Compare commits

...

62 Commits

Author SHA1 Message Date
Greg Johnston
f0f7d900a1 revert PR #538 2023-02-18 17:27:00 -05:00
Greg Johnston
59ad6a4725 revert accident 2023-02-18 16:03:20 -05:00
Greg Johnston
884dacbc6c fix example 2023-02-18 16:02:19 -05:00
Dmitrii Kuzmin
9c572f7617 fix(examples): hackernews_axum styles href (#536) 2023-02-18 15:17:54 -05:00
jquesada2016
487dba90d8 fix: off-by-one error in <For/> (closes #533) (#538) 2023-02-18 14:57:14 -05:00
Greg Johnston
20f24d2f3a fix: building leptos_reactive in release mode (#540) 2023-02-18 12:45:58 -05:00
Greg Johnston
20cbc240ee v0.2.0-alpha2 (#539) 2023-02-18 12:45:46 -05:00
jquesada2016
f2f52b2533 change: move signal method implementations into traits in signal prelude (#490) 2023-02-18 07:30:03 -05:00
Sean Aye
46d6e3f78c fix compile of leptos dom (#535) 2023-02-17 18:25:58 -05:00
Greg Johnston
586f524015 feature: in-order streaming and async rendering (#496) 2023-02-17 17:31:32 -05:00
Greg Johnston
79781ec20c Fix test import location 2023-02-17 16:18:22 -05:00
Greg Johnston
91f6d9a404 What's in a name? 2023-02-17 07:25:42 -05:00
Greg Johnston
76a74ecde2 fix: hydration IDs for elements following <Suspense/> (closes #527) (#531) 2023-02-16 21:12:52 -05:00
Greg Johnston
0071a48b8a feature: reintroduce limited template-node cloning w/ template macro (#526) 2023-02-16 07:02:01 -05:00
Greg Johnston
8d42e91eb8 fix: top-level SVG in view macro with new exports (#525) 2023-02-15 15:38:06 -05:00
Greg Johnston
00a796d204 change: tweak API of Errors and implement IntoIter (#522) 2023-02-15 14:03:16 -05:00
henrik
bde585dc3e feature: enable cargo-leptos to reload multiple CSS files (#524) 2023-02-14 18:51:47 -05:00
Greg Johnston
0a534bd7fd Reexport web-sys event types in leptos::ev to make it easier to type handlers (#521) 2023-02-13 20:45:46 -05:00
Greg Johnston
50d8eae694 fix: correct namespace for Unit in empty views (closes #518) (#520) 2023-02-13 20:25:26 -05:00
martin frances
e732a4952b leptos_dom erros.rs remove<E>() does not need to be generic. (#516)
* leptos_dom erros.rs remove<E>() does not need to be generic.

* fixed up errors.remove().
2023-02-13 20:25:11 -05:00
Greg Johnston
8a99623fd6 0.2.0-alpha (#515) 2023-02-13 07:49:29 -05:00
Greg Johnston
7d6c4930e4 remove .unwrap() from redirect in Actix integration (#514) 2023-02-13 06:02:43 -05:00
IcosaHedron
81d6689cc0 do not unwrap use_context in integrations axum redirect (#513) 2023-02-12 21:59:12 -05:00
Greg Johnston
989b5b93c3 CI: fix Wasm testing (#511) 2023-02-12 19:39:32 -05:00
Greg Johnston
ca510f72c1 fix: SSR export in Wasm mode (#512) 2023-02-12 19:12:15 -05:00
Greg Johnston
6dd3be75d1 fix: import in leptos_dom and add Wasm build to CI for regressions (#510) 2023-02-12 18:58:57 -05:00
g-re-g
51e11e756a Typos and a small cleanup (#509) 2023-02-12 18:11:31 -05:00
Greg Johnston
1dbcfe2861 change: reorganize module exports and reexports (#503) 2023-02-12 17:04:36 -05:00
Greg Johnston
db3f46c501 Add docs on testing (closes #489) (#508) 2023-02-12 17:03:12 -05:00
Greg Johnston
1cba54d47e fix: <For/> in todomvc example (#504) 2023-02-11 16:30:09 -05:00
Greg Johnston
d1ae3b49cc docs: further additions (#505) 2023-02-11 15:55:43 -05:00
Greg Johnston
6bab4ad966 apply new formatting everywhere (#502) 2023-02-11 14:30:06 -05:00
jquesada2016
d4648da5c6 chore: add workspace rustfmt.tml (#483) 2023-02-11 14:25:55 -05:00
Greg Johnston
cf7deaaea3 fix: proper disposal of nested route scopes (#499) 2023-02-11 14:12:59 -05:00
g-re-g
d0cacecfc6 Allow literal string as class in view macro (#500) 2023-02-10 22:43:40 -05:00
Greg Johnston
ce2c3ec97c examples: remove unused index.html (#497) 2023-02-10 08:02:26 -05:00
martin frances
b9f05f94ce chore: remove unused .clone() call in <Suspense/>. (#486) 2023-02-08 20:44:10 -05:00
Greg Johnston
fe7aacb0c8 Handle <ErrorBoundary/> hydration correctly (closes #456) 2023-02-08 20:32:59 -05:00
Greg Johnston
3fd3e73a10 Correctly handle custom elements in SSR 2023-02-08 20:32:59 -05:00
Greg Johnston
7dca740e47 Add error boundary example to list 2023-02-08 20:32:59 -05:00
Greg Johnston
73420affed Basic error boundary example 2023-02-08 20:32:59 -05:00
Greg Johnston
7c25f59a68 Update README.md 2023-02-08 20:32:32 -05:00
Greg Johnston
c24874d9c8 change: add Scope to view function in <For/> to avoid memory "leak" (#492) 2023-02-08 20:28:04 -05:00
Greg Johnston
4759dfcb60 missing ; 2023-02-08 14:34:57 -05:00
Greg Johnston
ca9419b53f fix: fix debug_warn behavior in reactive crate and remove log dependency (#491) 2023-02-08 07:04:01 -05:00
jquesada2016
765006158a change: NodeRef<HtmlElement<Div>> generics to NodeRef<Div> (#481) 2023-02-07 20:13:25 -05:00
Greg Johnston
8a1adaefaf fix: typed route params with #[derive(Params)] (#488) 2023-02-07 17:28:46 -05:00
Greg Johnston
086326324e Fix inner_html in SSR (#487) 2023-02-07 13:14:14 -05:00
martin frances
e59ee6329e Minor: Clippy router now uses types OnFormData and OnResponse. (#484) 2023-02-07 09:52:29 -05:00
Greg Johnston
a2b31a51d9 fix: errors on 404 page in axum_errors example (#485) 2023-02-07 09:51:52 -05:00
Jan
b0a98d8b4f Better styling for router related components (#477) 2023-02-06 18:34:39 -05:00
Greg Johnston
6931d3904b remove unnecessary "openssl" feature from Actix examples (#480) 2023-02-06 09:10:09 -05:00
Greg Johnston
e380097a9e Create README.md 2023-02-05 21:54:16 -05:00
Greg Johnston
44c18da324 docs: (in-progress) new tutorial/guide format with integrated CodeSandboxes (#375) 2023-02-05 21:33:42 -05:00
Greg Johnston
256cf0c59b Remove old book 2023-02-05 21:28:52 -05:00
Greg Johnston
0765e51db8 fix: adding/removing errors from <ErrorBoundary/> (#478) 2023-02-05 21:23:02 -05:00
Greg Johnston
45d4ebccd8 fix: cargo doc in projects using #[server] (#476) 2023-02-05 19:12:32 -05:00
Greg Johnston
352601aa42 fix: correct out-of-order streaming behavior (#475) 2023-02-05 17:29:35 -05:00
g-re-g
7f77910e91 impl From<&str> for MaybeSignal<String> (#472) 2023-02-04 16:47:40 -05:00
Ben Wishovich
76aeb573bf fix: convert site_address to site_addr to match cargo-leptos (#462) 2023-02-04 16:37:41 -05:00
Greg Johnston
e0bf8f5b6d fix: fix node_ref in SSR (#471) 2023-02-04 15:37:59 -05:00
Greg Johnston
5ace580edb fix: don't override element event listeners with component event listeners (closes #461) (#470) 2023-02-04 15:37:48 -05:00
190 changed files with 12077 additions and 7361 deletions

View File

@@ -30,6 +30,9 @@ jobs:
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
@@ -43,4 +46,3 @@ jobs:
- name: Run tests with all features
run: cargo make ci

View File

@@ -11,30 +11,27 @@ members = [
# integrations
"integrations/actix",
"integrations/axum",
"integrations/utils",
# libraries
"meta",
"router",
# book
"docs/book/project/ch02_getting_started",
"docs/book/project/ch03_building_ui",
"docs/book/project/ch04_reactivity",
]
exclude = ["benchmarks", "examples"]
[workspace.package]
version = "0.1.3"
version = "0.2.0-alpha2"
[workspace.dependencies]
leptos = { path = "./leptos", default-features = false, version = "0.1.3" }
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.1.3" }
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.1.3" }
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.1.3" }
leptos_server = { path = "./leptos_server", default-features = false, version = "0.1.3" }
leptos_config = { path = "./leptos_config", default-features = false, version = "0.1.3" }
leptos_router = { path = "./router", version = "0.1.3" }
leptos_meta = { path = "./meta", default-feature = false, version = "0.1.3" }
leptos = { path = "./leptos", default-features = false, version = "0.2.0-alpha2" }
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.2.0-alpha2" }
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.2.0-alpha2" }
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.2.0-alpha2" }
leptos_server = { path = "./leptos_server", default-features = false, version = "0.2.0-alpha2" }
leptos_config = { path = "./leptos_config", default-features = false, version = "0.2.0-alpha2" }
leptos_router = { path = "./router", version = "0.2.0-alpha2" }
leptos_meta = { path = "./meta", default-feature = false, version = "0.2.0-alpha2" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.2.0-alpha2" }
[profile.release]
codegen-units = 1

View File

@@ -12,13 +12,17 @@ dependencies = ["build", "check-examples", "test"]
[tasks.build]
clear = true
dependencies = ["build-all"]
dependencies = ["build-all", "build-wasm"]
[tasks.build-all]
command = "cargo"
args = ["+nightly", "build-all-features"]
install_crate = "cargo-all-features"
[tasks.build-wasm]
clear = true
dependencies = [{ name = "build-wasm", path = "leptos" }]
[tasks.check-examples]
clear = true
dependencies = [

View File

@@ -78,7 +78,7 @@ rustup target add wasm32-unknown-unknown
If youre on `stable`, note the following:
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0-alpha", features = ["stable"] }`
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.1.0", features = ["stable"] }`
2. `nightly` enables the function call syntax for accessing and setting signals. If youre using `stable`,
youll just call `.get()`, `.set()`, or `.update()` manually. Check out the
[`counters_stable` example](https://github.com/leptos-rs/leptos/blob/main/examples/counters_stable/src/main.rs)
@@ -99,6 +99,10 @@ Open browser on [http://localhost:3000/](http://localhost:3000/)
## FAQs
### Whats up with the name?
*Leptos* (λεπτός) is an ancient Greek word meaning “thin, light, refine, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
### Is it production ready?
People usually mean one of three things by this question.

View File

@@ -1 +1 @@
book
book

14
docs/book/README.md Normal file
View File

@@ -0,0 +1,14 @@
This project contains the core of a new introductory guide to Leptos.
It is built using `mdbook`. You can view a local copy by installing `mdbook`
```bash
cargo install mdbook
```
and run the book with
```
mdbook serve
```
It should be available at `http://localhost:3000`.

