state, which in turn updates the `value` prop of the input.
|
||||
|
||||
There are two important things to remember:
|
||||
1. The `input` event fires on (almost) every change to the element, while the
|
||||
`change` event fires (more or less) when you unfocus the input. You probably
|
||||
want `on:input`, but we give you the freedom to choose.
|
||||
2. The `value` *attribute* only sets the initial value of the input, i.e., it
|
||||
only updates the input up to the point that you begin typing. The `value`
|
||||
*property* continues updating the input after that. You usually want to set
|
||||
`prop:value` for this reason.
|
||||
|
||||
```rust
|
||||
let (name, set_name) = create_signal(cx, "Controlled".to_string());
|
||||
|
||||
view! { cx,
|
||||
<input type="text"
|
||||
on:input=move |ev| {
|
||||
// event_target_value is a Leptos helper function
|
||||
// it functions the same way as event.target.value
|
||||
// in JavaScript, but smooths out some of the typecasting
|
||||
// necessary to make this work in Rust
|
||||
set_name(event_target_value(&ev));
|
||||
}
|
||||
|
||||
// the `prop:` syntax lets you update a DOM property,
|
||||
// rather than an attribute.
|
||||
prop:value=name
|
||||
/>
|
||||
<p>"Name is: " {name}</p>
|
||||
}
|
||||
```
|
||||
|
||||
## Uncontrolled Inputs
|
||||
|
||||
In an "uncontrolled input," the browser controls the state of the input element.
|
||||
Rather than continuously updating a signal to hold its value, we use a
|
||||
[`NodeRef`](https://docs.rs/leptos/latest/leptos/struct.NodeRef.html) to access
|
||||
the input once when we want to get its value.
|
||||
|
||||
In this example, we only notify the framework when the `<form>` fires a `submit`
|
||||
event.
|
||||
|
||||
```rust
|
||||
let (name, set_name) = create_signal(cx, "Uncontrolled".to_string());
|
||||
|
||||
let input_element: NodeRef<Input> = create_node_ref(cx);
|
||||
```
|
||||
`NodeRef` is a kind of reactive smart pointer: we can use it to access the
|
||||
underlying DOM node. Its value will be set when the element is rendered.
|
||||
|
||||
```rust
|
||||
let on_submit = move |ev: SubmitEvent| {
|
||||
// stop the page from reloading!
|
||||
ev.prevent_default();
|
||||
|
||||
// here, we'll extract the value from the input
|
||||
let value = input_element()
|
||||
// event handlers can only fire after the view
|
||||
// is mounted to the DOM, so the `NodeRef` will be `Some`
|
||||
.expect("<input> to exist")
|
||||
// `NodeRef` implements `Deref` for the DOM element type
|
||||
// this means we can call`HtmlInputElement::value()`
|
||||
// to get the current value of the input
|
||||
.value();
|
||||
set_name(value);
|
||||
};
|
||||
```
|
||||
Our `on_submit` handler will access the input’s value and use it to call `set_name`.
|
||||
To access the DOM node stored in the `NodeRef`, we can simply call it as a function
|
||||
(or using `.get()`). This will return `Option<web_sys::HtmlInputElement>`, but we
|
||||
know it will already have been filled when we rendered the view, so it’s safe to
|
||||
unwrap here.
|
||||
|
||||
We can then call `.value()` to get the value out of the input, because `NodeRef`
|
||||
gives us access to a correctly-typed HTML element.
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<form on:submit=on_submit>
|
||||
<input type="text"
|
||||
value=name
|
||||
node_ref=input_element
|
||||
/>
|
||||
<input type="submit" value="Submit"/>
|
||||
</form>
|
||||
<p>"Name is: " {name}</p>
|
||||
}
|
||||
```
|
||||
The view should be pretty self-explanatory by now. Note two things:
|
||||
1. Unlike in the controlled input example, we use `value` (not `prop:value`).
|
||||
This is because we’re just setting the initial value of the input, and letting
|
||||
the browser control its state. (We could use `prop:value` instead.)
|
||||
2. We use `node_ref` to fill the `NodeRef`. (Older examples sometimes use `_ref`.
|
||||
They are the same thing, but `node_ref` has better rust-analyzer support.)
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/5-form-inputs-ih9m62?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A12%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A12%7D%5D" width="100%" height="1000px"></iframe>
|
||||
285
docs/book/src/view/06_control_flow.md
Normal file
285
docs/book/src/view/06_control_flow.md
Normal file
@@ -0,0 +1,285 @@
|
||||
# Control Flow
|
||||
|
||||
In most applications, you sometimes need to make a decision: Should I render this
|
||||
part of the view, or not? Should I render `<ButtonA/>` or `<WidgetB/>`? This is
|
||||
**control flow**.
|
||||
|
||||
## A Few Tips
|
||||
|
||||
When thinking about how to do this with Leptos, it’s important to remember a few
|
||||
things:
|
||||
|
||||
1. Rust is an expression-oriented language: control-flow expressions like
|
||||
`if x() { y } else { z }` and `match x() { ... }` return their values. This
|
||||
makes them very useful for declarative user interfaces.
|
||||
2. For any `T` that implements `IntoView`—in other words, for any type that Leptos
|
||||
knows how to render—`Option<T>` and `Result<T, impl Error>` _also_ implement
|
||||
`IntoView`. And just as `Fn() -> T` renders a reactive `T`, `Fn() -> Option<T>`
|
||||
and `Fn() -> Result<T, impl Error>` are reactive.
|
||||
3. Rust has lots of handy helpers like [Option::map](https://doc.rust-lang.org/std/option/enum.Option.html#method.map),
|
||||
[Option::and_then](https://doc.rust-lang.org/std/option/enum.Option.html#method.and_then),
|
||||
[Option::ok_or](https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or),
|
||||
[Result::map](https://doc.rust-lang.org/std/result/enum.Result.html#method.map),
|
||||
[Result::ok](https://doc.rust-lang.org/std/result/enum.Result.html#method.ok), and
|
||||
[bool::then](https://doc.rust-lang.org/std/primitive.bool.html#method.then) that
|
||||
allow you to convert, in a declarative way, between a few different standard types,
|
||||
all of which can be rendered. Spending time in the `Option` and `Result` docs in particular
|
||||
is one of the best ways to level up your Rust game.
|
||||
4. And always remember: to be reactive, values must be functions. You’ll see me constantly
|
||||
wrap things in a `move ||` closure, below. This is to ensure that they actually rerun
|
||||
when the signal they depend on changes, keeping the UI reactive.
|
||||
|
||||
## So What?
|
||||
|
||||
To connect the dots a little: this means that you can actually implement most of
|
||||
your control flow with native Rust code, without any control-flow components or
|
||||
special knowledge.
|
||||
|
||||
For example, let’s start with a simple signal and derived signal:
|
||||
|
||||
```rust
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
let is_odd = move || value() & 1 == 1;
|
||||
```
|
||||
|
||||
> If you don’t recognize what’s going on with `is_odd`, don’t worry about it
|
||||
> too much. It’s just a simple way to test whether an integer is odd by doing a
|
||||
> bitwise `AND` with `1`.
|
||||
|
||||
We can use these signals and ordinary Rust to build most control flow.
|
||||
|
||||
### `if` statements
|
||||
|
||||
Let’s say I want to render some text if the number is odd, and some other text
|
||||
if it’s even. Well, how about this?
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<p>
|
||||
{move || if is_odd() {
|
||||
"Odd"
|
||||
} else {
|
||||
"Even"
|
||||
}}
|
||||
</p>
|
||||
}
|
||||
```
|
||||
|
||||
An `if` expression returns its value, and a `&str` implements `IntoView`, so a
|
||||
`Fn() -> &str` implements `IntoView`, so this... just works!
|
||||
|
||||
### `Option<T>`
|
||||
|
||||
Let’s say we want to render some text if it’s odd, and nothing if it’s even.
|
||||
|
||||
```rust
|
||||
let message = move || {
|
||||
if is_odd() {
|
||||
Some("Ding ding ding!")
|
||||
} else {
|
||||
None
|
||||
}
|
||||
};
|
||||
|
||||
view! { cx,
|
||||
<p>{message}</p>
|
||||
}
|
||||
```
|
||||
|
||||
This works fine. We can make it a little shorter if we’d like, using `bool::then()`.
|
||||
|
||||
```rust
|
||||
let message = move || is_odd().then(|| "Ding ding ding!");
|
||||
view! { cx,
|
||||
<p>{message}</p>
|
||||
}
|
||||
```
|
||||
|
||||
You could even inline this if you’d like, although personally I sometimes like the
|
||||
better `cargo fmt` and `rust-analyzer` support I get by pulling things out of the `view`.
|
||||
|
||||
### `match` statements
|
||||
|
||||
We’re still just writing ordinary Rust code, right? So you have all the power of Rust’s
|
||||
pattern matching at your disposal.
|
||||
|
||||
```rust
|
||||
let message = move || {
|
||||
match value() {
|
||||
0 => "Zero",
|
||||
1 => "One",
|
||||
n if is_odd() => "Odd",
|
||||
_ => "Even"
|
||||
}
|
||||
};
|
||||
view! { cx,
|
||||
<p>{message}</p>
|
||||
}
|
||||
```
|
||||
|
||||
And why not? YOLO, right?
|
||||
|
||||
## Preventing Over-Rendering
|
||||
|
||||
Not so YOLO.
|
||||
|
||||
Everything we’ve just done is basically fine. But there’s one thing you should remember
|
||||
and try to be careful with. Each one of the control-flow functions we’ve created so far
|
||||
is basically a derived signal: it will rerun every time the value changes. In the examples
|
||||
above, where the value switches from even to odd on every change, this is fine.
|
||||
|
||||
But consider the following example:
|
||||
|
||||
```rust
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
let message = move || if value() > 5 {
|
||||
"Big"
|
||||
} else {
|
||||
"Small"
|
||||
};
|
||||
|
||||
view! { cx,
|
||||
<p>{message}</p>
|
||||
}
|
||||
```
|
||||
|
||||
This _works_, for sure. But if you added a log, you might be surprised
|
||||
|
||||
```rust
|
||||
let message = move || if value() > 5 {
|
||||
log!("{}: rendering Big", value());
|
||||
"Big"
|
||||
} else {
|
||||
log!("{}: rendering Small", value());
|
||||
"Small"
|
||||
};
|
||||
```
|
||||
|
||||
As a user clicks a button, you’d see something like this:
|
||||
|
||||
```
|
||||
1: rendering Small
|
||||
2: rendering Small
|
||||
3: rendering Small
|
||||
4: rendering Small
|
||||
5: rendering Small
|
||||
6: rendering Big
|
||||
7: rendering Big
|
||||
8: rendering Big
|
||||
... ad infinitum
|
||||
```
|
||||
|
||||
Every time `value` changes, it reruns the `if` statement. This makes sense, with
|
||||
how reactivity works. But it has a downside. For a simple text node, rerunning
|
||||
the `if` statement and rerendering isn’t a big deal. But imagine it were
|
||||
like this:
|
||||
|
||||
```rust
|
||||
let message = move || if value() > 5 {
|
||||
<Big/>
|
||||
} else {
|
||||
<Small/>
|
||||
};
|
||||
```
|
||||
|
||||
This rerenders `<Small/>` five times, then `<Big/>` infinitely. If they’re
|
||||
loading resources, creating signals, or even just creating DOM nodes, this is
|
||||
unnecessary work.
|
||||
|
||||
### `<Show/>`
|
||||
|
||||
The [`<Show/>`](https://docs.rs/leptos/latest/leptos/fn.Show.html) component is
|
||||
the answer. You pass it a `when` condition function, a `fallback` to be shown if
|
||||
the `when` function returns `false`, and children to be rendered if `when` is `true`.
|
||||
|
||||
```rust
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
view! { cx,
|
||||
<Show
|
||||
when=move || value() > 5
|
||||
fallback=|cx| view! { cx, <Small/> }
|
||||
>
|
||||
<Big/>
|
||||
</Show>
|
||||
}
|
||||
```
|
||||
|
||||
`<Show/>` memoizes the `when` condition, so it only renders its `<Small/>` once,
|
||||
continuing to show the same component until `value` is greater than five;
|
||||
then it renders `<Big/>` once, continuing to show it indefinitely.
|
||||
|
||||
This is a helpful tool to avoid rerendering when using dynamic `if` expressions.
|
||||
As always, there's some overhead: for a very simple node (like updating a single
|
||||
text node, or updating a class or attribute), a `move || if ...` will be more
|
||||
efficient. But if it’s at all expensive to render either branch, reach for
|
||||
`<Show/>`.
|
||||
|
||||
## Note: Type Conversions
|
||||
|
||||
There‘s one final thing it’s important to say in this section.
|
||||
|
||||
The `view` macro doesn’t return the most-generic wrapping type
|
||||
[`View`](https://docs.rs/leptos/latest/leptos/enum.View.html).
|
||||
Instead, it returns things with types like `Fragment` or `HtmlElement<Input>`. This
|
||||
can be a little annoying if you’re returning different HTML elements from
|
||||
different branches of a conditional:
|
||||
|
||||
```rust,compile_error
|
||||
view! { cx,
|
||||
<main>
|
||||
{move || match is_odd() {
|
||||
true if value() == 1 => {
|
||||
// returns HtmlElement<Pre>
|
||||
view! { cx, <pre>"One"</pre> }
|
||||
},
|
||||
false if value() == 2 => {
|
||||
// returns HtmlElement<P>
|
||||
view! { cx, <p>"Two"</p> }
|
||||
}
|
||||
// returns HtmlElement<Textarea>
|
||||
_ => view! { cx, <textarea>{value()}</textarea> }
|
||||
}}
|
||||
</main>
|
||||
}
|
||||
```
|
||||
|
||||
This strong typing is actually very powerful, because
|
||||
[`HtmlElement`](https://docs.rs/leptos/0.1.3/leptos/struct.HtmlElement.html) is,
|
||||
among other things, a smart pointer: each `HtmlElement<T>` type implements
|
||||
`Deref` for the appropriate underlying `web_sys` type. In other words, in the browser
|
||||
your `view` returns real DOM elements, and you can access native DOM methods on
|
||||
them.