View File

@@ -1,16 +0,0 @@
[book]
authors = ["Greg Johnston"]
language = "en"
multilingual = false
src = "src"
title = "The Leptos Guide"
[preprocessor]
[preprocessor.mermaid]
command = "mdbook-mermaid"
[output]
[output.html]
additional-js = ["mermaid.min.js", "mermaid-init.js"]

View File

@@ -1 +0,0 @@
mermaid.initialize({startOnLoad:true});

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +0,0 @@
[package]
name = "ch02_getting_started"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,14 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Leptos • Todos</title>
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
<link data-trunk rel="rust" data-wasm-opt="z" />
</head>
<body></body>
</html>

View File

@@ -1,5 +0,0 @@
use leptos::*;
fn main() {
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
}

View File

@@ -1,7 +0,0 @@
[package]
name = "ch03_building_ui"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,14 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Leptos • Todos</title>
<!-- This custom link tag with `data-trunk` tells Trunk to insert code here to load our Rust/Wasm code -->
<!-- `data-wasm-opt=z` tells the compiler to optimize for binary size in a release build -->
<link data-trunk rel="rust" data-wasm-opt="z" />
</head>
<body></body>
</html>

View File

@@ -1,41 +0,0 @@
use leptos::*;
fn main() {
mount_to_body(|cx| {
let name = "gbj";
let userid = 0;
// This will be filled by _ref=input below.
let input_element = NodeRef::<HtmlElement<Input>>::new(cx);
view! {
cx,
<main>
<h1>"My Tasks"</h1> // text nodes are wrapped in quotation marks
<h2>"by " {name}</h2>
<input
type="text" // attributes work just like they do in HTML
name="new-todo"
prop:value="todo" // `prop:` lets you set a property on a DOM node
value="initial" // side note: the DOM `value` attribute only sets *initial* value
// this is very important when working with forms!
_ref=input_element // `_ref` stores tis element in a variable
/>
<ul data-user=userid> // attributes can take expressions as values
<li class="todo my-todo" // here we set the `class` attribute
class:completed=true // `class:` also lets you toggle individual classes
on:click=|_| todo!() // `on:` adds an event listener
>
"Buy milk."
</li>
<li class="todo my-todo" class:completed=false>
"???"
</li>
<li class="todo my-todo" class:completed=false>
"Profit!!!"
</li>
</ul>
</main>
}
})
}

View File

@@ -1,7 +0,0 @@
[package]
name = "ch04_reactivity"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = "0.1"

View File

@@ -1,28 +0,0 @@
use leptos::*;
fn main() {
run_scope(create_runtime(), |cx| {
// signal
let (count, set_count) = create_signal(cx, 1);
// derived signal
let double_count = move || count() * 2;
// memo
let memoized_square = create_memo(cx, move |_| count() * count());
// effect
create_effect(cx, move |_| {
println!(
"count =\t\t{} \ndouble_count = \t{}, \nsquare = \t{}",
count(),
double_count(),
memoized_square()
);
});
set_count(1);
set_count(2);
set_count(3);
});
}

View File

@@ -1,10 +1,19 @@
# Introduction
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework. Together, well build a simple todo app—first as a client-side app, then as a full-stack app.
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework.
It will walk through the fundamental concepts you need to build applications,
beginning with a simple application rendered in the browser, and building toward a
full-stack application with server-side rendering and hydration.
The guide doesnt assume you know anything about fine-grained reactivity or the details of modern Web frameworks. It does assume you are familiar with the Rust programming language, HTML, CSS, and the DOM and other Web APIs.
The guide doesnt assume you know anything about fine-grained reactivity or the
details of modern Web frameworks. It does assume you are familiar with the Rust
programming language, HTML, CSS, and the DOM and basic Web APIs.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript) and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities to other frameworks like React (JavaScript), Yew (Rust), and Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to understand Leptos.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript)
and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities
to other frameworks like React (JavaScript), Svelte (JavaScript), Yew (Rust), and
Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to
understand Leptos.
You can find more detailed docs for each part of the API at [Docs.rs](https://docs.rs/leptos/latest/leptos/).

View File

@@ -1,37 +1,48 @@
# Getting Started
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch02_getting_started).
There are two basic paths to getting started with Leptos:
1. Client-side rendering with [Trunk](https://trunkrs.dev/)
2. Full-stack rendering with [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos)
For the early examples, it will be easiest to begin with Trunk. Well introduce
`cargo-leptos` a little later in this series.
The easiest way to get started using Leptos is to use [Trunk](https://trunkrs.dev/), as many of our [examples](https://github.com/leptos-rs/leptos/tree/main/examples) do. (Trunk is a simple build tool that includes a dev server.)
If you dont already have it installed, you can install Trunk by running
```bash
cargo install --lock trunk
cargo install trunk
```
Create a basic Rust binary project
```bash
cargo init leptos-todo
cargo init leptos-tutorial
```
Add `leptos` as a dependency to your `Cargo.toml` with the `csr` featured enabled. (That stands for “client-side rendering.” Well talk more about Leptoss support for server-side rendering and hydration later.)
```toml
leptos = "0.0"
`cd` into your new `leptos-tutorial` project and add `leptos` as a dependency
```bash
cargo add leptos
```
Youll want to set up a basic `index.html` with the following content:
Create a simple `index.html` in the root of the `leptos-tutorial` directory
```html
{{#include ../project/ch02_getting_started/index.html}}
<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>
```
Lets start with a very simple `main.rs`
And add a simple “Hello, world!” to your `main.rs`
```rust
use leptos::*;
```rust
{{#include ../project/ch02_getting_started/src/main.rs}}
fn main() {
mount_to_body(|_cx| view! { cx, <p>"Hello, world!"</p> })
}
```
Now run `trunk serve --open`. Trunk should automatically compile your app and open it in your default browser. If you make edits to `main.rs`, Trunk will recompile your source code and live-reload the page.
Now run `trunk serve --open`. Trunk should automatically compile your app and
open it in your default browser. If you make edits to `main.rs`, Trunk will
recompile your source code and live-reload the page.

View File

@@ -1,49 +0,0 @@
# Templating: Building User Interfaces
> The code for this chapter can be found [here](https://github.com/leptos-rs/leptos/tree/main/docs/book/project/ch03_building_ui).
## RSX and the `view!` macro
Okay, that “Hello, world!” was a little boring. Were going to be building a todo app, so lets look at something a little more complicated.
As you noticed in the first example, Leptos lets you describe your user interface with a declarative `view!` macro. It looks something like this:
```
view! {
cx, // this is the "reactive scope": more on that in the next chapter
<p>"..."</p> // this is some HTML-ish stuff
}
```
The “HTML-ish stuff” is what we call “RSX”: XML in Rust. (You may recognize the similarity to JSX, which is the mixed JavaScript/XML syntax used by frameworks like React.)
Heres a more in-depth example:
```rust
{{#include ../project/ch03_building_ui/src/main.rs}}
```
Youll probably notice a few things right away:
1. Elements without children need to be explicit closed with a `/` (`<input/>`, not `<input>`)
2. Text nodes are formatted as strings, i.e., wrapped in quotation marks (`"My Tasks"`)
3. Dynamic blocks can be inserted as children of elements, if wrapped in curly braces (`<h2>"by " {name}</h2>`)
4. Attributes can be given Rust expressions as values. This could be a string literal as in HTML (`<input type="text" .../>)` or a variable or block (`data-user=userid` or `on:click=move |_| { ... }`)
5. Unlike in HTML, whitespace is ignored and should be manually added (its `<h2>"by " {name}</h2>`, not `<h2>"by" {name}</h2>`; the space between `"by"` and `{name}` is ignored.)
6. Normal attributes work exactly like you'd think they would.
7. There are also special, prefixed attributes.
- `class:` lets you make targeted updates to a single class
- `on:` lets you add an event listener
- `prop:` lets you set a property on a DOM element
- `_ref` stores the DOM element youre creating in a variable
> You can find more information in the [reference docs for the `view!` macro](https://docs.rs/leptos/0.0.15/leptos/macro.view.html).
## But, wait...
This example shows some parts of the Leptos templating syntax. But its completely static.
How do you actually make the user interface interactive?
In the next chapter, well talk about “fine-grained reactivity,” which is the core of the Leptos framework.

View File

@@ -1,240 +0,0 @@
# Reactivity
## What is reactivity?
A few months ago, I completely baffled a friend by trying to explain what I was working on. “You have two variables, right? Call them `a` and `b`. And then you have a third variable, `c`. And when you update `a` or `b`, the value of `c` just _automatically changes_. And it changes _on the screen_! Automatically!”
“Isnt that just... how computers work?” she asked me, puzzled. If your programming experience is limited to something like spreadsheets, its a reasonable enough assumption. This is, after all, how math works.
But you know this isn't how ordinary imperative programming works.
```rust,should_panic
let mut a = 0;
let mut b = 0;
let c = a + b;
assert_eq!(c, 0); // sanity check
a = 2;
b = 2;
// now c = 4, right?
assert_eq!(c, 4); // nope. we all know this is wrong!
```
But thats _exactly_ how reactive programming works.
```rust
use leptos::*;
run_scope(create_runtime(), |cx| {
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
let c = move || a() + b();
assert_eq!(c(), 0); // yep, still true
set_a(2);
set_b(2);
assert_eq!(c(), 4); // ohhhhh yeah.
});
```
Hopefully, this makes some intuitive sense. After all, `c` is a closure. Calling it again causes it to access its values a second time. This isnt _that_ cool.
```rust
use leptos::*;
run_scope(create_runtime(), |cx| {
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
let c = move || a() + b();
create_effect(cx, move |_| {
println!("c = {}", c()); // prints "c = 0"
});
set_a(2); // prints "c = 2"
set_b(2); // prints "c = 4"
});
```
This examples a little different. [`create_effect`](https://docs.rs/leptos/latest/leptos/fn.create_effect.html) defines a “side effect,” a bridge between the reactive system of signals and the outside world. Effects synchronize the reactive system with everything else: the console, the filesystem, an HTTP request, whatever.
Because the closure `c` is called within the effect and in turns calls the signals `a` and `b`, the effect automatically subscribes to the signals `a` and `b`. This means that whenever `a` or `b` is updated, the effect will re-run, logging the value again.
You can picture the reactive graph for this system like this:
```mermaid
graph TD;
A-->C;
B-->C;
C-->Effect;
```
This is the foundation on which _everything_ else is built.
## Reactive Primitives
### Overview
The reactive system is built on the interaction between these two halves: **signals** and **effects**. When a signal is called inside an effect, the effect automatically subscribes to the signal. When a signals value is updated, it automatically notifies all its subscribers, and they re-run.
The following simple example contains most of the core reactive concepts:
```rust
{{#include ../project/ch04_reactivity/src/main.rs}}
```
This creates a reactive graph like this:
```mermaid
graph TD;
count-->double_count;
count-->memoized_square;
count-->effect;
double_count-->effect;
memoized_square-->effect;
```
**Signals** are reactive values created using [`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html) or [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html).
**Derived Signals** computations in ordinary closures that rely on other signals. The computation re-runs whenever you access its value.
**Memos** are computations that are memoized with [create_memo](https://docs.rs/leptos/latest/leptos/fn.create_memo.html). Memos only re-run when one of their signal dependencies has changed.
And **effects** (created with [create_effect](<(https://docs.rs/leptos/latest/leptos/fn.create_effect.html)>) synchronize the reactive system with something outside it.
The rest of this chapter will walk through each of these concepts in more depth.
### Signals
A **signal** is a piece of data that may change over time, and notifies other code when it has changed. This is the core primitive of Leptoss reactive system.
Creating a signal is very simple. You call `create_signal`, passing in the reactive scope and the default value, and receive a tuple containing a `ReadSignal` and a `WriteSignal`.
```rust
let (value, set_value) = create_signal(cx, 0);
```
> If youve used signals in Sycamore or Solid, observables in MobX or Knockout, or a similar primitive in reactive library, you probably have a pretty good idea of how signals work in Leptos. If youre familiar with React, Yew, or Dioxus, you may recognize a similar pattern to their `use_state` hooks.
#### `ReadSignal<T>`
The [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) half of this tuple allows you to get the current value of the signal. Reading that value in a reactive context automatically subscribes to any further changes. You can access the value by simply calling the `ReadSignal` as a function.
```rust
let (value, set_value) = create_signal(cx, 0);
// calling value() with return the current value of the signal,
// and automatically track changes if you're in a reactive context
assert_eq!(value(), 0);
```
> Here, a **reactive context** means anywhere within an `Effect`. Leptoss templating system is built on top of its reactive system, so if youre reading the signals value within the template, the template will automatically subscribe to the signal and update exactly the value that needs to change in the DOM.
Calling a `ReadSignal` clones the value it contains. If thats too expensive, use [`ReadSignal::with()`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html#method.with) to borrow the value and do whatever you need.
```rust
struct MySuperExpensiveStruct {
a: String,
b: StructThatsSuperExpensiveToClone
}
let (value, set_value) = create_signal(cx, MySuperExpensiveStruct::default());
// ❌ this is going to clone the `StructThatsSuperExpensiveToClone` unnecessarily!
let lowercased = move || value().a.to_lowercase();
// ✅ only use what we need
let lowercased = move || value.with(|value: &MySuperExpensiveStruct| value.a.to_lowercase());
```
#### `WriteSignal<T>`
The [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) half of this tuple allows you to update the value of the signal, which will automatically notify anything thats listening to the value that something has changed. If you simply call the `WriteSignal` as a function, its value will be set to the argument you pass. If you want to mutate the value in place instead of replacing it, you can call [`WriteSignal::update`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html#method.update) instead.
```rust
// often you just want to replace the value
let (value, set_value) = create_signal(cx, 0);
set_value(1);
assert_eq!(value(), 1);
// sometimes you want to mutate something in place, like a Vec. Just call update()
let (items, set_items) = create_signal(cx, vec![0]);
set_items.update(|items: &mut Vec<i32>| items.push(1));
assert_eq!(items(), vec![1]);
```
> Under the hood, `set_value(1)` is just syntactic sugar for `set_value.update(|n| *n = 1)`.
#### `RwSignal<T>`
This kind of “read-write segregation,” in which the getter and the setter are stored in separate variables, may be familiar from the tuple-based ”hooks” pattern in libraries like React, Solid, Yew, or Dioxus. It encourages clear contracts between components. For example, if a child component only needs to be able to read a signal, but shouldnt be able to update it (and therefore trigger changes in other parts of the application), you can pass it only the `ReadSignal`.
Sometimes, however, you may prefer to keep the getter and setter combined in one variable. For example, its awkward and repetitive to store both halves of a signal in another data structure:
```rust
# use leptos::*;
// pretty repetitive
struct AppState {
count: ReadSignal<i32>,
set_count: WriteSignal<i32>,
name: ReadSignal<String>,
set_name: WriteSignal<String>
}
#[component]
fn App(cx: Scope) {
let (count, set_count) = create_signal(cx, 0);
let (name, set_name) = create_signal(cx, "Alice".to_string());
provide_context(cx, AppState {
count,
set_count,
name,
set_name
})
todo!()
}
```
Or maybe you just like to keep your getters and setters in one place.
In this case, you can use [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html) and the [`RwSignal`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html) type. This returns a **R**ead-**w**rite Signal, which has the same [`get`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get), [`with`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.with), [`set`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.set), and [`update`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.update) functions as the `ReadSignal` and `WriteSignal` halves.
```rust
# use leptos::*;
// better
struct AppState {
count: RwSignal<i32>,
name: RwSignal<String>,
}
#[component]
fn App(cx: Scope) {
let count = create_rw_signal(cx, 0);
let name = create_rw_signal(cx, "Alice".to_string());
provide_context(cx, AppState {
count,
name,
})
todo!()
}
```
If you still want to hand off read-only access to another part of the app, you can get a `ReadSignal` with [`RwSignal::read_only()`](https://docs.rs/leptos/latest/leptos/struct.RwSignal.html#method.get).
### Derived Signals
(todo)
### Memos
(todo)
### Effects
(todo)