|
||||
|
||||
But it can be a little annoying in conditional logic like this, because you can’t
|
||||
return different types from different branches of a condition in Rust. There are two ways
|
||||
to get yourself out of this situation:
|
||||
|
||||
1. If you have multiple `HtmlElement` types, convert them to `HtmlElement<AnyElement>`
|
||||
with [`.into_any()`](https://docs.rs/leptos/latest/leptos/struct.HtmlElement.html#method.into_any)
|
||||
2. If you have a variety of view types that are not all `HtmlElement`, convert them to
|
||||
`View`s with [`.into_view(cx)`](https://docs.rs/leptos/latest/leptos/trait.IntoView.html#tymethod.into_view).
|
||||
|
||||
Here’s the same example, with the conversion added:
|
||||
|
||||
```rust,compile_error
|
||||
view! { cx,
|
||||
<main>
|
||||
{move || match is_odd() {
|
||||
true if value() == 1 => {
|
||||
// returns HtmlElement<Pre>
|
||||
view! { cx, <pre>"One"</pre> }.into_any()
|
||||
},
|
||||
false if value() == 2 => {
|
||||
// returns HtmlElement<P>
|
||||
view! { cx, <p>"Two"</p> }.into_any()
|
||||
}
|
||||
// returns HtmlElement<Textarea>
|
||||
_ => view! { cx, <textarea>{value()}</textarea> }.into_any()
|
||||
}}
|
||||
</main>
|
||||
}
|
||||
```
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/6-control-flow-in-view-zttwfx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>
|
||||
113
docs/book/src/view/07_errors.md
Normal file
113
docs/book/src/view/07_errors.md
Normal file
@@ -0,0 +1,113 @@
|
||||
# Error Handling
|
||||
|
||||
[In the last chapter](./06_control_flow.md), we saw that you can render `Option<T>`:
|
||||
in the `None` case, it will render nothing, and in the `T` case, it will render `T`
|
||||
(that is, if `T` implements `IntoView`). You can actually do something very similar
|
||||
with a `Result<T, E>`. In the `Err(_)` case, it will render nothing. In the `Ok(T)`
|
||||
case, it will render the `T`.
|
||||
|
||||
Let’s start with a simple component to capture a number input.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn NumericInput(cx: Scope) -> impl IntoView {
|
||||
let (value, set_value) = create_signal(cx, Ok(0));
|
||||
|
||||
// when input changes, try to parse a number from the input
|
||||
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
|
||||
|
||||
view! { cx,
|
||||
<label>
|
||||
"Type a number (or not!)"
|
||||
<input type="number" on:input=on_input/>
|
||||
<p>
|
||||
"You entered "
|
||||
<strong>{value}</strong>
|
||||
</p>
|
||||
</label>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Every time you change the input, `on_input` will attempt to parse its value into a 32-bit
|
||||
integer (`i32`), and store it in our `value` signal, which is a `Result<i32, _>`. If you
|
||||
type the number `42`, the UI will display
|
||||
|
||||
```
|
||||
You entered 42
|
||||
```
|
||||
|
||||
But if you type the string`foo`, it will display
|
||||
|
||||
```
|
||||
You entered
|
||||
```
|
||||
|
||||
This is not great. It saves us using `.unwrap_or_default()` or something, but it would be
|
||||
much nicer if we could catch the error and do something with it.
|
||||
|
||||
You can do that, with the [`<ErrorBoundary/>`](https://docs.rs/leptos/latest/leptos/fn.ErrorBoundary.html)
|
||||
component.
|
||||
|
||||
## `<ErrorBoundary/>`
|
||||
|
||||
An `<ErrorBoundary/>` is a little like the `<Show/>` component we saw in the last chapter.
|
||||
If everything’s okay—which is to say, if everything is `Ok(_)`—it renders its children.
|
||||
But if there’s an `Err(_)` rendered among those children, it will trigger the
|
||||
`<ErrorBoundary/>`’s `fallback`.
|
||||
|
||||
Let’s add an `<ErrorBoundary/>` to this example.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
fn NumericInput(cx: Scope) -> impl IntoView {
|
||||
let (value, set_value) = create_signal(cx, Ok(0));
|
||||
|
||||
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
|
||||
|
||||
view! { cx,
|
||||
<h1>"Error Handling"</h1>
|
||||
<label>
|
||||
"Type a number (or something that's not a number!)"
|
||||
<input type="number" on:input=on_input/>
|
||||
<ErrorBoundary
|
||||
// the fallback receives a signal containing current errors
|
||||
fallback=|cx, errors| view! { cx,
|
||||
<div class="error">
|
||||
<p>"Not a number! Errors: "</p>
|
||||
// we can render a list of errors as strings, if we'd like
|
||||
<ul>
|
||||
{move || errors.get()
|
||||
.into_iter()
|
||||
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
</ul>
|
||||
</div>
|
||||
}
|
||||
>
|
||||
<p>"You entered " <strong>{value}</strong></p>
|
||||
</ErrorBoundary>
|
||||
</label>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now, if you type `42`, `value` is `Ok(42)` and you’ll see
|
||||
|
||||
```
|
||||
You entered 42
|
||||
```
|
||||
|
||||
If you type `foo`, value is `Err(_)` and the `fallback` will render. We’ve chosen to render
|
||||
the list of errors as a `String`, so you’ll see something like
|
||||
|
||||
```
|
||||
Not a number! Errors:
|
||||
- cannot parse integer from empty string
|
||||
```
|
||||
|
||||
If you fix the error, the error message will disappear and the content you’re wrapping in
|
||||
an `<ErrorBoundary/>` will appear again.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/7-error-handling-and-error-boundaries-sroncx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>
|
||||
288
docs/book/src/view/08_parent_child.md
Normal file
288
docs/book/src/view/08_parent_child.md
Normal file
@@ -0,0 +1,288 @@
|
||||
# Parent-Child Communication
|
||||
|
||||
You can think of your application as a nested tree of components. Each component
|
||||
handles its own local state and manages a section of the user interface, so
|
||||
components tend to be relatively self-contained.
|
||||
|
||||
Sometimes, though, you’ll want to communicate between a parent component and its
|
||||
child. For example, imagine you’ve defined a `<FancyButton/>` component that adds
|
||||
some styling, logging, or something else to a `<button/>`. You want to use a
|
||||
`<FancyButton/>` in your `<App/>` component. But how can you communicate between
|
||||
the two?
|
||||
|
||||
It’s easy to communicate state from a parent component to a child component. We
|
||||
covered some of this in the material on [components and props](./03_components.md).
|
||||
Basically if you want the parent to communicate to the child, you can pass a
|
||||
[`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html), a
|
||||
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html), or even a
|
||||
[`MaybeSignal`](https://docs.rs/leptos/latest/leptos/struct.MaybeSignal.html) as a prop.
|
||||
|
||||
But what about the other direction? How can a child send notifications about events
|
||||
or state changes back up to the parent?
|
||||
|
||||
There are four basic patterns of parent-child communication in Leptos.
|
||||
|
||||
## 1. Pass a [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html)
|
||||
|
||||
One approach is simply to pass a `WriteSignal` from the parent down to the child, and update
|
||||
it in the child. This lets you manipulate the state of the parent from the child.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
<ButtonA setter=set_toggled/>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn ButtonA(cx: Scope, setter: WriteSignal<bool>) -> impl IntoView {
|
||||
view! { cx,
|
||||
<button
|
||||
on:click=move |_| setter.update(|value| *value = !*value)
|
||||
>
|
||||
"Toggle"
|
||||
</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This pattern is simple, but you should be careful with it: passing around a `WriteSignal`
|
||||
can make it hard to reason about your code. In this example, it’s pretty clear when you
|
||||
read `<App/>` that you are handing off the ability to mutate `toggled`, but it’s not at
|
||||
all clear when or how it will change. In this small, local example it’s easy to understand,
|
||||
but if you find yourself passing around `WriteSignal`s like this throughout your code,
|
||||
you should really consider whether this is making it too easy to write spaghetti code.
|
||||
|
||||
## 2. Use a Callback
|
||||
|
||||
Another approach would be to pass a callback to the child: say, `on_click`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
<ButtonB on_click=move |_| set_toggled.update(|value| *value = !*value)/>
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[component]
|
||||
pub fn ButtonB<F>(
|
||||
cx: Scope,
|
||||
on_click: F,
|
||||
) -> impl IntoView
|
||||
where
|
||||
F: Fn(MouseEvent) + 'static,
|
||||
{
|
||||
view! { cx,
|
||||
<button on:click=on_click>
|
||||
"Toggle"
|
||||
</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
You’ll notice that whereas `<ButtonA/>` was given a `WriteSignal` and decided how to mutate it,
|
||||
`<ButtonB/>` simply fires an event: the mutation happens back in `<App/>`. This has the advantage
|
||||
of keeping local state local, preventing the problem of spaghetti mutation. But it also means
|
||||
the logic to mutate that signal needs to exist up in `<App/>`, not down in `<ButtonB/>`. These
|
||||
are real trade-offs, not a simple right-or-wrong choice.
|
||||
|
||||
> Note the way we declare the generic type `F` here for the callback. If you’re
|
||||
> confused, look back at the [generic props](./03_components.html#generic-props) section
|
||||
> of the chapter on components.
|
||||
|
||||
## 3. Use an Event Listener
|
||||
|
||||
You can actually write Option 2 in a slightly different way. If the callback maps directly onto
|
||||
a native DOM event, you can add an `on:` listener directly to the place you use the component
|
||||
in your `view` macro in `<App/>`.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
// note the on:click instead of on_click
|
||||
// this is the same syntax as an HTML element event listener
|
||||
<ButtonC on:click=move |_| set_toggled.update(|value| *value = !*value)/>
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[component]
|
||||
pub fn ButtonC<F>(cx: Scope) -> impl IntoView {
|
||||
view! { cx,
|
||||
<button>"Toggle"</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This lets you write way less code in `<ButtonC/>` than you did for `<ButtonB/>`,
|
||||
and still gives a correctly-typed event to the listener. This works by adding an
|
||||
`on:` event listener to each element that `<ButtonC/>` returns: in this case, just
|
||||
the one `<button>`.
|
||||
|
||||
Of course, this only works for actual DOM events that you’re passing directly through
|
||||
to the elements you’re rendering in the component. For more complex logic that
|
||||
doesn’t map directly onto an element (say you create `<ValidatedForm/>` and want an
|
||||
`on_valid_form_submit` callback) you should use Option 2.
|
||||
|
||||
## 4. Providing a Context
|
||||
|
||||
This version is actually a variant on Option 1. Say you have a deeply-nested component
|
||||
tree:
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
<Layout/>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Layout(cx: Scope) -> impl IntoView {
|
||||
view! { cx,
|
||||
<header>
|
||||
<h1>"My Page"</h1>
|
||||
</header>
|
||||
<main>
|
||||
<Content/>
|
||||
</main>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Content(cx: Scope) -> impl IntoView {
|
||||
view! { cx,
|
||||
<div class="content">
|
||||
<ButtonD/>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn ButtonD<F>(cx: Scope) -> impl IntoView {
|
||||
todo!()
|
||||
}
|
||||
```
|
||||
|
||||
Now `<ButtonD/>` is no longer a direct child of `<App/>`, so you can’t simply
|
||||
pass your `WriteSignal` to its props. You could do what’s sometimes called
|
||||
“prop drilling,” adding a prop to each layer between the two:
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
<Layout set_toggled/>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Layout(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
|
||||
view! { cx,
|
||||
<header>
|
||||
<h1>"My Page"</h1>
|
||||
</header>
|
||||
<main>
|
||||
<Content set_toggled/>
|
||||
</main>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn Content(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
|
||||
view! { cx,
|
||||
<div class="content">
|
||||
<ButtonD set_toggled/>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
|
||||
#[component]
|
||||
pub fn ButtonD<F>(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
|
||||
todo!()
|
||||
}
|
||||
```
|
||||
|
||||
This is a mess. `<Layout/>` and `<Content/>` don’t need `set_toggled`; they just
|
||||
pass it through to `<ButtonD/>`. But I need to declare the prop in triplicate.
|
||||
This is not only annoying but hard to maintain: imagine we add a “half-toggled”
|
||||
option and the type of `set_toggled` needs to change to an `enum`. We have to change
|
||||
it in three places!
|
||||
|
||||
Isn’t there some way to skip levels?
|
||||
|
||||
There is!
|
||||
|
||||
### The Context API
|
||||
|
||||
You can provide data that skips levels by using [`provide_context`](https://docs.rs/leptos/latest/leptos/fn.provide_context.html)
|
||||
and [`use_context`](https://docs.rs/leptos/latest/leptos/fn.use_context.html). Contexts are identified
|
||||
by the type of the data you provide (in this example, `WriteSignal<bool>`), and they exist in a top-down
|
||||
tree that follows the contours of your UI tree. In this example, we can use context to skip the
|
||||
unnecessary prop drilling.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (toggled, set_toggled) = create_signal(cx, false);
|
||||
|
||||
// share `set_toggled` with all children of this component
|
||||
provide_context(cx, set_toggled);
|
||||
|
||||
view! { cx,
|
||||
<p>"Toggled? " {toggled}</p>
|
||||
<Layout/>
|
||||
}
|
||||
}
|
||||
|
||||
// <Layout/> and <Content/> omitted
|
||||
|
||||
#[component]
|
||||
pub fn ButtonD(cx: Scope) -> impl IntoView {
|
||||
// use_context searches up the context tree, hoping to
|
||||
// find a `WriteSignal<bool>`
|
||||
// in this case, I .expect() because I know I provided it
|
||||
let setter = use_context::<WriteSignal<bool>>(cx)
|
||||
.expect("to have found the setter provided");
|
||||
|
||||
view! { cx,
|
||||
<button
|
||||
on:click=move |_| setter.update(|value| *value = !*value)
|
||||
>
|
||||
"Toggle"
|
||||
</button>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The same caveats apply to this as to `<ButtonA/>`: passing a `WriteSignal`
|
||||
around should be done with caution, as it allows you to mutate state from
|
||||
arbitrary parts of your code. But when done carefully, this can be one of
|
||||
the most effective techniques for global state management in Leptos: simply
|
||||
provide the state at the highest level you’ll need it, and use it wherever
|
||||
you need it lower down.
|
||||
|
||||
Note that there are no performance downsides to this approach. Because you
|
||||
are passing a fine-grained reactive signal, _nothing happens_ in the intervening
|
||||
components (`<Layout/>` and `<Content/>`) when you update it. You are communicating
|
||||
directly between `<ButtonD/>` and `<App/>`. In fact—and this is the power of
|
||||
fine-grained reactivity—you are communicating directly between a button click
|
||||
in `<ButtonD/>` and a single text node in `<App/>`. It’s as if the components
|
||||
themselves don’t exist at all. And, well... at runtime, they don’t. It’s just
|
||||
signals and effects, all the way down.
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/8-parent-child-communication-84we8m?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>
|
||||
126
docs/book/src/view/09_component_children.md
Normal file
126
docs/book/src/view/09_component_children.md
Normal file
@@ -0,0 +1,126 @@
|
||||
# Component Children
|
||||
|
||||
It’s pretty common to want to pass children into a component, just as you can pass
|
||||
children into an HTML element. For example, imagine I have a `<FancyForm/>` component
|
||||
that enhances an HTML `<form>`. I need some way to pass all its inputs.
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<Form>
|
||||
<fieldset>
|
||||
<label>
|
||||
"Some Input"
|
||||
<input type="text" name="something"/>
|
||||
</label>
|
||||
</fieldset>
|
||||
<button>"Submit"</button>
|
||||
</Form>
|
||||
}
|
||||
```
|
||||
|
||||
How can you do this in Leptos? There are basically two ways to pass components to
|
||||
other components:
|
||||
|
||||
1. **render props**: properties that are functions that return a view
|
||||
2. the **`children`** prop: a special component property that includes anything
|
||||
you pass as a child to the component.
|
||||
|
||||
In fact, you’ve already seen these both in action in the [`<Show/>`](/view/06_control_flow.html#show) component:
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<Show
|
||||
// `when` is a normal prop
|
||||
when=move || value() > 5
|
||||
// `fallback` is a "render prop": a function that returns a view
|
||||
fallback=|cx| view! { cx, <Small/> }
|
||||
>
|
||||
// `<Big/>` (and anything else here)
|
||||
// will be given to the `children` prop
|
||||
<Big/>
|
||||
</Show>
|
||||
}
|
||||
```
|
||||
|
||||
Let’s define a component that takes some children and a render prop.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn TakesChildren<F, IV>(
|
||||
cx: Scope,
|
||||
/// Takes a function (type F) that returns anything that can be
|
||||
/// converted into a View (type IV)
|
||||
render_prop: F,
|
||||
/// `children` takes the `Children` type
|
||||
children: Children,
|
||||
) -> impl IntoView
|
||||
where
|
||||
F: Fn() -> IV,
|
||||
IV: IntoView,
|
||||
{
|
||||
view! { cx,
|
||||
<h2>"Render Prop"</h2>
|
||||
{render_prop()}
|
||||
|
||||
<h2>"Children"</h2>
|
||||
{children(cx)}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
`render_prop` and `children` are both functions, so we can call them to generate
|
||||
the appropriate views. `children`, in particular, is an alias for
|
||||
`Box<dyn FnOnce(Scope) -> Fragment>`. (Aren't you glad we named it `Children` instead?)
|
||||
|
||||
> If you need a `Fn` or `FnMut` here because you need to call `children` more than once,
|
||||
> we also provide `ChildrenFn` and `ChildrenMut` aliases.
|
||||
|
||||
We can use the component like this:
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<TakesChildren render_prop=|| view! { cx, <p>"Hi, there!"</p> }>
|
||||
// these get passed to `children`
|
||||
"Some text"
|
||||
<span>"A span"</span>
|
||||
</TakesChildren>
|
||||
}
|
||||
```
|
||||
|
||||
## Manipulating Children
|
||||
|
||||
The [`Fragment`](https://docs.rs/leptos/latest/leptos/struct.Fragment.html) type is
|
||||
basically a way of wrapping a `Vec<View>`. You can insert it anywhere into your view.
|
||||
|
||||
But you can also access those inner views directly to manipulate them. For example, here’s
|
||||
a component that takes its children and turns them into an unordered list.
|
||||
|
||||
```rust
|
||||
#[component]
|
||||
pub fn WrapsChildren(cx: Scope, children: Children) -> impl IntoView {
|
||||
// Fragment has `nodes` field that contains a Vec<View>
|
||||
let children = children(cx)
|
||||
.nodes
|
||||
.into_iter()
|
||||
.map(|child| view! { cx, <li>{child}</li> })
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
view! { cx,
|
||||
<ul>{children}</ul>
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Calling it like this will create a list:
|
||||
|
||||
```rust
|
||||
view! { cx,
|
||||
<WrappedChildren>
|
||||
"A"
|
||||
"B"
|
||||
"C"
|
||||
</WrappedChildren>
|
||||
}
|
||||
```
|
||||
|
||||
<iframe src="https://codesandbox.io/p/sandbox/9-component-children-2wrdfd?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A12%2C%22endLineNumber%22%3A19%2C%22startColumn%22%3A12%2C%22startLineNumber%22%3A19%7D%5D" width="100%" height="1000px"></iframe>
|
||||
5
docs/book/src/view/README.md
Normal file
5
docs/book/src/view/README.md
Normal file
@@ -0,0 +1,5 @@
|
||||
# Building User Interfaces
|
||||
|
||||
This first section will introduce you to the basic tools you need to build a reactive
|
||||
user interface using Leptos. By the end of this section, you should be able to
|
||||
build a simple, synchronous application that is rendered in the browser.
|
||||
@@ -10,5 +10,7 @@ log = "0.4"
|
||||
console_error_panic_hook = "0.1.7"
|
||||
|
||||
[dev-dependencies]
|
||||
wasm-bindgen = "0.2"
|
||||
wasm-bindgen-test = "0.3.0"
|
||||
web-sys ="0.3"
|
||||
|
||||
|
||||
@@ -1,35 +1,105 @@
|
||||
use counter::*;
|
||||
use leptos::*;
|
||||
use wasm_bindgen::JsCast;
|
||||
use wasm_bindgen_test::*;
|
||||
|
||||
wasm_bindgen_test_configure!(run_in_browser);
|
||||
use leptos::*;
|
||||
use web_sys::HtmlElement;
|
||||
use counter::*;
|
||||
|
||||
#[wasm_bindgen_test]
|
||||
fn clear() {
|
||||
let document = leptos::document();
|
||||
let test_wrapper = document.create_element("section").unwrap();
|
||||
document.body().unwrap().append_child(&test_wrapper);
|
||||
|
||||
// start by rendering our counter and mounting it to the DOM
|
||||
// note that we start at the initial value of 10
|
||||
mount_to(
|
||||
test_wrapper.clone().unchecked_into(),
|
||||
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
|
||||
);
|
||||
|
||||
// now we extract the buttons by iterating over the DOM
|
||||
// this would be easier if they had IDs
|
||||
let div = test_wrapper.query_selector("div").unwrap().unwrap();
|
||||
let clear = test_wrapper
|
||||
.query_selector("button")
|
||||
.unwrap()
|
||||
.unwrap()
|
||||
.unchecked_into::<web_sys::HtmlElement>();
|
||||
|
||||
// now let's click the `clear` button
|
||||
clear.click();
|
||||
|
||||
// now let's test the <div> against the expected value
|
||||
// we can do this by testing its `outerHTML`
|
||||
assert_eq!(
|
||||
div.outer_html(),
|
||||
// here we spawn a mini reactive system, just to render the
|
||||
// test case
|
||||
run_scope(create_runtime(), |cx| {
|
||||
// it's as if we're creating it with a value of 0, right?
|
||||
let (value, set_value) = create_signal(cx, 0);
|
||||
|
||||
// we can remove the event listeners because they're not rendered to HTML
|
||||
view! { cx,
|
||||
<div>
|
||||
<button>"Clear"</button>
|
||||
<button>"-1"</button>
|
||||
<span>"Value: " {value} "!"</span>
|
||||
<button>"+1"</button>
|
||||
</div>
|
||||
}
|
||||
// the view returned an HtmlElement<Div>, which is a smart pointer for
|
||||
// a DOM element. So we can still just call .outer_html()
|
||||
.outer_html()
|
||||
})
|
||||
);
|
||||
|
||||
// There's actually an easier way to do this...
|
||||
// We can just test against a <SimpleCounter/> with the initial value 0
|
||||
assert_eq!(test_wrapper.inner_html(), {
|
||||
let comparison_wrapper = document.create_element("section").unwrap();
|
||||
leptos::mount_to(
|
||||
comparison_wrapper.clone().unchecked_into(),
|
||||
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
|
||||
);
|
||||
comparison_wrapper.inner_html()
|
||||
});
|
||||
}
|
||||
|
||||
#[wasm_bindgen_test]
|
||||
fn inc() {
|
||||
mount_to_body(|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> });
|
||||
|
||||
let document = leptos::document();
|
||||
let div = document.query_selector("div").unwrap().unwrap();
|
||||
let test_wrapper = document.create_element("section").unwrap();
|
||||
document.body().unwrap().append_child(&test_wrapper);
|
||||
|
||||
mount_to(
|
||||
test_wrapper.clone().unchecked_into(),
|
||||
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> },
|
||||
);
|
||||
|
||||
// You can do testing with vanilla DOM operations
|
||||
let document = leptos::document();
|
||||
let div = test_wrapper.query_selector("div").unwrap().unwrap();
|
||||
let clear = div
|
||||
.first_child()
|
||||
.unwrap()
|
||||
.dyn_into::<HtmlElement>()
|
||||
.dyn_into::<web_sys::HtmlElement>()
|
||||
.unwrap();
|
||||
let dec = clear
|
||||
.next_sibling()
|
||||
.unwrap()
|
||||
.dyn_into::<HtmlElement>()
|
||||
.dyn_into::<web_sys::HtmlElement>()
|
||||
.unwrap();
|
||||
let text = dec
|
||||
.next_sibling()
|
||||
.unwrap()
|
||||
.dyn_into::<HtmlElement>()
|
||||
.dyn_into::<web_sys::HtmlElement>()
|
||||
.unwrap();
|
||||
let inc = text
|
||||
.next_sibling()
|
||||
.unwrap()
|
||||
.dyn_into::<HtmlElement>()
|
||||
.dyn_into::<web_sys::HtmlElement>()
|
||||
.unwrap();
|
||||
|
||||
inc.click();
|
||||
@@ -47,4 +117,40 @@ fn inc() {
|
||||
clear.click();
|
||||
|
||||
assert_eq!(text.text_content(), Some("Value: 0!".to_string()));
|
||||
|
||||
// Or you can test against a sample view!