View File

@@ -2,5 +2,40 @@
- [Introduction](./01_introduction.md)
- [Getting Started](./02_getting_started.md)
- [Templating: Building User Interfaces](./03_building_ui.md)
- [Reactivity: Making Things Interactive](./04_reactivity.md)
- [Building User Interfaces](./view/README.md)
- [A Basic Component](./view/01_basic_component.md)
- [Dynamic Attributes](./view/02_dynamic_attributes.md)
- [Components and Props](./view/03_components.md)
- [Iteration](./view/04_iteration.md)
- [Forms and Inputs](./view/05_forms.md)
- [Control Flow](./view/06_control_flow.md)
- [Error Handling](./view/07_errors.md)
- [Parent-Child Communication](./view/08_parent_child.md)
- [Passing Children to Components](./view/09_component_children.md)
- [Interlude: Reactivity and Functions](./interlude_functions.md)
- [Testing](./testing.md)
- [Interlude: Styling — CSS, Tailwind, Style.rs, and more]()
- [Async]()
- [Resource]()
- [Suspense]()
- [Transition]()
- [State Management]()
- [Interlude: Advanced Reactivity]()
- [Router]()
- [Fundamentals]()
- [defining `<Routes/>`]()
- [`<A/>`]()
- [`<Form/>`]()
- [Metadata]()
- [SSR]()
- [Models of SSR]()
- [`cargo-leptos`]()
- [Hydration Footguns]()
- [Request/Response]()
- [Headers]()
- [Cookies]()
- [Server Functions]()
- [Actions]()
- [Forms]()
- [`<ActionForm/>`s]()
- [Turning off WebAssembly]()

View File

@@ -0,0 +1,76 @@
# Interlude: Reactivity and Functions
One of our core contributors said to me recently: “I never used closures this often
until I started using Leptos.” And its true. Closures are at the heart of any Leptos
application. It sometimes looks a little silly:
```rust
// a signal holds a value, and can be updated
let (count, set_count) = create_signal(cx, 0);
// a derived signal is a function that accesses other signals
let double_count = move || count() * 2;
let count_is_odd = move || count() & 1 == 1;
let text = move || if count_is_odd() {
"odd"
} else {
"even"
};
// an effect automatically tracks the signals it depends on
// and re-runs when they change
create_effect(cx, move |_| {
log!("text = {}", text());
});
view! { cx,
<p>{move || text().to_uppercase()}</p>
}
```
Closures, closures everywhere!
But why?
## Functions and UI Frameworks
Functions are at the heart of every UI framework. And this makes perfect sense. Creating a user interface is basically divided into two phases:
1. initial rendering
2. updates
In a web framework, the framework does some kind of initial rendering. Then it hands control back over to the browser. When certain events fire (like a mouse click) or asynchronous tasks finish (like an HTTP request finishing), the browser wakes the framework back up to update something. The framework runs some kind of code to update your user interface, and goes back asleep until the browser wakes it up again.
The key phrase here is “runs some kind of code.” The natural way to “run some kind of code” at an arbitrary point in time—in Rust or in any other programming language—is to call a function. And in fact every UI framework is based on rerunning some kind of function over and over:
1. virtual DOM (VDOM) frameworks like React, Yew, or Dioxus rerun a component or render function over and over, to generate a virtual DOM tree that can be reconciled with the previous result to patch the DOM
2. compiled frameworks like Angular and Svelte divide your component templates into “create” and “update” functions, rerunning the update function when they detect a change to the components state
3. in fine-grained reactive frameworks like SolidJS, Sycamore, or Leptos, _you_ define the functions that re-run
Thats what all our components are doing.
Take our typical `<SimpleCounter/>` example in its simplest form:
```rust
#[component]
pub fn SimpleCounter(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, 0);
let increment = move |_| set_value.update(|value| *value += 1);
view! { cx,
<button on:click=increment>
{value}
</button>
}
}
```
The `SimpleCounter` function itself runs once. The `value` signal is created once. The framework hands off the `increment` function to the browser as an event listener. When you click the button, the browser calls `increment`, which updates `value` via `set_value`. And that updates the single text node represented in our view by `{value}`.
Closures are key to reactivity. They provide the framework with the ability to re-run the smallest possible unit of your application in responsive to a change.
So remember two things:
1. Your component function is a setup function, not a render function: it only runs once.
2. For values in your view template to be reactive, they must be functions: either signals (which implement the `Fn` traits) or closures.

180
docs/book/src/testing.md Normal file
View File

@@ -0,0 +1,180 @@
# Testing Your Components
Testing user interfaces can be relatively tricky, but really important. This article
will discuss a couple principles and approaches for testing a Leptos app.
## 1. Test business logic with ordinary Rust tests
In many cases, it makes sense to pull the logic out of your components and test
it separately. For some simple components, theres no particular logic to test, but
for many its worth using a testable wrapping type and implementing the logic in
ordinary Rust `impl` blocks.
For example, instead of embedding logic in a component directly like this:
```rust
#[component]
pub fn TodoApp(cx: Scope) -> impl IntoView {
let (todos, set_todos) = create_signal(cx, vec![Todo { /* ... */ }]);
// ⚠️ this is hard to test because it's embedded in the component
let maximum = move || todos.with(|todos| {
todos.iter().filter(|todo| todo.completed).sum()
});
}
```
You could pull that logic out into a separate data structure and test it:
```rust
pub struct Todos(Vec<Todo>);
impl Todos {
pub fn remaining(&self) -> usize {
todos.iter().filter(|todo| todo.completed).sum()
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_remaining {
// ...
}
}
#[component]
pub fn TodoApp(cx: Scope) -> impl IntoView {
let (todos, set_todos) = create_signal(cx, Todos(vec![Todo { /* ... */ }]));
// ✅ this has a test associated with it
let maximum = move || todos.with(Todos::remaining);
}
```
In general, the less of your logic is wrapped into your components themselves, the
more idiomatic your code will feel and the easier it will be to test.
## 2. Test components with `wasm-bindgen-test`
[`wasm-bindgen-test`](https://crates.io/crates/wasm-bindgen-test) is a great utility
for integrating or end-to-end testing WebAssembly apps in a headless browser.
To use this testing utility, you need to add `wasm-bindgen-test` to your `Cargo.toml`:
```toml
[dev-dependencies]
wasm-bindgen-test = "0.3.0"
```
You should create tests in a separate `tests` directory. You can then run your tests in the browser of your choice:
```bash
wasm-pack test --firefox
```
> To see the full setup, check out the tests for the [`counter`](https://github.com/leptos-rs/leptos/tree/main/examples/counter) example.
### Writing Your Tests
Most tests will involve some combination of vanilla DOM manipulation and comparison to a `view`. For example, heres a test [for the
`counter` example](https://github.com/leptos-rs/leptos/blob/main/examples/counter/tests/mod.rs).
First, we set up the testing environment.
```rust
use wasm_bindgen_test::*;
use counter::*;
use leptos::*;
use web_sys::HtmlElement;
// tell the test runner to run tests in the browser
wasm_bindgen_test_configure!(run_in_browser);
```
Im going to create a simpler wrapper for each test case, and mount it there.
This makes it easy to encapsulate the test results.
```rust
// like marking a regular test with #[test]
#[wasm_bindgen_test]
fn clear() {
let document = leptos::document();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
// start by rendering our counter and mounting it to the DOM
// note that we start at the initial value of 10
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
);
```
Well use some manual DOM operations to grab the `<div>` that wraps
the whole component, as well as the `clear` button.
```rust
// now we extract the buttons by iterating over the DOM
// this would be easier if they had IDs
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = test_wrapper
.query_selector("button")
.unwrap()
.unwrap()
.unchecked_into::<web_sys::HtmlElement>();
```
Now we can use ordinary DOM APIs to simulate user interaction.
```rust
// now let's click the `clear` button
clear.click();
```
You can test individual DOM element attributes or text node values. Sometimes
I like to test the whole view at once. We can do this by testing the elements
`outerHTML` against our expectations.
```rust
assert_eq!(
div.outer_html(),
// here we spawn a mini reactive system to render the test case
run_scope(create_runtime(), |cx| {
// it's as if we're creating it with a value of 0, right?
let (value, set_value) = create_signal(cx, 0);
// we can remove the event listeners because they're not rendered to HTML
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
// the view returned an HtmlElement<Div>, which is a smart pointer for
// a DOM element. So we can still just call .outer_html()
.outer_html()
})
);
```
That test involved us manually replicating the `view` thats inside the component.
There's actually an easier way to do this... We can just test against a `<SimpleCounter/>`
with the initial value `0`. This is where our wrapping element comes in: Ill just test
the wrappers `innerHTML` against another comparison case.
```rust
assert_eq!(test_wrapper.inner_html(), {
let comparison_wrapper = document.create_element("section").unwrap();
leptos::mount_to(
comparison_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
);
comparison_wrapper.inner_html()
});
}
```
This is only a very limited introduction to testing. But I hope its useful as you begin to build applications.
> For more, see [the testing section of the `wasm-bindgen` guide](https://rustwasm.github.io/wasm-bindgen/wasm-bindgen-test/index.html#testing-on-wasm32-unknown-unknown-with-wasm-bindgen-test).

View File

@@ -0,0 +1,143 @@
# A Basic Component
That “Hello, world!” was a *very* simple example. Lets move on to something a
little more like an ordinary app.
First, lets edit the `main` function so that, instead of rendering the whole
app, it just renders an `<App/>` component. Components are the basic unit of
composition and design in most web frameworks, and Leptos is no exception.
Conceptually, they are similar to HTML elements: they represent a section of the
DOM, with self-contained, defined behavior. Unlike HTML elements, they are in
`PascalCase`, so most Leptos applications will start with something like an
`<App/>` component.
```rust
fn main() {
leptos::mount_to_body(|cx| view! { cx, <App/> })
}
```
Now lets define our `<App/>` component itself. Because its relatively simple,
Ill give you the whole thing up front, then walk through it line by line.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button
on:click=move |_| {
set_count.update(|n| *n += 1);
}
>
"Click me"
{move || count.get()}
</button>
}
}
```
## The Component Signature
```rust
#[component]
```
Like all component definitions, this begins with the [`#[component]`](https://docs.rs/leptos/latest/leptos/attr.component.html) macro. `#[component]` annotates a function so it can be
used as a component in your Leptos application. Well see some of the other features of
this macro in a couple chapters.
```rust
fn App(cx: Scope) -> impl IntoView
```
Every component is a function with the following characteristics
1. It takes a reactive [`Scope`](https://docs.rs/leptos/latest/leptos/struct.Scope.html)
as its first argument. This `Scope` is our entrypoint into the reactive system.
By convention, its usually named `cx`.
2. You can include other arguments, which will be available as component “props.”
3. Component functions return `impl IntoView`, which is an opaque type that includes
anything you could return from a Leptos `view`.
## The Component Body
The body of the component function is a set-up function that runs once, not a
render function that re-runs multiple times. Youll typically use it to create a
few reactive variables, define any side effects that run in response to those values
changing, and describe the user interface.
```rust
let (count, set_count) = create_signal(cx, 0);
```
[`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html)
creates a signal, the basic unit of reactive change and state management in Leptos.
This returns a `(getter, setter)` tuple. To access the current value, youll
use `count.get()` (or, on `nightly` Rust, the shorthand `count()`). To set the
current value, youll call `set_count.set(...)` (or `set_count(...)`).
> `.get()` clones the value and `.set()` overwrites it. In many cases, its more
efficient to use `.with()` or `.update()`; check out the docs for [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) and [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) if youd like to learn more about those trade-offs at this point.
## The View
Leptos defines user interfaces using a JSX-like format via the [`view`](https://docs.rs/leptos/latest/leptos/macro.view.html) macro.
```rust
view! { cx,
<button
// define an event listener with on:
on:click=move |_| {
set_count.update(|n| *n += 1);
}
>
// text nodes are wrapped in quotation marks
"Click me: "
// blocks can include Rust code
{move || count.get()}
</button>
}
```
This should mostly be easy to understand: it looks like HTML, with a special
`on:click` to define a `click` event listener, a text node thats formatted like
a Rust string, and then...
```rust
{move || count.get()}
```
whatever that is.
People sometimes joke that they use more closures in their first Leptos application
than theyve ever used in their lives. And fair enough. Basically, passing a function
into the view tells the framework: “Hey, this is something that might change.”
When we click the button and call `set_count`, the `count` signal is updated. This
`move || count.get()` closure, whose value depends on the value of `count`, re-runs,
and the framework makes a targeted update to that one specific text node, touching
nothing else in your application. This is what allows for extremely efficient updates
to the DOM.
Now, if you have Clippy on—or if you have a particularly sharp eye—you might notice
that this closure is redundant, at least if youre in `nightly` Rust. If youre using
Leptos with `nightly` Rust, signals are already functions, so the closure is unnecessary.
As a result, you can write a simpler view:
```rust
view! { cx,
<button /* ... */>
"Click me: "
// identical to {move || count.get()}
{count}
</button>
}
```
Remember—and this is *very important*—only functions are reactive. This means that
`{count}` and `{count()}` do very different things in your view. `{count}` passes
in a function, telling the framework to update the view every time `count` changes.
`{count()}` access the value of `count` once, and passes an `i32` into the view,
rendering it once, unreactively. You can see the difference in the CodeSandbox below!
> Throughout this tutorial, well use CodeSandbox to show interactive examples. To
show the browser in the sandbox, you may need to click `Add DevTools >
Other Previews > 8080.` Hover over any of the variables to show Rust-Analyzer details
and docs for whats going on. Feel free to fork the examples to play with them yourself!
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-3d74p3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A31%2C%22endLineNumber%22%3A19%2C%22startColumn%22%3A31%2C%22startLineNumber%22%3A19%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,104 @@
# `view`: Dynamic Attributes and Classes
So far weve seen how to use the `view` macro to create event listeners and to
create dynamic text by passing a function (such as a signal) into the view.
But of course there are other things you might want to update in your user interface.
In this section, well look at how to update attributes and classes dynamically,
and well introduce the concept of a **derived signal**.
Lets start with a simple component that should be familiar: click a button to
increment a counter.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button
on:click=move |_| {
set_count.update(|n| *n += 1);
}
```
So far, this is just the example from the last chapter.
## Dynamic Classes
Now lets say Id like to update the list of CSS classes on this element dynamically.
For example, lets say I want to add the class `red` when the count is odd. I can
do this using the `class:` syntax.
```rust
class:red=move || count() & 1 == 1
```
`class:` attributes take
1. the class name, following the colon (`red`)
2. a value, which can be a `bool` or a function that returns a `bool`
When the value is `true`, the class is added. When the value is `false`, the class
is removed. And if the value is a function that accesses a signal, the class will
reactively update when the signal changes.
Now every time I click the button, the text should toggle between red and black as
the number switches between even and odd.
## Dynamic Attributes
The same applies to plain attributes. Passing a plain string or primitive value to
an attribute gives it a static value. Passing a function (including a signal) to
an attribute causes it to update its value reactively. Lets add another element
to our view:
```rust
<progress
max="50"
// signals are functions, so this <=> `move || count.get()`
value=count
/>
```
Now every time we set the count, not only will the `class` of the `<button>` be
toggled, but the `value` of the `<progress>` bar will increase, which means that
our progress bar will move forward.
## Derived Signals
Lets go one layer deeper, just for fun.
You already know that we create reactive interfaces just by passing functions into
the `view`. This means that we can easily change our progress bar. For example,
suppose we want it to move twice as fast:
```rust
<progress
max="50"
value=move || count() * 2
/>
```
But imagine we want to reuse that calculation in more than one place. You can do this
using a **derived signal**: a closure that accesses a signal.
```rust
let double_count = move || count() * 2;
/* insert the rest of the view */
<progress
max="50"
// we use it once here
value=double_count
/>
<p>
"Double Count: "
// and again here
{double_count}
</p>
```
Derived signals let you create reactive computed values that can be used in multiple
places in your application with minimal overhead.
> Note: Using a derived signal like this means that the calculation runs once per
signal change per place we access `double_count`; in other words, twice. This is a
very cheap calculation, so thats fine. Well look at memos in a later chapter, which
are designed to solve this problem for expensive calculations.
<iframe src="https://codesandbox.io/p/sandbox/2-dynamic-attribute-pqyvzl?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,317 @@
# Components and Props
So far, weve been building our whole application in a single component. This
is fine for really tiny examples, but in any real application youll need to
break the user interface out into multiple components, so you can break your
interface down into smaller, reusable, composable chunks.
Lets take our progress bar example. Imagine that you want two progress bars
instead of one: one that advances one tick per click, one that advances two ticks
per click.
You _could_ do this by just creating two `<progress>` elements:
```rust
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! {
<progress
max="50"
value=progress
/>
<progress
max="50"
value=double_count
/>
```
But of course, this doesnt scale very well. If you want to add a third progress
bar, you need to add this code another time. And if you want to edit anything
about it, you need to edit it in triplicate.
Instead, lets create a `<ProgressBar/>` component.
```rust
#[component]
fn ProgressBar(
cx: Scope
) -> impl IntoView {
view! { cx,
<progress
max="50"
// hmm... where will we get this from?
value=progress
/>
}
}
```
Theres just one problem: `progress` is not defined. Where should it come from?
When we were defining everything manually, we just used the local variable names.
Now we need some way to pass an argument into the component.
## Component Props
We do this using component properties, or “props.” If youve used another frontend
framework, this is probably a familiar idea. Basically, properties are to components
as attributes are to HTML elements: they let you pass additional information into
the component.
In Leptos, you define props by giving additional arguments to the component function.
```rust
#[component]
fn ProgressBar(
cx: Scope,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max="50"
// now this works
value=progress
/>
}
}
```
Now we can use our component in the main `<App/>` components view.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
// now we use our component!
<ProgressBar progress=count/>
}
}
```
Using a component in the view looks a lot like using an HTML element. Youll
notice that you can easily tell the difference between an element and a component
because components always have `PascalCase` names. You pass the `progress` prop
in as if it were an HTML element attribute. Simple.
> ### Important Note
> For every `Component`, Leptos generates a corresponding `ComponentProps` type. This
is what allows us to have named props, when Rust does not have named function parameters.
If youre defining a component in one module and importing it into another, make
sure you include this `ComponentProps` type:
>
> `use progress_bar::{ProgressBar, ProgressBarProps};`
### Reactive and Static Props
Youll notice that throughout this example, `progress` takes a reactive
`ReadSignal<i32>`, and not a plain `i32`. This is **very important**.
Component props have no special meaning attached to them. A component is simply
a function that runs once to set up the user interface. The only way to tell the
interface to respond to changing is to pass it a signal type. So if you have a
component property that will change over time, like our `progress`, it should
be a signal.
### `optional` Props
Right now the `max` setting is hard-coded. Lets take that as a prop too. But
lets add a catch: lets make this prop optional by annotating the particular
argument to the component function with `#[prop(optional)]`.
```rust
#[component]
fn ProgressBar(
cx: Scope,
// mark this prop optional
// you can specify it or not when you use <ProgressBar/>
#[prop(optional)]
max: u16,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
Now, we can use `<ProgressBar max=50 value=count/>`, or we can omit `max`
to use the default value (i.e., `<ProgressBar value=count/>`). The default value
on an `optional` is its `Default::default()` value, which for a `u16` is going to
be `0`. In the case of a progress bar, a max value of `0` is not very useful.
So lets give it a particular default value instead.
### `default` props
You can specify a default value other than `Default::default()` pretty simply
with `#[prop(default = ...)`.
```rust
#[component]
fn ProgressBar(
cx: Scope,
#[prop(default = 100)]
max: u16,
progress: ReadSignal<i32>
) -> impl IntoView {
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
### Generic Props
This is great. But we began with two counters, one driven by `count`, and one by
the derived signal `double_count`. Lets recreate that by using `double_count`
as the `progress` prop on another `<ProgressBar/>`.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
<ProgressBar progress=count/>
// add a second progress bar
<ProgressBar progress=double_count/>
}
}
```
Hm... this wont compile. It should be pretty easy to understand why: weve declared
that the `progress` prop takes `ReadSignal<i32>`, and `double_count` is not
`ReadSignal<i32>`. As rust-analyzer will tell you, its type is `|| -> i32`, i.e.,
its a closure that returns an `i32`.
There are a couple ways to handle this. One would be to say: “Well, I know that
a `ReadSignal` is a function, and I know that a closure is a function; maybe I
could just take any function?” If youre savvy, you may know that both these
implement the trait `Fn() -> i32`. So you could use a generic component:
```rust
#[component]
fn ProgressBar<F>(
cx: Scope,
#[prop(default = 100)]
max: u16,
progress: F
) -> impl IntoView
where
F: Fn() -> i32
{
view! { cx,
<progress
max=max
value=progress
/>
}
}
```
This is a perfectly reasonable way to write this component: `progress` now takes
any value that implements this `Fn()` trait.
> Note that generic component props _cannot_ be specified inline (as `<F: Fn() -> i32>`)
or as `progress: impl Fn() -> i32`, in part because theyre actually used to generate
a `struct ProgressBarProps`, and struct fields cannot be `impl` types.
### `into` Props
Theres one more way we could implement this, and it would be to use `#[prop(into)]`.
This attribute automatically calls `.into()` on the values you pass as proprs,
which allows you to pass props of different values easily.
In this case, its helpful to know about the
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html) type. `Signal`
is a enumerated type that represents any kind of readable reactive signal. It can
be useful when defining APIs for components youll want to reuse while passing
different sorts of signals. The [`MaybeSignal`](https://docs.rs/leptos/latest/leptos/enum.MaybeSignal.html) type is useful when you want to be able to take either a static or
reactive value.
```rust
#[component]
fn ProgressBar(
cx: Scope,
#[prop(default = 100)]
max: u16,
#[prop(into)]
progress: Signal<i32>
) -> impl IntoView
{
view! { cx,
<progress
max=max
value=progress
/>
}
}
#[component]
fn App(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
let double_count = move || count() * 2;
view! { cx,
<button on:click=move |_| { set_count.update(|n| *n += 1); }>
"Click me"
</button>
// .into() converts `ReadSignal` to `Signal`
<ProgressBar progress=count/>
// use `Signal::derive()` to wrap a derived signal
<ProgressBar progress=Signal::derive(cx, double_count)/>
}
}
```
## Documenting Components
This is one of the least essential but most important sections of this book.
Its not strictly necessary to document your components and their props. It may
be very important, depending on the size of your team and your app. But its very
easy, and bears immediate fruit.
To document a component and its props, you can simply add doc comments on the
component function, and each one of the props:
```rust
/// Shows progress toward a goal.
#[component]
fn ProgressBar(
cx: Scope,
/// The maximum value of the progress bar.
#[prop(default = 100)]
max: u16,
/// How much progress should be displayed.
#[prop(into)]
progress: Signal<i32>,
) -> impl IntoView {
/* ... */
}
```
Thats all you need to do. These behave like ordinary Rust doc comments, except
that you can document individual component props, which cant be done with Rust
function arguments.
This will automatically generate documentation for your component, its `Props`
type, and each of the fields used to add props. It can be a little hard to
understand how powerful this is until you hover over the component name or props
and see the power of the `#[component]` macro combined with rust-analyzer here.
<iframe src="https://codesandbox.io/p/sandbox/3-components-50t2e7?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A7%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A7%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,88 @@
# Iteration
Whether youre listing todos, displaying a table, or showing product images,
iterating over a list of items is a common task in web applications. Reconciling
the differences between changing sets of items can also be one of the trickiest
tasks for a framework to handle well.
Leptos supports to two different patterns for iterating over items:
1. For static views: `Vec<_>`
2. For dynamic lists: `<For/>`
## Static Views with `Vec<_>`
Sometimes you need to show an item repeatedly, but the list youre drawing from
does not often change. In this case, its important to know that you can insert
any `Vec<IV> where IV: IntoView` into your view. In other views, if you can render
`T`, you can render `Vec<T>`.
```rust
let values = vec![0, 1, 2];
view! { cx,
// this will just render "012"
<p>{values.clone()}</p>
// or we can wrap them in <li>
<ul>
{values.into_iter()
.map(|n| view! { cx, <li>{n}</li>})
.collect::<Vec<_>>()}
</ul>
}
```
The fact that the _list_ is static doesnt mean the interface needs to be static.
You can render dynamic items as part of a static list.
```rust
// create a list of N signals
let counters = (1..=length).map(|idx| create_signal(cx, idx));
// each item manages a reactive view
// but the list itself will never change
let counter_buttons = counters
.map(|(count, set_count)| {
view! { cx,
<li>
<button
on:click=move |_| set_count.update(|n| *n += 1)
>
{count}
</button>
</li>
}
})
.collect::<Vec<_>>();
view! { cx,
<ul>{counter_buttons}</ul>
}
```
You _can_ render a `Fn() -> Vec<_>` reactively as well. But note that every time
it changes, this will rerender every item in the list. This is quite inefficient!
Fortunately, theres a better way.
## Dynamic Rendering with the `<For/>` Component
The [`<For/>`](https://docs.rs/leptos/latest/leptos/fn.For.html) component is a
keyed dynamic list. It takes three props:
- `each`: a function (such as a signal) that returns the items `T` to be iterated over
- `key`: a key function that takes `&T` and returns a stable, unique key or ID
- `view`: renders each `T` into a view
`key` is, well, the key. You can add, remove, and move items within the list. As
long as each items key is stable over time, the framework does not need to rerender
any of the items, unless they are new additions, and it can very efficiently add,
remove, and move items as they change. This allows for extremely efficient updates
to the list as it changes, with minimal additional work.
Creating a good `key` can be a little tricky. You generally do _not_ want to use
an index for this purpose, as it is not stable—if you remove or move items, their
indices change.
But its a great idea to do something like generating a unique ID for each row as
it is generated, and using that as an ID for the key function.
Check out the `<DynamicList/>` component below for an example.
<iframe src="https://codesandbox.io/p/sandbox/4-iteration-sglt1o?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A6%2C%22endLineNumber%22%3A55%2C%22startColumn%22%3A5%2C%22startLineNumber%22%3A31%7D%5D" width="100%" height="100px"></iframe>