|
||||
assert_eq!(
|
||||
div.outer_html(),
|
||||
run_scope(create_runtime(), |cx| {
|
||||
let (value, _) = create_signal(cx, 0);
|
||||
view! { cx,
|
||||
<div>
|
||||
<button>"Clear"</button>
|
||||
<button>"-1"</button>
|
||||
<span>"Value: " {value} "!"</span>
|
||||
<button>"+1"</button>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
.outer_html())
|
||||
);
|
||||
|
||||
inc.click();
|
||||
|
||||
assert_eq!(
|
||||
div.outer_html(),
|
||||
run_scope(create_runtime(), |cx| {
|
||||
// because we've clicked, it's as if the signal is starting at 1
|
||||
let (value, _) = create_signal(cx, 1);
|
||||
view! { cx,
|
||||
<div>
|
||||
<button>"Clear"</button>
|
||||
<button>"-1"</button>
|
||||
<span>"Value: " {value} "!"</span>
|
||||
<button>"+1"</button>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
.outer_html())
|
||||
);
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@ crate-type = ["cdylib", "rlib"]
|
||||
|
||||
[dependencies]
|
||||
actix-files = { version = "0.6", optional = true }
|
||||
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
|
||||
actix-web = { version = "4", optional = true, features = ["macros"] }
|
||||
broadcaster = "1"
|
||||
console_log = "0.2"
|
||||
console_error_panic_hook = "0.1"
|
||||
@@ -25,6 +25,7 @@ leptos_router = { path = "../../router", default-features = false }
|
||||
log = "0.4"
|
||||
simple_logger = "4.0.0"
|
||||
gloo-net = { git = "https://github.com/rustwasm/gloo" }
|
||||
wasm-bindgen = "0.2"
|
||||
|
||||
[features]
|
||||
default = []
|
||||
|
||||
@@ -97,10 +97,10 @@ pub fn Counter(cx: Scope) -> impl IntoView {
|
||||
|_| get_server_count(),
|
||||
);
|
||||
|
||||
let value = move || counter.read().map(|count| count.unwrap_or(0)).unwrap_or(0);
|
||||
let value = move || counter.read(cx).map(|count| count.unwrap_or(0)).unwrap_or(0);
|
||||
let error_msg = move || {
|
||||
counter
|
||||
.read()
|
||||
.read(cx)
|
||||
.map(|res| match res {
|
||||
Ok(_) => None,
|
||||
Err(e) => Some(e),
|
||||
@@ -143,7 +143,7 @@ pub fn FormCounter(cx: Scope) -> impl IntoView {
|
||||
let value = move || {
|
||||
log::debug!("FormCounter looking for value");
|
||||
counter
|
||||
.read()
|
||||
.read(cx)
|
||||
.map(|n| n.ok())
|
||||
.flatten()
|
||||
.map(|n| n)
|
||||
@@ -194,16 +194,16 @@ pub fn MultiuserCounter(cx: Scope) -> impl IntoView {
|
||||
use futures::StreamExt;
|
||||
|
||||
let mut source = gloo_net::eventsource::futures::EventSource::new("/api/events")
|
||||
.expect_throw("couldn't connect to SSE stream");
|
||||
.expect("couldn't connect to SSE stream");
|
||||
let s = create_signal_from_stream(
|
||||
cx,
|
||||
source.subscribe("message").unwrap().map(|value| {
|
||||
value
|
||||
.expect_throw("no message event")
|
||||
.expect("no message event")
|
||||
.1
|
||||
.data()
|
||||
.as_string()
|
||||
.expect_throw("expected string value")
|
||||
.expect("expected string value")
|
||||
}),
|
||||
);
|
||||
|
||||
|
||||
@@ -37,7 +37,7 @@ cfg_if! {
|
||||
// when not using cargo-leptos None must be replaced with Some("Cargo.toml")
|
||||
let conf = get_configuration(None).await.unwrap();
|
||||
|
||||
let addr = conf.leptos_options.site_address.clone();
|
||||
let addr = conf.leptos_options.site_addr.clone();
|
||||
let routes = generate_route_list(|cx| view! { cx, <Counters/> });
|
||||
|
||||
HttpServer::new(move || {
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
use leptos::{ev, *};
|
||||
use leptos::{ev, html::*, *};
|
||||
|
||||
pub struct Props {
|
||||
/// The starting value for the counter
|
||||
@@ -25,7 +25,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
|
||||
.child((
|
||||
cx,
|
||||
button(cx)
|
||||
.on(ev::click, move |_| set_value.update(|value| *value -= step))
|
||||
.on(ev::click, move |_| {
|
||||
set_value.update(|value| *value -= step)
|
||||
})
|
||||
.child((cx, "-1")),
|
||||
))
|
||||
.child((
|
||||
@@ -38,7 +40,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
|
||||
.child((
|
||||
cx,
|
||||
button(cx)
|
||||
.on(ev::click, move |_| set_value.update(|value| *value += step))
|
||||
.on(ev::click, move |_| {
|
||||
set_value.update(|value| *value += step)
|
||||
})
|
||||
.child((cx, "+1")),
|
||||
))
|
||||
}
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
use leptos::*;
|
||||
use leptos::{For, ForProps};
|
||||
use leptos::{For, ForProps, *};
|
||||
|
||||
const MANY_COUNTERS: usize = 1000;
|
||||
|
||||
@@ -66,9 +65,8 @@ pub fn Counters(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each=counters
|
||||
key=|counter| counter.0
|
||||
view=move |(id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
|
||||
view! {
|
||||
cx,
|
||||
view=move |cx, (id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
|
||||
view! { cx,
|
||||
<Counter id value set_value/>
|
||||
}
|
||||
}
|
||||
@@ -85,9 +83,11 @@ fn Counter(
|
||||
value: ReadSignal<i32>,
|
||||
set_value: WriteSignal<i32>,
|
||||
) -> impl IntoView {
|
||||
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
|
||||
let CounterUpdater { set_counters } = use_context(cx).unwrap();
|
||||
|
||||
let input = move |ev| set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default());
|
||||
let input = move |ev| {
|
||||
set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default())
|
||||
};
|
||||
|
||||
// just an example of how a cleanup function works
|
||||
// this will run when the scope is disposed, i.e., when this row is deleted
|
||||
|
||||
@@ -72,7 +72,7 @@ pub fn Counters(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each={move || counters.get()}
|
||||
key={|counter| counter.0}
|
||||
view=move |(id, (value, set_value))| {
|
||||
view=move |cx, (id, (value, set_value))| {
|
||||
view! {
|
||||
cx,
|
||||
<Counter id value set_value/>
|
||||
@@ -91,9 +91,12 @@ fn Counter(
|
||||
value: ReadSignal<i32>,
|
||||
set_value: WriteSignal<i32>,
|
||||
) -> impl IntoView {
|
||||
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
|
||||
let CounterUpdater { set_counters } = use_context(cx).unwrap();
|
||||
|
||||
let input = move |ev| set_value.set(event_target_value(&ev).parse::<i32>().unwrap_or_default());
|
||||
let input = move |ev| {
|
||||
set_value
|
||||
.set(event_target_value(&ev).parse::<i32>().unwrap_or_default())
|
||||
};
|
||||
|
||||
view! { cx,
|
||||
<li>
|
||||
|
||||
10
examples/error_boundary/Cargo.toml
Normal file
10
examples/error_boundary/Cargo.toml
Normal file
@@ -0,0 +1,10 @@
|
||||
[package]
|
||||
name = "error_boundary"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
leptos = { path = "../../leptos" }
|
||||
console_log = "0.2"
|
||||
log = "0.4"
|
||||
console_error_panic_hook = "0.1.7"
|
||||
9
examples/error_boundary/Makefile.toml
Normal file
9
examples/error_boundary/Makefile.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
[tasks.build]
|
||||
command = "cargo"
|
||||
args = ["+nightly", "build-all-features"]
|
||||
install_crate = "cargo-all-features"
|
||||
|
||||
[tasks.check]
|
||||
command = "cargo"
|
||||
args = ["+nightly", "check-all-features"]
|
||||
install_crate = "cargo-all-features"
|
||||
7
examples/error_boundary/README.md
Normal file
7
examples/error_boundary/README.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Leptos `<ErrorBoundary/>` Example
|
||||
|
||||
This example shows how to handle basic errors using Leptos.
|
||||
|
||||
To run it, just issue the `trunk serve --open` command in the example root. This will build the app, run it, and open a new browser to serve it.
|
||||
|
||||
> If you don't have `trunk` installed, [click here for install instructions.](https://trunkrs.dev/)
|
||||
8
examples/error_boundary/index.html
Normal file
8
examples/error_boundary/index.html
Normal file
@@ -0,0 +1,8 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<link data-trunk rel="rust" data-wasm-opt="z"/>
|
||||
<link data-trunk rel="icon" type="image/ico" href="/public/favicon.ico"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
||||
BIN
examples/error_boundary/public/favicon.ico
Normal file
BIN
examples/error_boundary/public/favicon.ico
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 15 KiB |
47
examples/error_boundary/src/lib.rs
Normal file
47
examples/error_boundary/src/lib.rs
Normal file
@@ -0,0 +1,47 @@
|
||||
use leptos::*;
|
||||
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
let (value, set_value) = create_signal(cx, Ok(0));
|
||||
|
||||
// when input changes, try to parse a number from the input
|
||||
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
|
||||
|
||||
view! { cx,
|
||||
<h1>"Error Handling"</h1>
|
||||
<label>
|
||||
"Type a number (or something that's not a number!)"
|
||||
<input type="number" on:input=on_input/>
|
||||
// If an `Err(_) had been rendered inside the <ErrorBoundary/>,
|
||||
// the fallback will be displayed. Otherwise, the children of the
|
||||
// <ErrorBoundary/> will be displayed.
|
||||
<ErrorBoundary
|
||||
// the fallback receives a signal containing current errors
|
||||
fallback=|cx, errors| view! { cx,
|
||||
<div class="error">
|
||||
<p>"Not a number! Errors: "</p>
|
||||
// we can render a list of errors
|
||||
// as strings, if we'd like
|
||||
<ul>
|
||||
{move || errors.get()
|
||||
.into_iter()
|
||||
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
</ul>
|
||||
</div>
|
||||
}
|
||||
>
|
||||
<p>
|
||||
"You entered "
|
||||
// because `value` is `Result<i32, _>`,
|
||||
// it will render the `i32` if it is `Ok`,
|
||||
// and render nothing and trigger the error boundary
|
||||
// if it is `Err`. It's a signal, so this will dynamically
|
||||
// update when `value` changes
|
||||
<strong>{value}</strong>
|
||||
</p>
|
||||
</ErrorBoundary>
|
||||
</label>
|
||||
}
|
||||
}
|
||||
12
examples/error_boundary/src/main.rs
Normal file
12
examples/error_boundary/src/main.rs
Normal file
@@ -0,0 +1,12 @@
|
||||
use error_boundary::*;
|
||||
use leptos::*;
|
||||
|
||||
pub fn main() {
|
||||
_ = console_log::init_with_level(log::Level::Debug);
|
||||
console_error_panic_hook::set_once();
|
||||
mount_to_body(|cx| {
|
||||
view! { cx,
|
||||
<App/>
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -13,7 +13,7 @@ console_error_panic_hook = "0.1.7"
|
||||
futures = "0.3.25"
|
||||
cfg-if = "1.0.0"
|
||||
leptos = { path = "../../../leptos/leptos", default-features = false, features = [
|
||||
"serde",
|
||||
"serde",
|
||||
] }
|
||||
leptos_axum = { path = "../../../leptos/integrations/axum", default-features = false, optional = true }
|
||||
leptos_meta = { path = "../../../leptos/meta", default-features = false }
|
||||
@@ -27,50 +27,54 @@ gloo-net = { version = "0.2.5", features = ["http"] }
|
||||
reqwest = { version = "0.11.13", features = ["json"] }
|
||||
axum = { version = "0.6.1", optional = true }
|
||||
tower = { version = "0.4.13", optional = true }
|
||||
tower-http = { version = "0.3.4", features = ["fs"], optional = true }
|
||||
tower-http = { version = "0.4", features = ["fs"], optional = true }
|
||||
tokio = { version = "1.22.0", features = ["full"], optional = true }
|
||||
http = { version = "0.2.8" }
|
||||
thiserror = "1.0.38"
|
||||
tracing = "0.1.37"
|
||||
wasm-bindgen = "0.2"
|
||||
|
||||
[features]
|
||||
default = ["csr"]
|
||||
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
|
||||
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
|
||||
ssr = ["dep:axum", "dep:tower", "dep:tower-http", "dep:tokio", "leptos/ssr", "leptos_meta/ssr", "leptos_router/ssr", "dep:leptos_axum"]
|
||||
ssr = [
|
||||
"dep:axum",
|
||||
"dep:tower",
|
||||
"dep:tower-http",
|
||||
"dep:tokio",
|
||||
"leptos/ssr",
|
||||
"leptos_meta/ssr",
|
||||
"leptos_router/ssr",
|
||||
"dep:leptos_axum",
|
||||
]
|
||||
|
||||
[package.metadata.cargo-all-features]
|
||||
denylist = [
|
||||
"axum",
|
||||
"tower",
|
||||
"tower-http",
|
||||
"tokio",
|
||||
"leptos_axum",
|
||||
]
|
||||
denylist = ["axum", "tower", "tower-http", "tokio", "leptos_axum"]
|
||||
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
|
||||
|
||||
[package.metadata.leptos]
|
||||
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
|
||||
output-name = "errors_axum"
|
||||
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
|
||||
output-name = "errors_axum"
|
||||
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
|
||||
site-root = "target/site"
|
||||
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
|
||||
# Defaults to pkg
|
||||
site-pkg-dir = "pkg"
|
||||
# Defaults to pkg
|
||||
site-pkg-dir = "pkg"
|
||||
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
|
||||
style-file = "./style.css"
|
||||
# [Optional] Files in the asset-dir will be copied to the site-root directory
|
||||
assets-dir = "public"
|
||||
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
|
||||
site-addr = "127.0.0.1:3000"
|
||||
site-addr = "127.0.0.1:3000"
|
||||
# The port to use for automatic reload monitoring
|
||||
reload-port = 3001
|
||||
reload-port = 3001
|
||||
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
|
||||
end2end-cmd = "npx playwright test"
|
||||
# The browserlist query used for optimizing the CSS.
|
||||
browserquery = "defaults"
|
||||
browserquery = "defaults"
|
||||
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
|
||||
watch = false
|
||||
watch = false
|
||||
# The environment Leptos will run in, usually either "DEV" or "PROD"
|
||||
env = "DEV"
|
||||
# The features to use when compiling the bin target
|
||||
|
||||
@@ -1,8 +1,6 @@
|
||||
use crate::errors::AppError;
|
||||
use cfg_if::cfg_if;
|
||||
use leptos::Errors;
|
||||
use leptos::*;
|
||||
|
||||
use leptos::{Errors, *};
|
||||
#[cfg(feature = "ssr")]
|
||||
use leptos_axum::ResponseOptions;
|
||||
|
||||
@@ -23,14 +21,13 @@ pub fn ErrorTemplate(
|
||||
};
|
||||
|
||||
// Get Errors from Signal
|
||||
let errors = errors.get().0;
|
||||
|
||||
// Downcast lets us take a type that implements `std::error::Error`
|
||||
let errors: Vec<AppError> = errors
|
||||
.get()
|
||||
.into_iter()
|
||||
.filter_map(|(_k, v)| v.downcast_ref::<AppError>().cloned())
|
||||
.filter_map(|(_, v)| v.downcast_ref::<AppError>().cloned())
|
||||
.collect();
|
||||
println!("Errors: {errors:#?}");
|
||||
log!("Errors: {errors:#?}");
|
||||
|
||||
// Only the response code for the first error is actually sent from the server
|
||||
// this may be customized by the specific application
|
||||
@@ -47,9 +44,9 @@ pub fn ErrorTemplate(
|
||||
// a function that returns the items we're iterating over; a signal is fine
|
||||
each= move || {errors.clone().into_iter().enumerate()}
|
||||
// a unique key for each item as a reference
|
||||
key=|(index, _error)| *index
|
||||
key=|(index, _)| *index
|
||||
// renders each item to a view
|
||||
view= move |error| {
|
||||
view=move |cx, error| {
|
||||
let error_string = error.1.to_string();
|
||||
let error_code= error.1.status_code();
|
||||
view! { cx,
|
||||
|
||||
@@ -12,8 +12,7 @@ cfg_if! { if #[cfg(feature = "ssr")] {
|
||||
use tower_http::services::ServeDir;
|
||||
use std::sync::Arc;
|
||||
use leptos::{LeptosOptions, Errors, view};
|
||||
use crate::error_template::{ErrorTemplate, ErrorTemplateProps};
|
||||
use crate::errors::AppError;
|
||||
use crate::landing::{App, AppProps};
|
||||
|
||||
pub async fn file_and_error_handler(uri: Uri, Extension(options): Extension<Arc<LeptosOptions>>, req: Request<Body>) -> AxumResponse {
|
||||
let options = &*options;
|
||||
@@ -23,9 +22,10 @@ cfg_if! { if #[cfg(feature = "ssr")] {
|
||||
if res.status() == StatusCode::OK {
|
||||
res.into_response()
|
||||
} else{
|
||||
let mut errors = Errors::default();
|
||||
errors.insert_with_default_key(AppError::NotFound);
|
||||
let handler = leptos_axum::render_app_to_stream(options.to_owned(), move |cx| view!{cx, <ErrorTemplate outside_errors=errors.clone()/>});
|
||||
let handler = leptos_axum::render_app_to_stream(
|
||||
options.to_owned(),
|
||||
move |cx| view!{ cx, <App/> }
|
||||
);
|
||||
handler(req).await.into_response()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -29,7 +29,14 @@ pub fn App(cx: Scope) -> impl IntoView {
|
||||
cx,
|
||||
<Link rel="shortcut icon" type_="image/ico" href="/favicon.ico"/>
|
||||
<Stylesheet id="leptos" href="/pkg/errors_axum.css"/>
|
||||
<Router>
|
||||
<Router fallback=|cx| {
|
||||
let mut outside_errors = Errors::default();
|
||||
outside_errors.insert_with_default_key(AppError::NotFound);
|
||||
view! { cx,
|
||||
<ErrorTemplate outside_errors/>
|
||||
}
|
||||
.into_view(cx)
|
||||
}>
|
||||
<header>
|
||||
<h1>"Error Examples:"</h1>
|
||||
</header>
|
||||
|
||||
@@ -44,7 +44,7 @@ async fn main() {
|
||||
// Setting this to None means we'll be using cargo-leptos and its env vars
|
||||
let conf = get_configuration(None).await.unwrap();
|
||||
let leptos_options = conf.leptos_options;
|
||||
let addr = leptos_options.site_address;
|
||||
let addr = leptos_options.site_addr;
|
||||
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
|
||||
|
||||
// build our application with a route
|
||||
|
||||
@@ -9,6 +9,12 @@
|
||||
max-width: 250px;
|
||||
height: auto;
|
||||
}
|
||||
|
||||
.error {
|
||||
border: 1px solid red;
|
||||
color: red;
|
||||
background-color: lightpink;
|
||||
}
|
||||
</style>
|
||||
<body></body>
|
||||
</html>
|
||||
@@ -1,3 +1,4 @@
|
||||
use anyhow::Result;
|
||||
use leptos::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
@@ -6,18 +7,18 @@ pub struct Cat {
|
||||
url: String,
|
||||
}
|
||||
|
||||
async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
|
||||
async fn fetch_cats(count: u32) -> Result<Vec<String>> {
|
||||
if count > 0 {
|
||||
// make the request
|
||||
let res = reqwasm::http::Request::get(&format!(
|
||||
"https://api.thecatapi.com/v1/images/search?limit={}",
|
||||
count
|
||||
"https://api.thecatapi.com/v1/images/search?limit={count}",
|
||||
))
|
||||
.send()
|
||||
.await
|
||||
.map_err(|_| ())?
|
||||
.await?
|
||||
// convert it to JSON
|
||||
.json::<Vec<Cat>>()
|
||||
.await
|
||||
.map_err(|_| ())?
|
||||
.await?
|
||||
// extract the URL field for each cat
|
||||
.into_iter()
|
||||
.map(|cat| cat.url)
|
||||
.collect::<Vec<_>>();
|
||||
@@ -29,9 +30,45 @@ async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
|
||||
|
||||
pub fn fetch_example(cx: Scope) -> impl IntoView {
|
||||
let (cat_count, set_cat_count) = create_signal::<u32>(cx, 1);
|
||||
let cats = create_resource(cx, cat_count, |count| fetch_cats(count));
|
||||
|
||||
view! { cx,
|
||||
// we use local_resource here because
|
||||
// 1) anyhow::Result isn't serializable/deserializable
|
||||
// 2) we're not doing server-side rendering in this example anyway
|
||||
// (during SSR, create_resource will begin loading on the server and resolve on the client)
|
||||
let cats = create_local_resource(cx, cat_count, fetch_cats);
|
||||
|
||||
let fallback = move |cx, errors: RwSignal<Errors>| {
|
||||
let error_list = move || {
|
||||
errors.with(|errors| {
|
||||
errors
|
||||
.iter()
|
||||
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
|
||||
.collect::<Vec<_>>()
|
||||
})
|
||||
};
|
||||
|
||||
view! { cx,
|
||||
<div class="error">
|
||||
<h2>"Error"</h2>
|
||||
<ul>{error_list}</ul>
|
||||
</div>
|
||||
}
|
||||
};
|
||||
|
||||
// the renderer can handle Option<_> and Result<_> states
|
||||
// by displaying nothing for None if the resource is still loading
|
||||
// and by using the ErrorBoundary fallback to catch Err(_)
|
||||
// so we'll just implement our happy path and let the framework handle the rest
|
||||
let cats_view = move || {
|
||||
cats.with(cx, |data| {
|
||||
data.iter()
|
||||
.flatten()
|
||||
.map(|cat| view! { cx, <img src={cat}/> })
|
||||
.collect::<Vec<_>>()
|
||||
})
|
||||
};
|
||||
|
||||
view! { cx,
|
||||
<div>
|
||||
<label>
|
||||
"How many cats would you like?"
|
||||
@@ -43,25 +80,11 @@ pub fn fetch_example(cx: Scope) -> impl IntoView {
|
||||
}
|
||||
/>
|
||||
</label>
|
||||
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
|
||||
{move || {
|
||||
cats.read().map(|data| match data {
|
||||
Err(_) => view! { cx, <pre>"Error"</pre> }.into_view(cx),
|
||||
Ok(cats) => view! { cx,
|
||||
<div>{
|
||||
cats.iter()
|
||||
.map(|src| {
|
||||
view! { cx,
|
||||
<img src={src}/>
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
}</div>
|
||||
}.into_view(cx),
|
||||
})
|
||||
}
|
||||
}
|
||||
</Transition>
|
||||
<ErrorBoundary fallback>
|
||||
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
|
||||
{cats_view}
|
||||
</Transition>
|
||||
</ErrorBoundary>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,12 +9,14 @@ crate-type = ["cdylib", "rlib"]
|
||||
[dependencies]
|
||||
anyhow = "1"
|
||||
actix-files = { version = "0.6", optional = true }
|
||||
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
|
||||
actix-web = { version = "4", optional = true, features = ["macros"] }
|
||||
console_log = "0.2"
|
||||
console_error_panic_hook = "0.1"
|
||||
futures = "0.3"
|
||||
cfg-if = "1"
|
||||
leptos = { path = "../../leptos", default-features = false, features = ["serde"] }
|
||||
leptos = { path = "../../leptos", default-features = false, features = [
|
||||
"serde",
|
||||
] }
|
||||
leptos_meta = { path = "../../meta", default-features = false }
|
||||
leptos_actix = { path = "../../integrations/actix", default-features = false, optional = true }
|
||||
leptos_router = { path = "../../router", default-features = false }
|
||||
@@ -47,26 +49,26 @@ skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
|
||||
|
||||
[package.metadata.leptos]
|
||||
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
|
||||
output-name = "hackernews"
|
||||
output-name = "hackernews"
|
||||
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
|
||||
site-root = "target/site"
|
||||
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
|
||||
# Defaults to pkg
|
||||
site-pkg-dir = "pkg"
|
||||
site-pkg-dir = "pkg"
|
||||
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
|
||||
style-file = "./style.css"
|
||||
# [Optional] Files in the asset-dir will be copied to the site-root directory
|
||||
assets-dir = "public"
|
||||
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
|
||||
site-addr = "127.0.0.1:3000"
|
||||
site-addr = "127.0.0.1:3000"
|
||||
# The port to use for automatic reload monitoring
|
||||
reload-port = 3001
|
||||
reload-port = 3001
|
||||
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
|
||||
end2end-cmd = "npx playwright test"
|
||||
# The browserlist query used for optimizing the CSS.
|
||||
browserquery = "defaults"
|
||||
browserquery = "defaults"
|
||||
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
|
||||
watch = false
|
||||
watch = false
|
||||
# The environment Leptos will run in, usually either "DEV" or "PROD"
|
||||
env = "DEV"
|
||||
# The features to use when compiling the bin target
|
||||
@@ -87,4 +89,4 @@ lib-features = ["hydrate"]
|
||||
# If the --no-default-features flag should be used when compiling the lib target
|
||||
#
|
||||
# Optional. Defaults to false.
|
||||
lib-default-features = false
|
||||
lib-default-features = false
|
||||
|
||||
@@ -34,7 +34,7 @@ where
|
||||
abort_controller.abort()
|
||||
}
|
||||
});
|
||||
T::from_json(&json).ok()
|
||||
T::de(&json).ok()
|
||||
}
|
||||
|
||||
#[cfg(feature = "ssr")]
|
||||
@@ -49,7 +49,7 @@ where
|
||||
.text()
|
||||
.await
|
||||
.ok()?;
|
||||
T::from_json(&json).map_err(|e| log::error!("{e}")).ok()
|
||||
T::de(&json).map_err(|e| log::error!("{e}")).ok()
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize, Serialize, PartialEq, Eq, Clone)]
|
||||
|
||||
@@ -24,7 +24,7 @@ cfg_if! {
|
||||
// Setting this to None means we'll be using cargo-leptos and its env vars.
|
||||
let conf = get_configuration(None).await.unwrap();
|
||||
|
||||
let addr = conf.leptos_options.site_address.clone();
|
||||
let addr = conf.leptos_options.site_addr.clone();
|
||||
// Generate the list of routes in your Leptos App
|
||||
let routes = generate_route_list(|cx| view! { cx, <App/> });
|
||||
|
||||
|
||||
@@ -38,7 +38,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
let (pending, set_pending) = create_signal(cx, false);
|
||||
|
||||
let hide_more_link =
|
||||
move || pending() || stories.read().unwrap_or(None).unwrap_or_default().len() < 28;
|
||||
move || pending() || stories.read(cx).unwrap_or(None).unwrap_or_default().len() < 28;
|
||||
|
||||
view! {
|
||||
cx,
|
||||
@@ -82,7 +82,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
fallback=move || view! { cx, <p>"Loading..."</p> }
|
||||
set_pending=set_pending.into()
|
||||
>
|
||||
{move || match stories.read() {
|
||||
{move || match stories.read(cx) {
|
||||
None => None,
|
||||
Some(None) => Some(view! { cx, <p>"Error loading stories."</p> }.into_any()),
|
||||
Some(Some(stories)) => {
|
||||
@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each=move || stories.clone()
|
||||
key=|story| story.id
|
||||
view=move |story: api::Story| {
|
||||
view=move |cx, story: api::Story| {
|
||||
view! { cx,
|
||||
<Story story/>
|
||||
}
|
||||
|
||||
@@ -17,13 +17,13 @@ pub fn Story(cx: Scope) -> impl IntoView {
|
||||
}
|
||||
},
|
||||
);
|
||||
let meta_description = move || story.read().and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
|
||||
let meta_description = move || story.read(cx).and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
|
||||
|
||||
view! { cx,
|
||||
<>
|
||||
<Meta name="description" content=meta_description/>
|
||||
<Suspense fallback=|| view! { cx, "Loading..." }>
|
||||
{move || story.read().map(|story| match story {
|
||||
{move || story.read(cx).map(|story| match story {
|
||||
None => view! { cx, <div class="item-view">"Error loading this story."</div> },
|
||||
Some(story) => view! { cx,
|
||||
<div class="item-view">
|
||||
@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each=move || story.comments.clone().unwrap_or_default()
|
||||
key=|comment| comment.id
|
||||
view=move |comment| view! { cx, <Comment comment /> }
|
||||
view=move |cx, comment| view! { cx, <Comment comment /> }
|
||||
/>
|
||||
</ul>
|
||||
</div>
|
||||
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
|
||||
<For
|
||||
each=move || comments.clone()
|
||||
key=|comment| comment.id
|
||||
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
|
||||
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
|
||||
/>
|
||||
</ul>
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ pub fn User(cx: Scope) -> impl IntoView {
|
||||
view! { cx,
|
||||
<div class="user-view">
|
||||
<Suspense fallback=|| view! { cx, "Loading..." }>
|
||||
{move || user.read().map(|user| match user {
|
||||
{move || user.read(cx).map(|user| match user {
|
||||
None => view! { cx, <h1>"User not found."</h1> }.into_any(),
|
||||
Some(user) => view! { cx,
|
||||
<div>
|
||||
|
||||
@@ -13,7 +13,7 @@ console_error_panic_hook = "0.1.7"
|
||||
futures = "0.3.25"
|
||||
cfg-if = "1.0.0"
|
||||
leptos = { path = "../../leptos", default-features = false, features = [
|
||||
"serde",
|
||||
"serde",
|
||||
] }
|
||||
leptos_axum = { path = "../../integrations/axum", optional = true }
|
||||
leptos_meta = { path = "../../meta", default-features = false }
|
||||
@@ -26,7 +26,7 @@ gloo-net = { version = "0.2.5", features = ["http"] }
|
||||
reqwest = { version = "0.11.13", features = ["json"] }
|
||||
axum = { version = "0.6.1", optional = true }
|
||||
tower = { version = "0.4.13", optional = true }
|
||||
tower-http = { version = "0.3.4", features = ["fs"], optional = true }
|
||||
tower-http = { version = "0.4", features = ["fs"], optional = true }
|
||||
tokio = { version = "1.22.0", features = ["full"], optional = true }
|
||||
http = { version = "0.2.8", optional = true }
|
||||
web-sys = { version = "0.3", features = ["AbortController", "AbortSignal"] }
|
||||
@@ -38,15 +38,15 @@ default = ["csr"]
|
||||
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
|
||||
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
|
||||
ssr = [
|
||||
"dep:axum",
|
||||
"dep:tower",
|
||||
"dep:tower-http",
|
||||
"dep:tokio",
|
||||
"dep:http",
|
||||
"leptos/ssr",
|
||||
"leptos_axum",
|
||||
"leptos_meta/ssr",
|
||||
"leptos_router/ssr",
|
||||
"dep:axum",
|
||||
"dep:tower",
|
||||
"dep:tower-http",
|
||||
"dep:tokio",
|
||||
"dep:http",
|
||||
"leptos/ssr",
|
||||
"leptos_axum",
|
||||
"leptos_meta/ssr",
|
||||
"leptos_router/ssr",
|
||||
]
|
||||
|
||||
[package.metadata.cargo-all-features]
|
||||
@@ -54,27 +54,27 @@ denylist = ["axum", "tower", "tower-http", "tokio", "http", "leptos_axum"]
|
||||
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
|
||||
|
||||
[package.metadata.leptos]
|
||||
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
|
||||
output-name = "hackernews_axum"
|
||||
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
|
||||
output-name = "hackernews_axum"
|
||||
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
|
||||
site-root = "target/site"
|
||||
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
|
||||
# Defaults to pkg
|
||||
site-pkg-dir = "pkg"
|
||||
# Defaults to pkg
|
||||
site-pkg-dir = "pkg"
|
||||
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
|
||||
style-file = "./style.css"
|
||||
# [Optional] Files in the asset-dir will be copied to the site-root directory
|
||||
assets-dir = "public"
|
||||
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
|
||||
site-addr = "127.0.0.1:3000"
|
||||
site-addr = "127.0.0.1:3000"
|
||||
# The port to use for automatic reload monitoring
|
||||
reload-port = 3001
|
||||
reload-port = 3001
|
||||
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
|
||||
end2end-cmd = "npx playwright test"