View File

@@ -0,0 +1,107 @@
# Forms and Inputs
Forms and form inputs are an important part of interactive apps. There are two
basic patterns for interacting with inputs in Leptos, which you may recognize
if youre familiar with React, SolidJS, or a similar framework: using **controlled**
or **uncontrolled** inputs.
## Controlled Inputs
In a "controlled input," the framework controls the state of the input
element. On every `input` event, it updates a local signal that holds the current
state, which in turn updates the `value` prop of the input.
There are two important things to remember:
1. The `input` event fires on (almost) every change to the element, while the
`change` event fires (more or less) when you unfocus the input. You probably
want `on:input`, but we give you the freedom to choose.
2. The `value` *attribute* only sets the initial value of the input, i.e., it
only updates the input up to the point that you begin typing. The `value`
*property* continues updating the input after that. You usually want to set
`prop:value` for this reason.
```rust
let (name, set_name) = create_signal(cx, "Controlled".to_string());
view! { cx,
<input type="text"
on:input=move |ev| {
// event_target_value is a Leptos helper function
// it functions the same way as event.target.value
// in JavaScript, but smooths out some of the typecasting
// necessary to make this work in Rust
set_name(event_target_value(&ev));
}
// the `prop:` syntax lets you update a DOM property,
// rather than an attribute.
prop:value=name
/>
<p>"Name is: " {name}</p>
}
```
## Uncontrolled Inputs
In an "uncontrolled input," the browser controls the state of the input element.
Rather than continuously updating a signal to hold its value, we use a
[`NodeRef`](https://docs.rs/leptos/latest/leptos/struct.NodeRef.html) to access
the input once when we want to get its value.
In this example, we only notify the framework when the `<form>` fires a `submit`
event.
```rust
let (name, set_name) = create_signal(cx, "Uncontrolled".to_string());
let input_element: NodeRef<HtmlElement<Input>> = NodeRef::new(cx);
```
`NodeRef` is a kind of reactive smart pointer: we can use it to access the
underlying DOM node. Its value will be set when the element is rendered.
```rust
let on_submit = move |ev: SubmitEvent| {
// stop the page from reloading!
ev.prevent_default();
// here, we'll extract the value from the input
let value = input_element()
// event handlers can only fire after the view
// is mounted to the DOM, so the `NodeRef` will be `Some`
.expect("<input> to exist")
// `NodeRef` implements `Deref` for the DOM element type
// this means we can call`HtmlInputElement::value()`
// to get the current value of the input
.value();
set_name(value);
};
```
Our `on_submit` handler will access the inputs value and use it to call `set_name`.
To access the DOM node stored in the `NodeRef`, we can simply call it as a function
(or using `.get()`). This will return `Option<web_sys::HtmlInputElement>`, but we
know it will already have been filled when we rendered the view, so its safe to
unwrap here.
We can then call `.value()` to get the value out of the input, because `NodeRef`
gives us access to a correctly-typed HTML element.
```rust
view! { cx,
<form on:submit=on_submit>
<input type="text"
value=name
node_ref=input_element
/>
<input type="submit" value="Submit"/>
</form>
<p>"Name is: " {name}</p>
}
```
The view should be pretty self-explanatory by now. Note two things:
1. Unlike in the controlled input example, we use `value` (not `prop:value`).
This is because were just setting the initial value of the input, and letting
the browser control its state. (We could use `prop:value` instead.)
2. We use `node_ref` to fill the `NodeRef`. (Older examples sometimes use `_ref`.
They are the same thing, but `node_ref` has better rust-analyzer support.)
<iframe src="https://codesandbox.io/p/sandbox/5-form-inputs-ih9m62?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A12%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A12%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,285 @@
# Control Flow
In most applications, you sometimes need to make a decision: Should I render this
part of the view, or not? Should I render `<ButtonA/>` or `<WidgetB/>`? This is
**control flow**.
## A Few Tips
When thinking about how to do this with Leptos, its important to remember a few
things:
1. Rust is an expression-oriented language: control-flow expressions like
`if x() { y } else { z }` and `match x() { ... }` return their values. This
makes them very useful for declarative user interfaces.
2. For any `T` that implements `IntoView`—in other words, for any type that Leptos
knows how to render—`Option<T>` and `Result<T, impl Error>` _also_ implement
`IntoView`. And just as `Fn() -> T` renders a reactive `T`, `Fn() -> Option<T>`
and `Fn() -> Result<T, impl Error>` are reactive.
3. Rust has lots of handy helpers like [Option::map](https://doc.rust-lang.org/std/option/enum.Option.html#method.map),
[Option::and_then](https://doc.rust-lang.org/std/option/enum.Option.html#method.and_then),
[Option::ok_or](https://doc.rust-lang.org/std/option/enum.Option.html#method.ok_or),
[Result::map](https://doc.rust-lang.org/std/result/enum.Result.html#method.map),
[Result::ok](https://doc.rust-lang.org/std/result/enum.Result.html#method.ok), and
[bool::then](https://doc.rust-lang.org/std/primitive.bool.html#method.then) that
allow you to convert, in a declarative way, between a few different standard types,
all of which can be rendered. Spending time in the `Option` and `Result` docs in particular
is one of the best ways to level up your Rust game.
4. And always remember: to be reactive, values must be functions. Youll see me constantly
wrap things in a `move ||` closure, below. This is to ensure that they actually re-run
when the signal they depend on changes, keeping the UI reactive.
## So What?
To connect the dots a little: this means that you can actually implement most of
your control flow with native Rust code, without any control-flow components or
special knowledge.
For example, lets start with a simple signal and derived signal:
```rust
let (value, set_value) = create_signal(cx, 0);
let is_odd = move || value() & 1 == 1;
```
> If you dont recognize whats going on with `is_odd`, dont worry about it
> too much. Its just a simple way to test whether an integer is odd by doing a
> bitwise `AND` with `1`.
We can use these signals and ordinary Rust to build most control flow.
### `if` statements
Lets say I want to render some text if the number is odd, and some other text
if its even. Well, how about this?
```rust
view! { cx,
<p>
{move || if is_odd() {
"Odd"
} else {
"Even"
}}
</p>
}
```
An `if` expression returns its value, and a `&str` implements `IntoView`, so a
`Fn() -> &str` implements `IntoView`, so this... just works!
### `Option<T>`
Lets say we want to render some text if its odd, and nothing if its even.
```rust
let message = move || {
if is_odd() {
Some("Ding ding ding!")
} else {
None
}
};
view! { cx,
<p>{message}</p>
}
```
This works fine. We can make it a little shorter if wed like, using `bool::then()`.
```rust
let message = move || is_odd().then(|| "Ding ding ding!");
view! { cx,
<p>{message}</p>
}
```
You could even inline this if youd like, although personally I sometimes like the
better `cargo fmt` and `rust-analyzer` support I get by pulling things out of the `view`.
### `match` statements
Were still just writing ordinary Rust code, right? So you have all the power of Rusts
pattern matching at your disposal.
```rust
let message = move || {
match value() {
0 => "Zero",
1 => "One",
n if is_odd() => "Odd",
_ => "Even"
}
};
view! { cx,
<p>{message}</p>
}
```
And why not? YOLO, right?
## Preventing Over-Rendering
Not so YOLO.
Everything weve just done is basically fine. But theres one thing you should remember
and try to be careful with. Each one of the control-flow functions weve created so far
is basically a derived signal: it will rerun every time the value changes. In the examples
above, where the value switches from even to odd on every change, this is fine.
But consider the following example:
```rust
let (value, set_value) = create_signal(cx, 0);
let message = move || if value() > 5 {
"Big"
} else {
"Small"
};
view! { cx,
<p>{message}</p>
}
```
This _works_, for sure. But if you added a log, you might be surprised
```rust
let message = move || if value() > 5 {
log!("{}: rendering Big", value());
"Big"
} else {
log!("{}: rendering Small", value());
"Small"
};
```
As a user clicks a button, youd see something like this:
```
1: rendering Small
2: rendering Small
3: rendering Small
4: rendering Small
5: rendering Small
6: rendering Big
7: rendering Big
8: rendering Big
... ad infinitum
```
Every time `value` changes, it reruns the `if` statement. This makes sense, with
how reactivity works. But it has a downside. For a simple text node, rerunning
the `if` statement and rerendering isnt a big deal. But imagine it were
like this:
```rust
let message = move || if value() > 5 {
<Big/>
} else {
<Small/>
};
```
This rerenders `<Small/>` five times, then `<Big/>` infinitely. If theyre
loading resources, creating signals, or even just creating DOM nodes, this is
unnecessary work.
### `<Show/>`
The [`<Show/>`](https://docs.rs/leptos/latest/leptos/fn.Show.html) component is
the answer. You pass it a `when` condition function, a `fallback` to be shown if
the `when` function returns `false`, and children to be rendered if `when` is `true`.
```rust
let (value, set_value) = create_signal(cx, 0);
view! { cx,
<Show
when=move || value() > 5
fallback=|cx| view! { cx, <Small/> }
>
<Big/>
</Show>
}
```
`<Show/>` memoizes the `when` condition, so it only renders its `<Small/>` once,
continuing to show the same component until `value` is greater than five;
then it renders `<Big/>` once, continuing to show it indefinitely.
This is a helpful tool to avoid rerendering when using dynamic `if` expressions.
As always, there's some overhead: for a very simple node (like updating a single
text node, or updating a class or attribute), a `move || if ...` will be more
efficient. But if its at all expensive to render either branch, reach for
`<Show/>`.
## Note: Type Conversions
Theres one final thing its important to say in this section.
The `view` macro doesnt return the most-generic wrapping type
[`View`](https://docs.rs/leptos/latest/leptos/enum.View.html).
Instead, it returns things with types like `Fragment` or `HtmlElement<Input>`. This
can be a little annoying if youre returning different HTML elements from
different branches of a conditional:
```rust,compile_error
view! { cx,
<main>
{move || match is_odd() {
true if value() == 1 => {
// returns HtmlElement<Pre>
view! { cx, <pre>"One"</pre> }
},
false if value() == 2 => {
// returns HtmlElement<P>
view! { cx, <p>"Two"</p> }
}
// returns HtmlElement<Textarea>
_ => view! { cx, <textarea>{value()}</textarea> }
}}
</main>
}
```
This strong typing is actually very powerful, because
[`HtmlElement`](https://docs.rs/leptos/0.1.3/leptos/struct.HtmlElement.html) is,
among other things, a smart pointer: each `HtmlElement<T>` type implements
`Deref` for the appropriate underlying `web_sys` type. In other words, in the browser
your `view` returns real DOM elements, and you can access native DOM methods on
them.
But it can be a little annoying in conditional logic like this, because you cant
return different types from different branches of a condition in Rust. There are two ways
to get yourself out of this situation:
1. If you have multiple `HtmlElement` types, convert them to `HtmlElement<AnyElement>`
with [`.into_any()`](https://docs.rs/leptos/latest/leptos/struct.HtmlElement.html#method.into_any)
2. If you have a variety of view types that are not all `HtmlElement`, convert them to
`View`s with [`.into_view(cx)`](https://docs.rs/leptos/latest/leptos/trait.IntoView.html#tymethod.into_view).
Heres the same example, with the conversion added:
```rust,compile_error
view! { cx,
<main>
{move || match is_odd() {
true if value() == 1 => {
// returns HtmlElement<Pre>
view! { cx, <pre>"One"</pre> }.into_any()
},
false if value() == 2 => {
// returns HtmlElement<P>
view! { cx, <p>"Two"</p> }.into_any()
}
// returns HtmlElement<Textarea>
_ => view! { cx, <textarea>{value()}</textarea> }.into_any()
}}
</main>
}
```
<iframe src="https://codesandbox.io/p/sandbox/6-control-flow-in-view-zttwfx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,115 @@
# Error Handling
[In the last chapter](./06_control_flow.md), we saw that you can render `Option<T>`:
in the `None` case, it will render nothing, and in the `T` case, it will render `T`
(that is, if `T` implements `IntoView`). You can actually do something very similar
with a `Result<T, E>`. In the `Err(_)` case, it will render nothing. In the `Ok(T)`
case, it will render the `T`.
Lets start with a simple component to capture a number input.
```rust
#[component]
fn NumericInput(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
// when input changes, try to parse a number from the input
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<label>
"Type a number (or not!)"
<input type="number" on:input=on_input/>
<p>
"You entered "
<strong>{value}</strong>
</p>
</label>
}
}
```
Every time you change the input, `on_input` will attempt to parse its value into a 32-bit
integer (`i32`), and store it in our `value` signal, which is a `Result<i32, _>`. If you
type the number `42`, the UI will display
```
You entered 42
```
But if you type the string`foo`, it will display
```
You entered
```
This is not great. It saves us using `.unwrap_or_default()` or something, but it would be
much nicer if we could catch the error and do something with it.
You can do that, with the [`<ErrorBoundary/>`](https://docs.rs/leptos/latest/leptos/fn.ErrorBoundary.html)
component.
## `<ErrorBoundary/>`
An `<ErrorBoundary/>` is a little like the `<Show/>` component we saw in the last chapter.
If everythings okay—which is to say, if everything is `Ok(_)`—it renders its children.
But if theres an `Err(_)` rendered among those children, it will trigger the
`<ErrorBoundary/>`s `fallback`.
Lets add an `<ErrorBoundary/>` to this example.
```rust
#[component]
fn NumericInput(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<h1>"Error Handling"</h1>
<label>
"Type a number (or something that's not a number!)"
<input type="number" on:input=on_input/>
<ErrorBoundary
// the fallback receives a signal containing current errors
fallback=|cx, errors| view! { cx,
<div class="error">
<p>"Not a number! Errors: "</p>
// we can render a list of errors as strings, if we'd like
<ul>
{move || errors.unwrap()
.get()
.0
.into_iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
}
</ul>
</div>
}
>
<p>"You entered " <strong>{value}</strong></p>
</ErrorBoundary>
</label>
}
}
```
Now, if you type `42`, `value` is `Ok(42)` and youll see
```
You entered 42
```
If you type `foo`, value is `Err(_)` and the `fallback` will render. Weve chosen to render
the list of errors as a `String`, so youll see something like
```
Not a number! Errors:
- cannot parse integer from empty string
```
If you fix the error, the error message will disappear and the content youre wrapping in
an `<ErrorBoundary/>` will appear again.
<iframe src="https://codesandbox.io/p/sandbox/7-error-handling-and-error-boundaries-sroncx?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,286 @@
# Parent-Child Communication
You can think of your application as a nested tree of components. Each component
handles its own local state and manages a section of the user interface, so
components tend to be relatively self-contained.
Sometimes, though, youll want to communicate between a parent component and its
child. For example, imagine youve defined a `<FancyButton/>` component that adds
some styling, logging, or something else to a `<button/>`. You want to use a
`<FancyButton/>` in your `<App/>` component. But how can you communicate between
the two?
Its easy to communicate state from a parent component to a child component. We
covered some of this in the material on [components and props](./03_components.md).
Basically if you want the parent to communicate to the child, you can pass a
[`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html), a
[`Signal`](https://docs.rs/leptos/latest/leptos/struct.Signal.html), or even a
[`MaybeSignal`](https://docs.rs/leptos/latest/leptos/struct.MaybeSignal.html) as a prop.
But what about the other direction? How can a child send notifications about events
or state changes back up to the parent?
There are four basic patterns of parent-child communication in Leptos.
## 1. Pass a [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html)
One approach is simply to pass a `WriteSignal` from the parent down to the child, and update
it in the child. This lets you manipulate the state of the parent from the child.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<ButtonA setter=set_toggled/>
}
}
#[component]
pub fn ButtonA(cx: Scope, setter: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<button
on:click=move |_| setter.update(|value| *value = !*value)
>
"Toggle"
</button>
}
}
```
This pattern is simple, but you should be careful with it: passing around a `WriteSignal`
can make it hard to reason about your code. In this example, its pretty clear when you
read `<App/>` that you are handing off the ability to mutate `toggled`, but its not at
all clear when or how it will change. In this small, local example its easy to understand,
but if you find yourself passing around `WriteSignal`s like this throughout your code,
you should really consider whether this is making it too easy to write spaghetti code.
## 2. Use a Callback
Another approach would be to pass a callback to the child: say, `on_click`.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<ButtonB on_click=move |_| set_toggled.update(|value| *value = !*value)/>
}
}
#[component]
pub fn ButtonB<F>(
cx: Scope,
on_click: F,
) -> impl IntoView
where
F: Fn(MouseEvent) + 'static,
{
view! { cx,
<button on:click=on_click>
"Toggle"
</button>
}
}
```
Youll notice that whereas `<ButtonA/>` was given a `WriteSignal` and decided how to mutate it,
`<ButtonB/>` simply fires an event: the mutation happens back in `<App/>`. This has the advantage
of keeping local state local, preventing the problem of spaghetti mutation. But it also means
the logic to mutate that signal needs to exist up in `<App/>`, not down in `<ButtonB/>`. These
are real trade-offs, not a simple right-or-wrong choice.
> Note the way we declare the generic type `F` here for the callback. If youre
> confused, look back at the [generic props](./03_components.html#generic-props) section
> of the chapter on components.
## 3. Use an Event Listener
You can actually write Option 2 in a slightly different way. If the callback maps directly onto
a native DOM event, you can add an `on:` listener directly to the place you use the component
in your `view` macro in `<App/>`.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
// note the on:click instead of on_click
// this is the same syntax as an HTML element event listener
<ButtonC on:click=move |_| set_toggled.update(|value| *value = !*value)/>
}
}
#[component]
pub fn ButtonC<F>(cx: Scope) -> impl IntoView {
view! { cx,
<button>"Toggle"</button>
}
}
```
This lets you write way less code in `<ButtonC/>` than you did for `<ButtonB/>`,
and still gives a correctly-typed event to the listener. This works by adding an
`on:` event listener to each element that `<ButtonC/>` returns: in this case, just
the one `<button>`.
Of course, this only works for actual DOM events that youre passing directly through
to the elements youre rendering in the component. For more complex logic that
doesnt map directly onto an element (say you create `<ValidatedForm/>` and want an
`on_valid_form_submit` callback) you should use Option 2.
## 4. Providing a Context
This version is actually a variant on Option 1. Say you have a deeply-nested component
tree:
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout/>
}
}
#[component]
pub fn Layout(cx: Scope) -> impl IntoView {
view! { cx,
<header>
<h1>"My Page"</h1>
<main>
<Content/>
</main>
}
}
#[component]
pub fn Content(cx: Scope) -> impl IntoView {
view! { cx,
<div class="content">
<ButtonD/>
</div>
}
}
#[component]
pub fn ButtonD<F>(cx: Scope) -> impl IntoView {
todo!()
}
```
Now `<ButtonD/>` is no longer a direct child of `<App/>`, so you cant simply
pass your `WriteSignal` to its props. You could do whats sometimes called
“prop drilling,” adding a prop to each layer between the two:
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout set_toggled/>
}
}
#[component]
pub fn Layout(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<header>
<h1>"My Page"</h1>
<main>
<Content set_toggled/>
</main>
}
}
#[component]
pub fn Content(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
view! { cx,
<div class="content">
<ButtonD set_toggled/>
</div>
}
}
#[component]
pub fn ButtonD<F>(cx: Scope, set_toggled: WriteSignal<bool>) -> impl IntoView {
todo!()
}
```
This is a mess. `<Layout/>` and `<Content/>` dont need `set_toggled`; they just
pass it through to `<ButtonD/>`. But I need to declare the prop in triplicate.
This is not only annoying but hard to maintain: imagine we add a “half-toggled”
option and the type of `set_toggled` needs to change to an `enum`. We have to change
it in three places!
Isnt there some way to skip levels?
There is!
### The Context API
You can provide data that skips levels by using [`provide_context`](https://docs.rs/leptos/latest/leptos/fn.provide_context.html)
and [`use_context`](https://docs.rs/leptos/latest/leptos/fn.use_context.html). Contexts are identified
by the type of the data you provide (in this example, `WriteSignal<bool>`), and they exist in a top-down
tree that follows the contours of your UI tree. In this example, we can use context to skip the
unnecessary prop drilling.
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (toggled, set_toggled) = create_signal(cx, false);
// share `set_toggled` with all children of this component
provide_context(cx, set_toggled);
view! { cx,
<p>"Toggled? " {toggled}</p>
<Layout/>
}
}
// <Layout/> and <Content/> omitted
#[component]
pub fn ButtonD(cx: Scope) -> impl IntoView {
// use_context searches up the context tree, hoping to
// find a `WriteSignal<bool>`
// in this case, I .expect() because I know I provided it
let setter = use_context::<WriteSignal<bool>>(cx)
.expect("to have found the setter provided");
view! { cx,
<button
on:click=move |_| setter.update(|value| *value = !*value)
>
"Toggle"
</button>
}
}
```
The same caveats apply to this as to `<ButtonA/>`: passing a `WriteSignal`
around should be done with caution, as it allows you to mutate state from
arbitrary parts of your code. But when done carefully, this can be one of
the most effective techniques for global state management in Leptos: simply
provide the state at the highest level youll need it, and use it wherever
you need it lower down.
Note that there are no performance downsides to this approach. Because you
are passing a fine-grained reactive signal, _nothing happens_ in the intervening
components (`<Layout/>` and `<Content/>`) when you update it. You are communicating
directly between `<ButtonD/>` and `<App/>`. In fact—and this is the power of
fine-grained reactivity—you are communicating directly between a button click
in `<ButtonD/>` and a single text node in `<App/>`. Its as if the components
themselves dont exist at all. And, well... at runtime, they dont. Its just
signals and effects, all the way down.
<iframe src="https://codesandbox.io/p/sandbox/8-parent-child-communication-84we8m?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px"></iframe>