|
||||
# The browserlist query used for optimizing the CSS.
|
||||
browserquery = "defaults"
|
||||
browserquery = "defaults"
|
||||
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
|
||||
watch = false
|
||||
watch = false
|
||||
# The environment Leptos will run in, usually either "DEV" or "PROD"
|
||||
env = "DEV"
|
||||
# The features to use when compiling the bin target
|
||||
@@ -95,4 +95,4 @@ lib-features = ["hydrate"]
|
||||
# If the --no-default-features flag should be used when compiling the lib target
|
||||
#
|
||||
# Optional. Defaults to false.
|
||||
lib-default-features = false
|
||||
lib-default-features = false
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
<html>
|
||||
<head>
|
||||
<link data-trunk rel="rust" data-wasm-opt="z"/>
|
||||
<link data-trunk rel="css" href="./static/style.css"/>
|
||||
<link data-trunk rel="css" href="/style.css"/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
||||
@@ -34,7 +34,7 @@ where
|
||||
abort_controller.abort()
|
||||
}
|
||||
});
|
||||
T::from_json(&json).ok()
|
||||
T::de(&json).ok()
|
||||
}
|
||||
|
||||
#[cfg(feature = "ssr")]
|
||||
@@ -49,7 +49,7 @@ where
|
||||
.text()
|
||||
.await
|
||||
.ok()?;
|
||||
T::from_json(&json).map_err(|e| log::error!("{e}")).ok()
|
||||
T::de(&json).map_err(|e| log::error!("{e}")).ok()
|
||||
}
|
||||
|
||||
#[derive(Debug, Deserialize, Serialize, PartialEq, Eq, Clone)]
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
use leptos::Errors;
|
||||
use leptos::{view, For, ForProps, IntoView, RwSignal, Scope, View};
|
||||
use leptos::{
|
||||
signal_prelude::*, view, Errors, For, ForProps, IntoView, RwSignal, Scope,
|
||||
View,
|
||||
};
|
||||
|
||||
// A basic function to display errors served by the error boundaries. Feel free to do more complicated things
|
||||
// here than just displaying them
|
||||
@@ -7,21 +9,22 @@ pub fn error_template(cx: Scope, errors: Option<RwSignal<Errors>>) -> View {
|
||||
let Some(errors) = errors else {
|
||||
panic!("No Errors found and we expected errors!");
|
||||
};
|
||||
|
||||
view! {cx,
|
||||
<h1>"Errors"</h1>
|
||||
<For
|
||||
// a function that returns the items we're iterating over; a signal is fine
|
||||
each= move || {errors.get().0.into_iter()}
|
||||
// a unique key for each item as a reference
|
||||
key=|error| error.0.clone()
|
||||
// renders each item to a view
|
||||
view= move |error| {
|
||||
let error_string = error.1.to_string();
|
||||
view! {
|
||||
cx,
|
||||
<p>"Error: " {error_string}</p>
|
||||
<h1>"Errors"</h1>
|
||||
<For
|
||||
// a function that returns the items we're iterating over; a signal is fine
|
||||
each=errors
|
||||
// a unique key for each item as a reference
|
||||
key=|(key, _)| key.clone()
|
||||
// renders each item to a view
|
||||
view= move |cx, (_, error)| {
|
||||
let error_string = error.to_string();
|
||||
view! {
|
||||
cx,
|
||||
<p>"Error: " {error_string}</p>
|
||||
}
|
||||
}
|
||||
}
|
||||
/>
|
||||
}
|
||||
.into_view(cx)
|
||||
|
||||
@@ -19,7 +19,7 @@ if #[cfg(feature = "ssr")] {
|
||||
|
||||
let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
|
||||
let leptos_options = conf.leptos_options;
|
||||
let addr = leptos_options.site_address.clone();
|
||||
let addr = leptos_options.site_addr.clone();
|
||||
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
|
||||
|
||||
simple_logger::init_with_level(log::Level::Debug).expect("couldn't initialize logging");
|
||||
|
||||
@@ -38,7 +38,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
let (pending, set_pending) = create_signal(cx, false);
|
||||
|
||||
let hide_more_link =
|
||||
move || pending() || stories.read().unwrap_or(None).unwrap_or_default().len() < 28;
|
||||
move || pending() || stories.read(cx).unwrap_or(None).unwrap_or_default().len() < 28;
|
||||
|
||||
view! {
|
||||
cx,
|
||||
@@ -82,7 +82,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
fallback=move || view! { cx, <p>"Loading..."</p> }
|
||||
set_pending=set_pending.into()
|
||||
>
|
||||
{move || match stories.read() {
|
||||
{move || match stories.read(cx) {
|
||||
None => None,
|
||||
Some(None) => Some(view! { cx, <p>"Error loading stories."</p> }.into_any()),
|
||||
Some(Some(stories)) => {
|
||||
@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each=move || stories.clone()
|
||||
key=|story| story.id
|
||||
view=move |story: api::Story| {
|
||||
view=move |cx, story: api::Story| {
|
||||
view! { cx,
|
||||
<Story story/>
|
||||
}
|
||||
|
||||
@@ -17,13 +17,13 @@ pub fn Story(cx: Scope) -> impl IntoView {
|
||||
}
|
||||
},
|
||||
);
|
||||
let meta_description = move || story.read().and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
|
||||
let meta_description = move || story.read(cx).and_then(|story| story.map(|story| story.title)).unwrap_or_else(|| "Loading story...".to_string());
|
||||
|
||||
view! { cx,
|
||||
<>
|
||||
<Meta name="description" content=meta_description/>
|
||||
<Suspense fallback=|| view! { cx, "Loading..." }>
|
||||
{move || story.read().map(|story| match story {
|
||||
{move || story.read(cx).map(|story| match story {
|
||||
None => view! { cx, <div class="item-view">"Error loading this story."</div> },
|
||||
Some(story) => view! { cx,
|
||||
<div class="item-view">
|
||||
@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
|
||||
<For
|
||||
each=move || story.comments.clone().unwrap_or_default()
|
||||
key=|comment| comment.id
|
||||
view=move |comment| view! { cx, <Comment comment /> }
|
||||
view=move |cx, comment| view! { cx, <Comment comment /> }
|
||||
/>
|
||||
</ul>
|
||||
</div>
|
||||
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
|
||||
<For
|
||||
each=move || comments.clone()
|
||||
key=|comment| comment.id
|
||||
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
|
||||
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
|
||||
/>
|
||||
</ul>
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ pub fn User(cx: Scope) -> impl IntoView {
|
||||
view! { cx,
|
||||
<div class="user-view">
|
||||
<Suspense fallback=|| view! { cx, "Loading..." }>
|
||||
{move || user.read().map(|user| match user {
|
||||
{move || user.read(cx).map(|user| match user {
|
||||
None => view! { cx, <h1>"User not found."</h1> }.into_any(),
|
||||
Some(user) => view! { cx,
|
||||
<div>
|
||||
|
||||
7
examples/login_with_token_csr_only/Cargo.toml
Normal file
7
examples/login_with_token_csr_only/Cargo.toml
Normal file
@@ -0,0 +1,7 @@
|
||||
[workspace]
|
||||
members = ["client", "api-boundary", "server"]
|
||||
|
||||
[patch.crates-io]
|
||||
leptos = { path = "../../leptos" }
|
||||
leptos_router = { path = "../../router" }
|
||||
api-boundary = { path = "api-boundary" }
|
||||
9
examples/login_with_token_csr_only/Makefile.toml
Normal file
9
examples/login_with_token_csr_only/Makefile.toml
Normal file
@@ -0,0 +1,9 @@
|
||||
[tasks.build]
|
||||
command = "cargo"
|
||||
args = ["+nightly", "build-all-features"]
|
||||
install_crate = "cargo-all-features"
|
||||
|
||||
[tasks.check]
|
||||
command = "cargo"
|
||||
args = ["+nightly", "check-all-features"]
|
||||
install_crate = "cargo-all-features"
|
||||
23
examples/login_with_token_csr_only/README.md
Normal file
23
examples/login_with_token_csr_only/README.md
Normal file
@@ -0,0 +1,23 @@
|
||||
# Leptos Login Example
|
||||
|
||||
This example demonstrates a scenario of a client-side rendered application
|
||||
that uses an existing API that you cannot or do not want to change.
|
||||
The authentications of this example are done using an API token.
|
||||
|
||||
## Run
|
||||
|
||||
First start the example server:
|
||||
|
||||
```
|
||||
cd server/ && cargo run
|
||||
```
|
||||
|
||||
then use [`trunk`](https://trunkrs.dev) to serve the SPA:
|
||||
|
||||
```
|
||||
cd client/ && trunk serve
|
||||
```
|
||||
|
||||
finally you can visit the web application at `http://localhost:8080`
|
||||
|
||||
The `api-boundary` crate contains data structures that are used by the server and the client.
|
||||
@@ -0,0 +1,8 @@
|
||||
[package]
|
||||
name = "api-boundary"
|
||||
version = "0.0.0"
|
||||
edition = "2021"
|
||||
publish = false
|
||||
|
||||
[dependencies]
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
22
examples/login_with_token_csr_only/api-boundary/src/lib.rs
Normal file
22
examples/login_with_token_csr_only/api-boundary/src/lib.rs
Normal file
@@ -0,0 +1,22 @@
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct Credentials {
|
||||
pub email: String,
|
||||
pub password: String,
|
||||
}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
pub struct UserInfo {
|
||||
pub email: String,
|
||||
}
|
||||
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
||||
pub struct ApiToken {
|
||||
pub token: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
pub struct Error {
|
||||
pub message: String,
|
||||
}
|
||||
19
examples/login_with_token_csr_only/client/Cargo.toml
Normal file
19
examples/login_with_token_csr_only/client/Cargo.toml
Normal file
@@ -0,0 +1,19 @@
|
||||
[package]
|
||||
name = "client"
|
||||
version = "0.0.0"
|
||||
edition = "2021"
|
||||
publish = false
|
||||
|
||||
[dependencies]
|
||||
api-boundary = "*"
|
||||
|
||||
leptos = { version = "0.2.0-alpha2", features = ["stable"] }
|
||||
leptos_router = { version = "0.2.0-alpha2", features = ["stable", "csr"] }
|
||||
|
||||
log = "0.4"
|
||||
console_error_panic_hook = "0.1"
|
||||
console_log = "0.2"
|
||||
gloo-net = "0.2"
|
||||
gloo-storage = "0.2"
|
||||
serde = "1.0"
|
||||
thiserror = "1.0"
|
||||
3
examples/login_with_token_csr_only/client/Trunk.toml
Normal file
3
examples/login_with_token_csr_only/client/Trunk.toml
Normal file
@@ -0,0 +1,3 @@
|
||||
[[proxy]]
|
||||
rewrite = "/api/"
|
||||
backend = "http://0.0.0.0:3000/"
|
||||
7
examples/login_with_token_csr_only/client/index.html
Normal file
7
examples/login_with_token_csr_only/client/index.html
Normal file
@@ -0,0 +1,7 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<link data-trunk rel="rust" data-wasm-opt="z" data-weak-refs/>
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
||||
94
examples/login_with_token_csr_only/client/src/api.rs
Normal file
94
examples/login_with_token_csr_only/client/src/api.rs
Normal file
@@ -0,0 +1,94 @@
|
||||
use gloo_net::http::{Request, Response};
|
||||
use serde::de::DeserializeOwned;
|
||||
use thiserror::Error;
|
||||
|
||||
use api_boundary::*;
|
||||
|
||||
#[derive(Clone, Copy)]
|
||||
pub struct UnauthorizedApi {
|
||||
url: &'static str,
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct AuthorizedApi {
|
||||
url: &'static str,
|
||||
token: ApiToken,
|
||||
}
|
||||
|
||||
impl UnauthorizedApi {
|
||||
pub const fn new(url: &'static str) -> Self {
|
||||
Self { url }
|
||||
}
|
||||
pub async fn register(&self, credentials: &Credentials) -> Result<()> {
|
||||
let url = format!("{}/users", self.url);
|
||||
let response = Request::post(&url).json(credentials)?.send().await?;
|
||||
into_json(response).await
|
||||
}
|
||||
pub async fn login(
|
||||
&self,
|
||||
credentials: &Credentials,
|
||||
) -> Result<AuthorizedApi> {
|
||||
let url = format!("{}/login", self.url);
|
||||
let response = Request::post(&url).json(credentials)?.send().await?;
|
||||
let token = into_json(response).await?;
|
||||
Ok(AuthorizedApi::new(self.url, token))
|
||||
}
|
||||
}
|
||||
|
||||
impl AuthorizedApi {
|
||||
pub const fn new(url: &'static str, token: ApiToken) -> Self {
|
||||
Self { url, token }
|
||||
}
|
||||
fn auth_header_value(&self) -> String {
|
||||
format!("Bearer {}", self.token.token)
|
||||
}
|
||||
async fn send<T>(&self, req: Request) -> Result<T>
|
||||
where
|
||||
T: DeserializeOwned,
|
||||
{
|
||||
let response = req
|
||||
.header("Authorization", &self.auth_header_value())
|
||||
.send()
|
||||
.await?;
|
||||
into_json(response).await
|
||||
}
|
||||
pub async fn logout(&self) -> Result<()> {
|
||||
let url = format!("{}/logout", self.url);
|
||||
self.send(Request::post(&url)).await
|
||||
}
|
||||
pub async fn user_info(&self) -> Result<UserInfo> {
|
||||
let url = format!("{}/users", self.url);
|
||||
self.send(Request::get(&url)).await
|
||||
}
|
||||
pub fn token(&self) -> &ApiToken {
|
||||
&self.token
|
||||
}
|
||||
}
|
||||
|
||||
type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum Error {
|
||||
#[error(transparent)]
|
||||
Fetch(#[from] gloo_net::Error),
|
||||
#[error("{0:?}")]
|
||||
Api(api_boundary::Error),
|
||||
}
|
||||
|
||||
impl From<api_boundary::Error> for Error {
|
||||
fn from(e: api_boundary::Error) -> Self {
|
||||
Self::Api(e)
|
||||
}
|
||||
}
|
||||
|
||||
async fn into_json<T>(response: Response) -> Result<T>
|
||||
where
|
||||
T: DeserializeOwned,
|
||||
{
|
||||
// ensure we've got 2xx status
|
||||
if response.ok() {
|
||||
Ok(response.json().await?)