View File

@@ -0,0 +1,124 @@
# Component Children
Its pretty common to want to pass children into a component, just as you can pass
children into an HTML element. For example, imagine I have a `<FancyForm/>` component
that enhances an HTML `<form>`. I need some way to pass all its inputs.
```rust
view! { cx,
<Form>
<fieldset>
<label>
"Some Input"
<input type="text" name="something"/>
</label>
</fieldset>
<button>"Submit"</button>
</Form>
}
```
How can you do this in Leptos? There are basically two ways to pass components to
other components:
1. **render props**: properties that are functions that return a view
2. the **`children`** prop: a special component property that includes anything
you pass as a child to the component.
In fact, youve already seen these both in action in the [`<Show/>`](/view/06_control_flow.html#show) component:
```rust
view! { cx,
<Show
// `when` is a normal prop
when=move || value() > 5
// `fallback` is a "render prop": a function that returns a view
fallback=|cx| view! { cx, <Small/> }
>
// `<Big/>` (and anything else here)
// will be given to the `children` prop
<Big/>
</Show>
}
```
Lets define a component that takes some children and a render prop.
```rust
#[component]
pub fn TakesChildren<F, IV>(
cx: Scope,
/// Takes a function (type F) that returns anything that can be
/// converted into a View (type IV)
render_prop: F,
/// `children` takes the `Children` type
children: Children,
) -> impl IntoView
where
F: Fn() -> IV,
IV: IntoView,
{
view! { cx,
<h2>"Render Prop"</h2>
{render_prop()}
<h2>"Children"</h2>
{children(cx)}
}
}
```
`render_prop` and `children` are both functions, so we can call them to generate
the appropriate views. `children`, in particular, is an alias for
`Box<dyn FnOnce(Scope) -> Fragment>`. (Aren't you glad we named it `Children` instead?)
> If you need a `Fn` or `FnMut` here because you need to call `children` more than once,
> we also provide `ChildrenFn` and `ChildrenMut` aliases.
We can use the component like this:
```rust
view! { cx,
<TakesChildren render_prop=|| view! { cx, <p>"Hi, there!"</p> }>
// these get passed to `children`
"Some text"
<span>"A span"</span>
</TakesChildren>
}
```
## Manipulating Children
The [`Fragment`](https://docs.rs/leptos/latest/leptos/struct.Fragment.html) type is
basically a way of wrapping a `Vec<View>`. You can insert it anywhere into your view.
But you can also access those inner views directly to manipulate them. For example, heres
a component that takes its children and turns them into an unordered list.
```rust
#[component]
pub fn WrapsChildren(cx: Scope, children: Children) -> impl IntoView {
// Fragment has `nodes` field that contains a Vec<View>
let children = children(cx)
.nodes
.into_iter()
.map(|child| view! { cx, <li>{child}</li> })
.collect::<Vec<_>>();
view! { cx,
<ul>{children}</ul>
}
}
```
Calling it like this will create a list:
```rust
view! { cx,
<WrappedChildren>
"A"
"B"
"C"
</WrappedChildren>
}
```

View File

@@ -0,0 +1,5 @@
# Building User Interfaces
This first section will introduce you to the basic tools you need to build a reactive
user interface using Leptos. By the end of this section, you should be able to
build a simple, synchronous application that is rendered in the browser.

View File

@@ -1,16 +1,86 @@
use wasm_bindgen_test::*;
wasm_bindgen_test_configure!(run_in_browser);
use counter::*;
use leptos::*;
use web_sys::HtmlElement;
use counter::*;
#[wasm_bindgen_test]
fn clear() {
let document = leptos::document();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
// start by rendering our counter and mounting it to the DOM
// note that we start at the initial value of 10
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=10 step=1/> },
);
// now we extract the buttons by iterating over the DOM
// this would be easier if they had IDs
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = test_wrapper
.query_selector("button")
.unwrap()
.unwrap()
.unchecked_into::<web_sys::HtmlElement>();
// now let's click the `clear` button
clear.click();
// now let's test the <div> against the expected value
// we can do this by testing its `outerHTML`
assert_eq!(
div.outer_html(),
// here we spawn a mini reactive system, just to render the
// test case
run_scope(create_runtime(), |cx| {
// it's as if we're creating it with a value of 0, right?
let (value, set_value) = create_signal(cx, 0);
// we can remove the event listeners because they're not rendered to HTML
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
// the view returned an HtmlElement<Div>, which is a smart pointer for
// a DOM element. So we can still just call .outer_html()
.outer_html()
})
);
// There's actually an easier way to do this...
// We can just test against a <SimpleCounter/> with the initial value 0
assert_eq!(test_wrapper.inner_html(), {
let comparison_wrapper = document.create_element("section").unwrap();
leptos::mount_to(
comparison_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/>},
);
comparison_wrapper.inner_html()
});
}
#[wasm_bindgen_test]
fn inc() {
mount_to_body(|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> });
let document = leptos::document();
let div = document.query_selector("div").unwrap().unwrap();
let test_wrapper = document.create_element("section").unwrap();
document.body().unwrap().append_child(&test_wrapper);
mount_to(
test_wrapper.clone().unchecked_into(),
|cx| view! { cx, <SimpleCounter initial_value=0 step=1/> },
);
// You can do testing with vanilla DOM operations
let document = leptos::document();
let div = test_wrapper.query_selector("div").unwrap().unwrap();
let clear = div
.first_child()
.unwrap()
@@ -47,4 +117,40 @@ fn inc() {
clear.click();
assert_eq!(text.text_content(), Some("Value: 0!".to_string()));
// Or you can test against a sample view!
assert_eq!(
div.outer_html(),
run_scope(create_runtime(), |cx| {
let (value, _) = create_signal(cx, 0);
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
}
.outer_html())
);
inc.click();
assert_eq!(
div.outer_html(),
run_scope(create_runtime(), |cx| {
// because we've clicked, it's as if the signal is starting at 1
let (value, _) = create_signal(cx, 1);
view! { cx,
<div>
<button>"Clear"</button>
<button>"-1"</button>
<span>"Value: " {value} "!"</span>
<button>"+1"</button>
</div>
}
}
.outer_html())
);
}

View File

@@ -8,7 +8,7 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
actix-files = { version = "0.6", optional = true }
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
actix-web = { version = "4", optional = true, features = ["macros"] }
broadcaster = "1"
console_log = "0.2"
console_error_panic_hook = "0.1"
@@ -25,6 +25,7 @@ leptos_router = { path = "../../router", default-features = false }
log = "0.4"
simple_logger = "4.0.0"
gloo-net = { git = "https://github.com/rustwasm/gloo" }
wasm-bindgen = "0.2"
[features]
default = []

View File

@@ -194,16 +194,16 @@ pub fn MultiuserCounter(cx: Scope) -> impl IntoView {
use futures::StreamExt;
let mut source = gloo_net::eventsource::futures::EventSource::new("/api/events")
.expect_throw("couldn't connect to SSE stream");
.expect("couldn't connect to SSE stream");
let s = create_signal_from_stream(
cx,
source.subscribe("message").unwrap().map(|value| {
value
.expect_throw("no message event")
.expect("no message event")
.1
.data()
.as_string()
.expect_throw("expected string value")
.expect("expected string value")
}),
);

View File

@@ -37,7 +37,7 @@ cfg_if! {
// when not using cargo-leptos None must be replaced with Some("Cargo.toml")
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
let routes = generate_route_list(|cx| view! { cx, <Counters/> });
HttpServer::new(move || {

View File

@@ -1,4 +1,4 @@
use leptos::{ev, *};
use leptos::{ev, html::*, *};
pub struct Props {
/// The starting value for the counter
@@ -25,7 +25,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
.child((
cx,
button(cx)
.on(ev::click, move |_| set_value.update(|value| *value -= step))
.on(ev::click, move |_| {
set_value.update(|value| *value -= step)
})
.child((cx, "-1")),
))
.child((
@@ -38,7 +40,9 @@ pub fn view(cx: Scope, props: Props) -> impl IntoView {
.child((
cx,
button(cx)
.on(ev::click, move |_| set_value.update(|value| *value += step))
.on(ev::click, move |_| {
set_value.update(|value| *value += step)
})
.child((cx, "+1")),
))
}

View File

@@ -1,5 +1,4 @@
use leptos::*;
use leptos::{For, ForProps};
use leptos::{For, ForProps, *};
const MANY_COUNTERS: usize = 1000;
@@ -66,9 +65,8 @@ pub fn Counters(cx: Scope) -> impl IntoView {
<For
each=counters
key=|counter| counter.0
view=move |(id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
view! {
cx,
view=move |cx, (id, (value, set_value)): (usize, (ReadSignal<i32>, WriteSignal<i32>))| {
view! { cx,
<Counter id value set_value/>
}
}
@@ -85,9 +83,11 @@ fn Counter(
value: ReadSignal<i32>,
set_value: WriteSignal<i32>,
) -> impl IntoView {
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
let CounterUpdater { set_counters } = use_context(cx).unwrap();
let input = move |ev| set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default());
let input = move |ev| {
set_value(event_target_value(&ev).parse::<i32>().unwrap_or_default())
};
// just an example of how a cleanup function works
// this will run when the scope is disposed, i.e., when this row is deleted

View File

@@ -72,7 +72,7 @@ pub fn Counters(cx: Scope) -> impl IntoView {
<For
each={move || counters.get()}
key={|counter| counter.0}
view=move |(id, (value, set_value))| {
view=move |cx, (id, (value, set_value))| {
view! {
cx,
<Counter id value set_value/>
@@ -91,9 +91,12 @@ fn Counter(
value: ReadSignal<i32>,
set_value: WriteSignal<i32>,
) -> impl IntoView {
let CounterUpdater { set_counters } = use_context(cx).unwrap_throw();
let CounterUpdater { set_counters } = use_context(cx).unwrap();
let input = move |ev| set_value.set(event_target_value(&ev).parse::<i32>().unwrap_or_default());
let input = move |ev| {
set_value
.set(event_target_value(&ev).parse::<i32>().unwrap_or_default())
};
view! { cx,
<li>

View File

@@ -0,0 +1,10 @@
[package]
name = "error_boundary"
version = "0.1.0"
edition = "2021"
[dependencies]
leptos = { path = "../../leptos" }
console_log = "0.2"
log = "0.4"
console_error_panic_hook = "0.1.7"

View File

@@ -0,0 +1,9 @@
[tasks.build]
command = "cargo"
args = ["+nightly", "build-all-features"]
install_crate = "cargo-all-features"
[tasks.check]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"

View File

@@ -0,0 +1,7 @@
# Leptos `<ErrorBoundary/>` Example
This example shows how to handle basic errors using Leptos.
To run it, just issue the `trunk serve --open` command in the example root. This will build the app, run it, and open a new browser to serve it.
> If you don't have `trunk` installed, [click here for install instructions.](https://trunkrs.dev/)

View File

@@ -0,0 +1,8 @@
<!DOCTYPE html>
<html>
<head>
<link data-trunk rel="rust" data-wasm-opt="z"/>
<link data-trunk rel="icon" type="image/ico" href="/public/favicon.ico"/>
</head>
<body></body>
</html>

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1,48 @@
use leptos::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, Ok(0));
// when input changes, try to parse a number from the input
let on_input = move |ev| set_value(event_target_value(&ev).parse::<i32>());
view! { cx,
<h1>"Error Handling"</h1>
<label>
"Type a number (or something that's not a number!)"
<input type="number" on:input=on_input/>
// If an `Err(_) had been rendered inside the <ErrorBoundary/>,
// the fallback will be displayed. Otherwise, the children of the
// <ErrorBoundary/> will be displayed.
<ErrorBoundary
// the fallback receives a signal containing current errors
fallback=|cx, errors| view! { cx,
<div class="error">
<p>"Not a number! Errors: "</p>
// we can render a list of errors
// as strings, if we'd like
<ul>
{move || errors.get()
.0
.into_iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
}
</ul>
</div>
}
>
<p>
"You entered "
// because `value` is `Result<i32, _>`,
// it will render the `i32` if it is `Ok`,
// and render nothing and trigger the error boundary
// if it is `Err`. It's a signal, so this will dynamically
// update when `value` changes
<strong>{value}</strong>
</p>
</ErrorBoundary>
</label>
}
}

View File

@@ -0,0 +1,12 @@
use error_boundary::*;
use leptos::*;
pub fn main() {
_ = console_log::init_with_level(log::Level::Debug);
console_error_panic_hook::set_once();
mount_to_body(|cx| {
view! { cx,
<App/>
}
})
}

View File

@@ -32,45 +32,49 @@ tokio = { version = "1.22.0", features = ["full"], optional = true }
http = { version = "0.2.8" }
thiserror = "1.0.38"
tracing = "0.1.37"
wasm-bindgen = "0.2"
[features]
default = ["csr"]
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
ssr = ["dep:axum", "dep:tower", "dep:tower-http", "dep:tokio", "leptos/ssr", "leptos_meta/ssr", "leptos_router/ssr", "dep:leptos_axum"]
ssr = [
"dep:axum",
"dep:tower",
"dep:tower-http",
"dep:tokio",
"leptos/ssr",
"leptos_meta/ssr",
"leptos_router/ssr",
"dep:leptos_axum",
]
[package.metadata.cargo-all-features]
denylist = [
"axum",
"tower",
"tower-http",
"tokio",
"leptos_axum",
]
denylist = ["axum", "tower", "tower-http", "tokio", "leptos_axum"]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "errors_axum"
output-name = "errors_axum"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target

View File

@@ -1,8 +1,6 @@
use crate::errors::AppError;
use cfg_if::cfg_if;
use leptos::Errors;
use leptos::*;
use leptos::{Errors, *};
#[cfg(feature = "ssr")]
use leptos_axum::ResponseOptions;
@@ -23,14 +21,13 @@ pub fn ErrorTemplate(
};
// Get Errors from Signal
let errors = errors.get().0;
// Downcast lets us take a type that implements `std::error::Error`
let errors: Vec<AppError> = errors
.get()
.into_iter()
.filter_map(|(_k, v)| v.downcast_ref::<AppError>().cloned())
.filter_map(|(_, v)| v.downcast_ref::<AppError>().cloned())
.collect();
println!("Errors: {errors:#?}");
log!("Errors: {errors:#?}");
// Only the response code for the first error is actually sent from the server
// this may be customized by the specific application
@@ -47,9 +44,9 @@ pub fn ErrorTemplate(
// a function that returns the items we're iterating over; a signal is fine
each= move || {errors.clone().into_iter().enumerate()}
// a unique key for each item as a reference
key=|(index, _error)| *index
key=|(index, _)| *index
// renders each item to a view
view= move |error| {
view=move |cx, error| {
let error_string = error.1.to_string();
let error_code= error.1.status_code();
view! { cx,

View File

@@ -12,8 +12,7 @@ cfg_if! { if #[cfg(feature = "ssr")] {
use tower_http::services::ServeDir;
use std::sync::Arc;
use leptos::{LeptosOptions, Errors, view};
use crate::error_template::{ErrorTemplate, ErrorTemplateProps};
use crate::errors::AppError;
use crate::landing::{App, AppProps};
pub async fn file_and_error_handler(uri: Uri, Extension(options): Extension<Arc<LeptosOptions>>, req: Request<Body>) -> AxumResponse {
let options = &*options;
@@ -23,9 +22,10 @@ cfg_if! { if #[cfg(feature = "ssr")] {
if res.status() == StatusCode::OK {
res.into_response()
} else{
let mut errors = Errors::default();
errors.insert_with_default_key(AppError::NotFound);
let handler = leptos_axum::render_app_to_stream(options.to_owned(), move |cx| view!{cx, <ErrorTemplate outside_errors=errors.clone()/>});
let handler = leptos_axum::render_app_to_stream(
options.to_owned(),
move |cx| view!{ cx, <App/> }
);
handler(req).await.into_response()
}
}

View File

@@ -29,7 +29,14 @@ pub fn App(cx: Scope) -> impl IntoView {
cx,
<Link rel="shortcut icon" type_="image/ico" href="/favicon.ico"/>
<Stylesheet id="leptos" href="/pkg/errors_axum.css"/>
<Router>
<Router fallback=|cx| {
let mut outside_errors = Errors::default();
outside_errors.insert_with_default_key(AppError::NotFound);
view! { cx,
<ErrorTemplate outside_errors/>
}
.into_view(cx)
}>
<header>
<h1>"Error Examples:"</h1>
</header>

View File

@@ -44,7 +44,7 @@ async fn main() {
// Setting this to None means we'll be using cargo-leptos and its env vars
let conf = get_configuration(None).await.unwrap();
let leptos_options = conf.leptos_options;
let addr = leptos_options.site_address;
let addr = leptos_options.site_addr;
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
// build our application with a route

View File

@@ -9,6 +9,12 @@
max-width: 250px;
height: auto;
}
.error {
border: 1px solid red;
color: red;
background-color: lightpink;
}
</style>
<body></body>
</html>