|
||||
} else {
|
||||
Err(response.json::<api_boundary::Error>().await?.into())
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,73 @@
|
||||
use leptos::{ev, *};
|
||||
|
||||
#[component]
|
||||
pub fn CredentialsForm(
|
||||
cx: Scope,
|
||||
title: &'static str,
|
||||
action_label: &'static str,
|
||||
action: Action<(String, String), ()>,
|
||||
error: Signal<Option<String>>,
|
||||
disabled: Signal<bool>,
|
||||
) -> impl IntoView {
|
||||
let (password, set_password) = create_signal(cx, String::new());
|
||||
let (email, set_email) = create_signal(cx, String::new());
|
||||
|
||||
let dispatch_action =
|
||||
move || action.dispatch((email.get(), password.get()));
|
||||
|
||||
let button_is_disabled = Signal::derive(cx, move || {
|
||||
disabled.get() || password.get().is_empty() || email.get().is_empty()
|
||||
});
|
||||
|
||||
view! { cx,
|
||||
<form on:submit=|ev|ev.prevent_default()>
|
||||
<p>{ title }</p>
|
||||
{move || error.get().map(|err| view!{ cx,
|
||||
<p style ="color:red;" >{ err }</p>
|
||||
})}
|
||||
<input
|
||||
type = "email"
|
||||
required
|
||||
placeholder = "Email address"
|
||||
prop:disabled = move || disabled.get()
|
||||
on:keyup = move |ev: ev::KeyboardEvent| {
|
||||
let val = event_target_value(&ev);
|
||||
set_email.update(|v|*v = val);
|
||||
}
|
||||
// The `change` event fires when the browser fills the form automatically,
|
||||
on:change = move |ev| {
|
||||
let val = event_target_value(&ev);
|
||||
set_email.update(|v|*v = val);
|
||||
}
|
||||
/>
|
||||
<input
|
||||
type = "password"
|
||||
required
|
||||
placeholder = "Password"
|
||||
prop:disabled = move || disabled.get()
|
||||
on:keyup = move |ev: ev::KeyboardEvent| {
|
||||
match &*ev.key() {
|
||||
"Enter" => {
|
||||
dispatch_action();
|
||||
}
|
||||
_=> {
|
||||
let val = event_target_value(&ev);
|
||||
set_password.update(|p|*p = val);
|
||||
}
|
||||
}
|
||||
}
|
||||
// The `change` event fires when the browser fills the form automatically,
|
||||
on:change = move |ev| {
|
||||
let val = event_target_value(&ev);
|
||||
set_password.update(|p|*p = val);
|
||||
}
|
||||
/>
|
||||
<button
|
||||
prop:disabled = move || button_is_disabled.get()
|
||||
on:click = move |_| dispatch_action()
|
||||
>
|
||||
{ action_label }
|
||||
</button>
|
||||
</form>
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,4 @@
|
||||
pub mod credentials;
|
||||
pub mod navbar;
|
||||
|
||||
pub use self::{credentials::*, navbar::*};
|
||||
@@ -0,0 +1,32 @@
|
||||
use leptos::*;
|
||||
use leptos_router::*;
|
||||
|
||||
use crate::Page;
|
||||
|
||||
#[component]
|
||||
pub fn NavBar<F>(
|
||||
cx: Scope,
|
||||
logged_in: Signal<bool>,
|
||||
on_logout: F,
|
||||
) -> impl IntoView
|
||||
where
|
||||
F: Fn() + 'static + Clone,
|
||||
{
|
||||
view! { cx,
|
||||
<nav>
|
||||
<Show
|
||||
when = move || logged_in.get()
|
||||
fallback = |cx| view! { cx,
|
||||
<A href=Page::Login.path() >"Login"</A>
|
||||
" | "
|
||||
<A href=Page::Register.path() >"Register"</A>
|
||||
}
|
||||
>
|
||||
<a href="#" on:click={
|
||||
let on_logout = on_logout.clone();
|
||||
move |_| on_logout()
|
||||
}>"Logout"</a>
|
||||
</Show>
|
||||
</nav>
|
||||
}
|
||||
}
|
||||
130
examples/login_with_token_csr_only/client/src/lib.rs
Normal file
130
examples/login_with_token_csr_only/client/src/lib.rs
Normal file
@@ -0,0 +1,130 @@
|
||||
use gloo_storage::{LocalStorage, Storage};
|
||||
use leptos::*;
|
||||
use leptos_router::*;
|
||||
|
||||
use api_boundary::*;
|
||||
|
||||
mod api;
|
||||
mod components;
|
||||
mod pages;
|
||||
|
||||
use self::{components::*, pages::*};
|
||||
|
||||
const DEFAULT_API_URL: &str = "/api";
|
||||
const API_TOKEN_STORAGE_KEY: &str = "api-token";
|
||||
|
||||
#[component]
|
||||
pub fn App(cx: Scope) -> impl IntoView {
|
||||
// -- signals -- //
|
||||
|
||||
let authorized_api = create_rw_signal(cx, None::<api::AuthorizedApi>);
|
||||
let user_info = create_rw_signal(cx, None::<UserInfo>);
|
||||
let logged_in = Signal::derive(cx, move || authorized_api.get().is_some());
|
||||
|
||||
// -- actions -- //
|
||||
|
||||
let fetch_user_info = create_action(cx, move |_| async move {
|
||||
match authorized_api.get() {
|
||||
Some(api) => match api.user_info().await {
|
||||
Ok(info) => {
|
||||
user_info.update(|i| *i = Some(info));
|
||||
}
|
||||
Err(err) => {
|
||||
log::error!("Unable to fetch user info: {err}")
|
||||
}
|
||||
},
|
||||
None => {
|
||||
log::error!("Unable to fetch user info: not logged in")
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let logout = create_action(cx, move |_| async move {
|
||||
match authorized_api.get() {
|
||||
Some(api) => match api.logout().await {
|
||||
Ok(_) => {
|
||||
authorized_api.update(|a| *a = None);
|
||||
user_info.update(|i| *i = None);
|
||||
}
|
||||
Err(err) => {
|
||||
log::error!("Unable to logout: {err}")
|
||||
}
|
||||
},
|
||||
None => {
|
||||
log::error!("Unable to logout user: not logged in")
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// -- callbacks -- //
|
||||
|
||||
let on_logout = move || {
|
||||
logout.dispatch(());
|
||||
};
|
||||
|
||||
// -- init API -- //
|
||||
|
||||
let unauthorized_api = api::UnauthorizedApi::new(DEFAULT_API_URL);
|
||||
if let Ok(token) = LocalStorage::get(API_TOKEN_STORAGE_KEY) {
|
||||
let api = api::AuthorizedApi::new(DEFAULT_API_URL, token);
|
||||
authorized_api.update(|a| *a = Some(api));
|
||||
fetch_user_info.dispatch(());
|
||||
}
|
||||
|
||||
log::debug!("User is logged in: {}", logged_in.get());
|
||||
|
||||
// -- effects -- //
|
||||
|
||||
create_effect(cx, move |_| {
|
||||
log::debug!("API authorization state changed");
|
||||
match authorized_api.get() {
|
||||
Some(api) => {
|
||||
log::debug!(
|
||||
"API is now authorized: save token in LocalStorage"
|
||||
);
|
||||
LocalStorage::set(API_TOKEN_STORAGE_KEY, api.token())
|
||||
.expect("LocalStorage::set");
|
||||
}
|
||||
None => {
|
||||
log::debug!("API is no longer authorized: delete token from LocalStorage");
|
||||
LocalStorage::delete(API_TOKEN_STORAGE_KEY);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
view! { cx,
|
||||
<Router>
|
||||
<NavBar logged_in on_logout />
|
||||
<main>
|
||||
<Routes>
|
||||
<Route
|
||||
path=Page::Home.path()
|
||||
view=move |cx| view! { cx,
|
||||
<Home user_info = user_info.into() />
|
||||
}
|
||||
/>
|
||||
<Route
|
||||
path=Page::Login.path()
|
||||
view=move |cx| view! { cx,
|
||||
<Login
|
||||
api = unauthorized_api
|
||||
on_success = move |api| {
|
||||
log::info!("Successfully logged in");
|
||||
authorized_api.update(|v| *v = Some(api));
|
||||
let navigate = use_navigate(cx);
|
||||
navigate(Page::Home.path(), Default::default()).expect("Home route");
|
||||
fetch_user_info.dispatch(());
|
||||
} />
|
||||
}
|
||||
/>
|
||||
<Route
|
||||
path=Page::Register.path()
|
||||
view=move |cx| view! { cx,
|
||||
<Register api = unauthorized_api />
|
||||
}
|
||||
/>
|
||||
</Routes>
|
||||
</main>
|
||||
</Router>
|
||||
}
|
||||
}
|
||||
9
examples/login_with_token_csr_only/client/src/main.rs
Normal file
9
examples/login_with_token_csr_only/client/src/main.rs
Normal file
@@ -0,0 +1,9 @@
|
||||
use leptos::*;
|
||||
|
||||
use client::*;
|
||||
|
||||
pub fn main() {
|
||||
_ = console_log::init_with_level(log::Level::Debug);
|
||||
console_error_panic_hook::set_once();
|
||||
mount_to_body(|cx| view! { cx, <App /> })
|
||||
}
|
||||
20
examples/login_with_token_csr_only/client/src/pages/home.rs
Normal file
20
examples/login_with_token_csr_only/client/src/pages/home.rs
Normal file
@@ -0,0 +1,20 @@
|
||||
use crate::Page;
|
||||
use api_boundary::UserInfo;
|
||||
use leptos::*;
|
||||
use leptos_router::*;
|
||||
|
||||
#[component]
|
||||
pub fn Home(cx: Scope, user_info: Signal<Option<UserInfo>>) -> impl IntoView {
|
||||
view! { cx,
|
||||
<h2>"Leptos Login example"</h2>
|
||||
{move || match user_info.get() {
|
||||
Some(info) => view!{ cx,
|
||||
<p>"You are logged in with "{ info.email }"."</p>
|
||||
}.into_view(cx),
|
||||
None => view!{ cx,
|
||||
<p>"You are not logged in."</p>
|
||||
<A href=Page::Login.path() >"Login now."</A>
|
||||
}.into_view(cx)
|
||||
}}
|
||||
}
|
||||
}
|
||||
66
examples/login_with_token_csr_only/client/src/pages/login.rs
Normal file
66
examples/login_with_token_csr_only/client/src/pages/login.rs
Normal file
@@ -0,0 +1,66 @@
|
||||
use leptos::*;
|
||||
use leptos_router::*;
|
||||
|
||||
use api_boundary::*;
|
||||
|
||||
use crate::{
|
||||
api::{self, AuthorizedApi, UnauthorizedApi},
|
||||
components::credentials::*,
|
||||
Page,
|
||||
};
|
||||
|
||||
#[component]
|
||||
pub fn Login<F>(cx: Scope, api: UnauthorizedApi, on_success: F) -> impl IntoView
|
||||
where
|
||||
F: Fn(AuthorizedApi) + 'static + Clone,
|
||||
{
|
||||
let (login_error, set_login_error) = create_signal(cx, None::<String>);
|
||||
let (wait_for_response, set_wait_for_response) = create_signal(cx, false);
|
||||
|
||||
let login_action =
|
||||
create_action(cx, move |(email, password): &(String, String)| {
|
||||
log::debug!("Try to login with {email}");
|
||||
let email = email.to_string();
|
||||
let password = password.to_string();
|
||||
let credentials = Credentials { email, password };
|
||||
let on_success = on_success.clone();
|
||||
async move {
|
||||
set_wait_for_response.update(|w| *w = true);
|
||||
let result = api.login(&credentials).await;
|
||||
set_wait_for_response.update(|w| *w = false);
|
||||
match result {
|
||||
Ok(res) => {
|
||||
set_login_error.update(|e| *e = None);
|
||||
on_success(res);
|
||||
}
|
||||
Err(err) => {
|
||||
let msg = match err {
|
||||
api::Error::Fetch(js_err) => {
|
||||
format!("{js_err:?}")
|
||||
}
|
||||
api::Error::Api(err) => err.message,
|
||||
};
|
||||
error!(
|
||||
"Unable to login with {}: {msg}",
|
||||
credentials.email
|
||||
);
|
||||
set_login_error.update(|e| *e = Some(msg));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let disabled = Signal::derive(cx, move || wait_for_response.get());
|
||||
|
||||
view! { cx,
|
||||
<CredentialsForm
|
||||
title = "Please login to your account"
|
||||
action_label = "Login"
|
||||
action = login_action
|
||||
error = login_error.into()
|
||||
disabled
|
||||
/>
|
||||
<p>"Don't have an account?"</p>
|
||||
<A href=Page::Register.path()>"Register"</A>
|
||||
}
|
||||
}
|
||||
23
examples/login_with_token_csr_only/client/src/pages/mod.rs
Normal file
23
examples/login_with_token_csr_only/client/src/pages/mod.rs
Normal file
@@ -0,0 +1,23 @@
|
||||
pub mod home;
|
||||
pub mod login;
|
||||
pub mod register;
|
||||
|
||||
pub use self::{home::*, login::*, register::*};
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub enum Page {
|
||||
#[default]
|
||||
Home,
|
||||
Login,
|
||||
Register,
|
||||
}
|
||||
|
||||
impl Page {
|
||||
pub fn path(&self) -> &'static str {
|
||||
match self {
|
||||
Self::Home => "/",
|
||||
Self::Login => "/login",
|
||||
Self::Register => "/register",
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,77 @@
|
||||
use leptos::*;
|
||||
use leptos_router::*;
|
||||
|
||||
use api_boundary::*;
|
||||
|
||||
use crate::{
|
||||
api::{self, UnauthorizedApi},
|
||||
components::credentials::*,
|
||||
Page,
|
||||
};
|
||||
|
||||
#[component]
|
||||
pub fn Register(cx: Scope, api: UnauthorizedApi) -> impl IntoView {
|
||||
let (register_response, set_register_response) =
|
||||
create_signal(cx, None::<()>);
|
||||
let (register_error, set_register_error) =
|
||||
create_signal(cx, None::<String>);
|
||||
let (wait_for_response, set_wait_for_response) = create_signal(cx, false);
|
||||
|
||||
let register_action =
|
||||
create_action(cx, move |(email, password): &(String, String)| {
|
||||
let email = email.to_string();
|
||||
let password = password.to_string();
|
||||
let credentials = Credentials { email, password };
|
||||
log!("Try to register new account for {}", credentials.email);
|
||||
async move {
|
||||
set_wait_for_response.update(|w| *w = true);
|
||||
let result = api.register(&credentials).await;
|
||||
set_wait_for_response.update(|w| *w = false);
|
||||
match result {
|
||||
Ok(res) => {
|
||||
set_register_response.update(|v| *v = Some(res));
|
||||
set_register_error.update(|e| *e = None);
|
||||
}
|
||||
Err(err) => {
|
||||
let msg = match err {
|
||||
api::Error::Fetch(js_err) => {
|
||||
format!("{js_err:?}")
|
||||
}
|
||||
api::Error::Api(err) => err.message,
|
||||
};
|
||||
log::warn!(
|
||||
"Unable to register new account for {}: {msg}",
|
||||
credentials.email
|
||||
);
|
||||
set_register_error.update(|e| *e = Some(msg));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let disabled = Signal::derive(cx, move || wait_for_response.get());
|
||||
|
||||
view! { cx,
|
||||
<Show
|
||||
when = move || register_response.get().is_some()
|
||||
fallback = move |_| view!{ cx,
|
||||
<CredentialsForm
|
||||
title = "Please enter the desired credentials"
|
||||
action_label = "Register"
|
||||
action = register_action
|
||||
error = register_error.into()
|
||||
disabled
|
||||
/>
|
||||
<p>"Your already have an account?"</p>
|
||||
<A href=Page::Login.path()>"Login"</A>
|
||||
}
|
||||
>
|
||||
<p>"You have successfully registered."</p>
|
||||
<p>
|
||||
"You can now "
|
||||
<A href=Page::Login.path()>"login"</A>
|
||||
" with your new account."
|
||||
</p>
|
||||
</Show>
|
||||
}
|
||||
}
|
||||
18
examples/login_with_token_csr_only/server/Cargo.toml
Normal file
18
examples/login_with_token_csr_only/server/Cargo.toml
Normal file
@@ -0,0 +1,18 @@
|
||||
[package]
|
||||
name = "server"
|
||||
version = "0.0.0"
|
||||
edition = "2021"
|
||||
publish = false
|
||||
|
||||
[dependencies]
|
||||
anyhow = "1.0"
|
||||
api-boundary = "*"
|
||||
axum = { version = "0.6", features = ["headers"] }
|
||||
env_logger = "0.10"
|
||||
log = "0.4"
|
||||
mailparse = "0.14"
|
||||
pwhash = "1.0"
|
||||
thiserror = "1.0"
|
||||
tokio = { version = "1.25", features = ["macros", "rt-multi-thread"] }
|
||||
tower-http = { version = "0.4", features = ["cors"] }
|
||||
uuid = { version = "1.3", features = ["v4"] }
|
||||
114
examples/login_with_token_csr_only/server/src/adapters.rs
Normal file
114
examples/login_with_token_csr_only/server/src/adapters.rs
Normal file
@@ -0,0 +1,114 @@
|
||||
use crate::{application::*, Error};
|
||||
use api_boundary as json;
|
||||
use axum::{
|
||||
http::StatusCode,
|
||||
response::Json,
|
||||
response::{IntoResponse, Response},
|
||||
};
|
||||
use thiserror::Error;
|
||||
|
||||
impl From<InvalidEmailAddress> for json::Error {
|
||||
fn from(_: InvalidEmailAddress) -> Self {
|
||||
Self {
|
||||
message: "Invalid email address".to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<InvalidPassword> for json::Error {
|
||||
fn from(err: InvalidPassword) -> Self {
|
||||
let InvalidPassword::TooShort(min_len) = err;
|
||||
Self {
|
||||
message: format!("Invalid password (min. length = {min_len})"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<CreateUserError> for json::Error {
|
||||
fn from(err: CreateUserError) -> Self {
|
||||
let message = match err {
|
||||
CreateUserError::UserExists => "User already exits".to_string(),
|
||||
};
|
||||
Self { message }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<LoginError> for json::Error {
|
||||
fn from(err: LoginError) -> Self {
|
||||
let message = match err {
|
||||
LoginError::InvalidEmailOrPassword => {
|
||||
"Invalid email or password".to_string()
|
||||
}
|
||||
};
|
||||
Self { message }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<LogoutError> for json::Error {
|
||||
fn from(err: LogoutError) -> Self {
|
||||
let message = match err {
|
||||
LogoutError::NotLoggedIn => "No user is logged in".to_string(),
|
||||
};
|
||||
Self { message }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<AuthError> for json::Error {
|
||||
fn from(err: AuthError) -> Self {
|
||||
let message = match err {
|
||||
AuthError::NotAuthorized => "Not authorized".to_string(),
|
||||
};
|
||||
Self { message }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<CredentialParsingError> for json::Error {
|
||||
fn from(err: CredentialParsingError) -> Self {
|
||||
match err {
|
||||
CredentialParsingError::EmailAddress(err) => err.into(),
|
||||
CredentialParsingError::Password(err) => err.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum CredentialParsingError {
|
||||
#[error(transparent)]
|
||||
EmailAddress(#[from] InvalidEmailAddress),
|
||||
#[error(transparent)]
|
||||
Password(#[from] InvalidPassword),
|
||||
}
|
||||
|
||||
impl TryFrom<json::Credentials> for Credentials {
|
||||
type Error = CredentialParsingError;
|
||||
fn try_from(
|
||||
json::Credentials { email, password }: json::Credentials,
|
||||
) -> Result<Self, Self::Error> {
|
||||
let email: EmailAddress = email.parse()?;
|
||||
let password = Password::try_from(password)?;
|
||||
Ok(Self { email, password })
|
||||
}
|
||||
}
|
||||
|
||||
impl IntoResponse for Error {
|
||||
fn into_response(self) -> Response {
|
||||
let (code, value) = match self {
|
||||
Self::Logout(err) => {
|
||||
(StatusCode::BAD_REQUEST, json::Error::from(err))
|
||||
}
|
||||
Self::Login(err) => {
|
||||
(StatusCode::BAD_REQUEST, json::Error::from(err))
|
||||
}
|
||||
Self::Credentials(err) => {
|
||||
(StatusCode::BAD_REQUEST, json::Error::from(err))
|
||||
}
|
||||
Self::CreateUser(err) => {
|
||||
(StatusCode::BAD_REQUEST, json::Error::from(err))
|
||||
}
|
||||
Self::Auth(err) => {
|
||||
(StatusCode::UNAUTHORIZED, json::Error::from(err))
|
||||
}
|
||||
};
|
||||
(code, Json(value)).into_response()
|
||||
}
|
||||
}
|
||||
159
examples/login_with_token_csr_only/server/src/application.rs
Normal file
159
examples/login_with_token_csr_only/server/src/application.rs
Normal file
@@ -0,0 +1,159 @@
|
||||
use mailparse::addrparse;
|
||||
use pwhash::bcrypt;
|
||||
use std::{collections::HashMap, str::FromStr, sync::RwLock};
|
||||
use thiserror::Error;
|
||||
use uuid::Uuid;
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct AppState {
|
||||
users: RwLock<HashMap<EmailAddress, Password>>,
|
||||
tokens: RwLock<HashMap<Uuid, EmailAddress>>,
|
||||
}
|
||||
|
||||
impl AppState {
|
||||
pub fn create_user(
|
||||
&self,
|
||||
credentials: Credentials,
|
||||
) -> Result<(), CreateUserError> {
|
||||
let Credentials { email, password } = credentials;
|
||||
let user_exists = self.users.read().unwrap().get(&email).is_some();
|
||||
if user_exists {
|
||||
return Err(CreateUserError::UserExists);
|
||||
}
|
||||
self.users.write().unwrap().insert(email, password);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn login(
|
||||
&self,
|
||||
email: EmailAddress,
|
||||
password: &str,
|
||||
) -> Result<Uuid, LoginError> {
|
||||
let valid_credentials = self
|
||||
.users
|
||||
.read()
|
||||
.unwrap()
|
||||
.get(&email)
|
||||
.map(|hashed_password| hashed_password.verify(password))
|
||||
.unwrap_or(false);
|
||||
if !valid_credentials {
|
||||
Err(LoginError::InvalidEmailOrPassword)
|
||||
} else {
|
||||
let token = Uuid::new_v4();
|
||||
self.tokens.write().unwrap().insert(token, email);
|
||||
Ok(token)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn logout(&self, token: &str) -> Result<(), LogoutError> {
|
||||
let token = token
|
||||
.parse::<Uuid>()
|
||||
.map_err(|_| LogoutError::NotLoggedIn)?;
|
||||
self.tokens.write().unwrap().remove(&token);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn authorize_user(
|
||||
&self,
|
||||
token: &str,
|
||||
) -> Result<CurrentUser, AuthError> {
|
||||
token
|
||||
.parse::<Uuid>()
|
||||
.map_err(|_| AuthError::NotAuthorized)
|
||||
.and_then(|token| {
|
||||
self.tokens
|
||||
.read()
|
||||
.unwrap()
|
||||
.get(&token)
|
||||
.cloned()
|
||||
.map(|email| CurrentUser { email, token })
|
||||
.ok_or(AuthError::NotAuthorized)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum CreateUserError {
|
||||
#[error("The user already exists")]
|
||||
UserExists,
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum LoginError {
|
||||
#[error("Invalid email or password")]
|
||||
InvalidEmailOrPassword,
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum LogoutError {
|
||||
#[error("You are not logged in")]
|
||||
NotLoggedIn,
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum AuthError {
|
||||
#[error("You are not authorized")]
|
||||
NotAuthorized,
|
||||
}
|
||||
|
||||
pub struct Credentials {
|
||||
pub email: EmailAddress,
|
||||
pub password: Password,
|
||||
}
|
||||
|
||||
#[derive(Clone, Eq, PartialEq, Hash)]
|
||||
pub struct EmailAddress(String);
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
#[error("The given email address is invalid")]
|
||||
pub struct InvalidEmailAddress;
|
||||
|
||||
impl FromStr for EmailAddress {
|
||||
type Err = InvalidEmailAddress;
|
||||
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||
addrparse(s)
|
||||
.ok()
|
||||
.and_then(|parsed| parsed.extract_single_info())
|
||||
.map(|single_info| Self(single_info.addr))
|
||||
.ok_or(InvalidEmailAddress)
|
||||
}
|
||||
}
|
||||
|
||||
impl EmailAddress {
|
||||
pub fn into_string(self) -> String {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct CurrentUser {
|
||||
pub email: EmailAddress,
|
||||
pub token: Uuid,
|
||||
}
|
||||
|
||||
const MIN_PASSWORD_LEN: usize = 3;
|
||||
|
||||
pub struct Password(String);
|
||||
|
||||
impl Password {
|
||||
pub fn verify(&self, password: &str) -> bool {
|
||||
bcrypt::verify(password, &self.0)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Error)]
|
||||
pub enum InvalidPassword {
|
||||
#[error("Password is too short (min. length is {0})")]
|
||||
TooShort(usize),
|
||||
}
|
||||
|
||||
impl TryFrom<String> for Password {
|
||||
type Error = InvalidPassword;
|
||||
fn try_from(p: String) -> Result<Self, Self::Error> {
|
||||
if p.len() < MIN_PASSWORD_LEN {
|
||||
return Err(InvalidPassword::TooShort(MIN_PASSWORD_LEN));
|
||||
}
|
||||
let hashed = bcrypt::hash(&p).unwrap();
|
||||
Ok(Self(hashed))
|
||||
}
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user