View File

@@ -1,3 +1,4 @@
use anyhow::Result;
use leptos::*;
use serde::{Deserialize, Serialize};
@@ -6,18 +7,18 @@ pub struct Cat {
url: String,
}
async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
async fn fetch_cats(count: u32) -> Result<Vec<String>> {
if count > 0 {
// make the request
let res = reqwasm::http::Request::get(&format!(
"https://api.thecatapi.com/v1/images/search?limit={}",
count
"https://api.thecatapi.com/v1/images/search?limit={count}",
))
.send()
.await
.map_err(|_| ())?
.await?
// convert it to JSON
.json::<Vec<Cat>>()
.await
.map_err(|_| ())?
.await?
// extract the URL field for each cat
.into_iter()
.map(|cat| cat.url)
.collect::<Vec<_>>();
@@ -29,9 +30,45 @@ async fn fetch_cats(count: u32) -> Result<Vec<String>, ()> {
pub fn fetch_example(cx: Scope) -> impl IntoView {
let (cat_count, set_cat_count) = create_signal::<u32>(cx, 1);
let cats = create_resource(cx, cat_count, |count| fetch_cats(count));
view! { cx,
// we use local_resource here because
// 1) anyhow::Result isn't serializable/deserializable
// 2) we're not doing server-side rendering in this example anyway
// (during SSR, create_resource will begin loading on the server and resolve on the client)
let cats = create_local_resource(cx, cat_count, fetch_cats);
let fallback = move |cx, errors: RwSignal<Errors>| {
let error_list = move || {
errors.with(|errors| {
errors
.iter()
.map(|(_, e)| view! { cx, <li>{e.to_string()}</li>})
.collect::<Vec<_>>()
})
};
view! { cx,
<div class="error">
<h2>"Error"</h2>
<ul>{error_list}</ul>
</div>
}
};
// the renderer can handle Option<_> and Result<_> states
// by displaying nothing for None if the resource is still loading
// and by using the ErrorBoundary fallback to catch Err(_)
// so we'll just implement our happy path and let the framework handle the rest
let cats_view = move || {
cats.with(|data| {
data.iter()
.flatten()
.map(|cat| view! { cx, <img src={cat}/> })
.collect::<Vec<_>>()
})
};
view! { cx,
<div>
<label>
"How many cats would you like?"
@@ -43,25 +80,11 @@ pub fn fetch_example(cx: Scope) -> impl IntoView {
}
/>
</label>
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
{move || {
cats.read().map(|data| match data {
Err(_) => view! { cx, <pre>"Error"</pre> }.into_view(cx),
Ok(cats) => view! { cx,
<div>{
cats.iter()
.map(|src| {
view! { cx,
<img src={src}/>
}
})
.collect::<Vec<_>>()
}</div>
}.into_view(cx),
})
}
}
</Transition>
<ErrorBoundary fallback>
<Transition fallback=move || view! { cx, <div>"Loading (Suspense Fallback)..."</div>}>
{cats_view}
</Transition>
</ErrorBoundary>
</div>
}
}

View File

@@ -9,12 +9,14 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
anyhow = "1"
actix-files = { version = "0.6", optional = true }
actix-web = { version = "4", optional = true, features = ["openssl", "macros"] }
actix-web = { version = "4", optional = true, features = ["macros"] }
console_log = "0.2"
console_error_panic_hook = "0.1"
futures = "0.3"
cfg-if = "1"
leptos = { path = "../../leptos", default-features = false, features = ["serde"] }
leptos = { path = "../../leptos", default-features = false, features = [
"serde",
] }
leptos_meta = { path = "../../meta", default-features = false }
leptos_actix = { path = "../../integrations/actix", default-features = false, optional = true }
leptos_router = { path = "../../router", default-features = false }
@@ -47,26 +49,26 @@ skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "hackernews"
output-name = "hackernews"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target
@@ -87,4 +89,4 @@ lib-features = ["hydrate"]
# If the --no-default-features flag should be used when compiling the lib target
#
# Optional. Defaults to false.
lib-default-features = false
lib-default-features = false

View File

@@ -24,7 +24,7 @@ cfg_if! {
// Setting this to None means we'll be using cargo-leptos and its env vars.
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
// Generate the list of routes in your Leptos App
let routes = generate_route_list(|cx| view! { cx, <App/> });

View File

@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
<For
each=move || stories.clone()
key=|story| story.id
view=move |story: api::Story| {
view=move |cx, story: api::Story| {
view! { cx,
<Story story/>
}

View File

@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
<For
each=move || story.comments.clone().unwrap_or_default()
key=|comment| comment.id
view=move |comment| view! { cx, <Comment comment /> }
view=move |cx, comment| view! { cx, <Comment comment /> }
/>
</ul>
</div>
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
<For
each=move || comments.clone()
key=|comment| comment.id
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
/>
</ul>
}

View File

@@ -2,7 +2,7 @@
<html>
<head>
<link data-trunk rel="rust" data-wasm-opt="z"/>
<link data-trunk rel="css" href="./static/style.css"/>
<link data-trunk rel="css" href="/style.css"/>
</head>
<body></body>
</html>

View File

@@ -1,5 +1,7 @@
use leptos::Errors;
use leptos::{view, For, ForProps, IntoView, RwSignal, Scope, View};
use leptos::{
signal_prelude::*, view, Errors, For, ForProps, IntoView, RwSignal, Scope,
View,
};
// A basic function to display errors served by the error boundaries. Feel free to do more complicated things
// here than just displaying them
@@ -7,21 +9,22 @@ pub fn error_template(cx: Scope, errors: Option<RwSignal<Errors>>) -> View {
let Some(errors) = errors else {
panic!("No Errors found and we expected errors!");
};
view! {cx,
<h1>"Errors"</h1>
<For
// a function that returns the items we're iterating over; a signal is fine
each= move || {errors.get().0.into_iter()}
// a unique key for each item as a reference
key=|error| error.0.clone()
// renders each item to a view
view= move |error| {
let error_string = error.1.to_string();
view! {
cx,
<p>"Error: " {error_string}</p>
<h1>"Errors"</h1>
<For
// a function that returns the items we're iterating over; a signal is fine
each=errors
// a unique key for each item as a reference
key=|(key, _)| key.clone()
// renders each item to a view
view= move |cx, (_, error)| {
let error_string = error.to_string();
view! {
cx,
<p>"Error: " {error_string}</p>
}
}
}
/>
}
.into_view(cx)

View File

@@ -19,7 +19,7 @@ if #[cfg(feature = "ssr")] {
let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
let leptos_options = conf.leptos_options;
let addr = leptos_options.site_address.clone();
let addr = leptos_options.site_addr.clone();
let routes = generate_route_list(|cx| view! { cx, <App/> }).await;
simple_logger::init_with_level(log::Level::Debug).expect("couldn't initialize logging");

View File

@@ -91,7 +91,7 @@ pub fn Stories(cx: Scope) -> impl IntoView {
<For
each=move || stories.clone()
key=|story| story.id
view=move |story: api::Story| {
view=move |cx, story: api::Story| {
view! { cx,
<Story story/>
}

View File

@@ -53,7 +53,7 @@ pub fn Story(cx: Scope) -> impl IntoView {
<For
each=move || story.comments.clone().unwrap_or_default()
key=|comment| comment.id
view=move |comment| view! { cx, <Comment comment /> }
view=move |cx, comment| view! { cx, <Comment comment /> }
/>
</ul>
</div>
@@ -98,7 +98,7 @@ pub fn Comment(cx: Scope, comment: api::Comment) -> impl IntoView {
<For
each=move || comments.clone()
key=|comment| comment.id
view=move |comment: api::Comment| view! { cx, <Comment comment /> }
view=move |cx, comment: api::Comment| view! { cx, <Comment comment /> }
/>
</ul>
}

View File

@@ -8,4 +8,4 @@ leptos = { path = "../../leptos" }
console_log = "0.2"
log = "0.4"
console_error_panic_hook = "0.1.7"
web-sys = "0.3"

View File

@@ -1,14 +1,18 @@
mod api;
use crate::api::*;
use leptos::*;
use leptos_router::*;
use crate::api::{get_contact, get_contacts};
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct ExampleContext(i32);
#[component]
pub fn RouterExample(cx: Scope) -> impl IntoView {
log::debug!("rendering <RouterExample/>");
// contexts are passed down through the route tree
provide_context(cx, ExampleContext(0));
view! { cx,
<Router>
<nav>
@@ -59,6 +63,13 @@ pub fn RouterExample(cx: Scope) -> impl IntoView {
pub fn ContactList(cx: Scope) -> impl IntoView {
log::debug!("rendering <ContactList/>");
// contexts are passed down through the route tree
provide_context(cx, ExampleContext(42));
on_cleanup(cx, || {
log!("cleaning up <ContactList/>");
});
let location = use_location(cx);
let contacts = create_resource(cx, move || location.search.get(), get_contacts);
let contacts = move || {
@@ -86,21 +97,28 @@ pub fn ContactList(cx: Scope) -> impl IntoView {
}
}
#[derive(Params, PartialEq, Clone, Debug)]
pub struct ContactParams {
id: usize,
}
#[component]
pub fn Contact(cx: Scope) -> impl IntoView {
log::debug!("rendering <Contact/>");
let params = use_params_map(cx);
log::debug!(
"ExampleContext should be Some(42). It is {:?}",
use_context::<ExampleContext>(cx)
);
on_cleanup(cx, || {
log!("cleaning up <Contact/>");
});
let params = use_params::<ContactParams>(cx);
let contact = create_resource(
cx,
move || {
params()
.get("id")
.cloned()
.unwrap_or_default()
.parse::<usize>()
.ok()
},
move || params().map(|params| params.id).ok(),
// any of the following would work (they're identical)
// move |id| async move { get_contact(id).await }
// move |id| get_contact(id),
@@ -138,6 +156,16 @@ pub fn Contact(cx: Scope) -> impl IntoView {
#[component]
pub fn About(cx: Scope) -> impl IntoView {
log::debug!("rendering <About/>");
on_cleanup(cx, || {
log!("cleaning up <About/>");
});
log::debug!(
"ExampleContext should be Some(0). It is {:?}",
use_context::<ExampleContext>(cx)
);
// use_navigate allows you to navigate programmatically by calling a function
let navigate = use_navigate(cx);
@@ -159,6 +187,11 @@ pub fn About(cx: Scope) -> impl IntoView {
#[component]
pub fn Settings(cx: Scope) -> impl IntoView {
log::debug!("rendering <Settings/>");
on_cleanup(cx, || {
log!("cleaning up <Settings/>");
});
view! { cx,
<>
<h1>"Settings"</h1>

13
examples/ssr_modes/.gitignore vendored Normal file
View File

@@ -0,0 +1,13 @@
# Generated by Cargo
# will have compiled files and executables
/target/
pkg
# These are backup files generated by rustfmt
**/*.rs.bk
# node e2e test tools and outputs
node_modules/
test-results/
end2end/playwright-report/
playwright/.cache/

View File

@@ -0,0 +1,88 @@
[package]
name = "ssr_modes"
version = "0.1.0"
edition = "2021"
[lib]
crate-type = ["cdylib", "rlib"]
[dependencies]
actix-files = { version = "0.6", optional = true }
actix-web = { version = "4", optional = true, features = ["macros"] }
console_error_panic_hook = "0.1"
console_log = "0.2"
cfg-if = "1"
lazy_static = "1"
leptos = { path = "../../leptos", default-features = false, features = [
"serde",
] }
leptos_meta = { path = "../../meta", default-features = false }
leptos_actix = { path = "../../integrations/actix", default-features = false, optional = true }
leptos_router = { path = "../../router", default-features = false }
log = "0.4"
serde = { version = "1", features = ["derive"] }
simple_logger = "4"
thiserror = "1"
tokio = { version = "1", features = ["time"] }
wasm-bindgen = "0.2"
[features]
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
ssr = [
"dep:actix-files",
"dep:actix-web",
"dep:leptos_actix",
"leptos/ssr",
"leptos_meta/ssr",
"leptos_router/ssr",
]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "ssr_modes"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "style/main.scss"
# Assets source dir. All files found here will be copied and synchronized to site-root.
# The assets-dir cannot have a sub directory with the same name/path as site-pkg-dir.
#
# Optional. Env: LEPTOS_ASSETS_DIR.
assets-dir = "assets"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
# [Windows] for non-WSL use "npx.cmd playwright test"
# This binary name can be checked in Powershell with Get-Command npx
end2end-cmd = "npx playwright test"
end2end-dir = "end2end"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
# Set by cargo-leptos watch when building with that tool. Controls whether autoreload JS will be included in the head
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target
#
# Optional. Can be over-ridden with the command line parameter --bin-features
bin-features = ["ssr"]
# If the --no-default-features flag should be used when compiling the bin target
#
# Optional. Defaults to false.
bin-default-features = false
# The features to use when compiling the lib target
#
# Optional. Can be over-ridden with the command line parameter --lib-features
lib-features = ["hydrate"]
# If the --no-default-features flag should be used when compiling the lib target
#
# Optional. Defaults to false.
lib-default-features = false

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 henrik
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,54 @@
# Server-Side Rendering Modes
This example shows the different "rendering modes" that can be used while server-side
rendering an application:
1. **Synchronous**: Serve an HTML shell that includes `fallback` for any `Suspense`. Load data on the client, replacing `fallback` once they're loaded.
- *Pros*: App shell appears very quickly: great TTFB (time to first byte).
- *Cons*: Resources load relatively slowly; you need to wait for JS + Wasm to load before even making a request.
2. **Out-of-order streaming**: Serve an HTML shell that includes `fallback` for any `Suspense`. Load data on the **server**, streaming it down to the client as it resolves, and streaming down HTML for `Suspense` nodes.
- *Pros*: Combines the best of **synchronous** and **`async`**, with a very fast shell and resources that begin loading on the server.
- *Cons*: Requires JS for suspended fragments to appear in correct order. Weaker meta tag support when it depends on data that's under suspense (has already streamed down `<head>`)
3. **In-order streaming**: Walk through the tree, returning HTML synchronously as in synchronous rendering and out-of-order streaming until you hit a `Suspense`. At that point, wait for all its data to load, then render it, then the rest of the tree.
- *Pros*: Does not require JS for HTML to appear in correct order.
- *Cons*: Loads the shell more slowly than out-of-order streaming or synchronous rendering because it needs to pause at every `Suspense`. Cannot begin hydration until the entire page has loaded, so earlier pieces
of the page will not be interactive until the suspended chunks have loaded.
4. **`async`**: Load all resources on the server. Wait until all data are loaded, and render HTML in one sweep.
- *Pros*: Better handling for meta tags (because you know async data even before you render the `<head>`). Faster complete load than **synchronous** because async resources begin loading on server.
- *Cons*: Slower load time/TTFB: you need to wait for all async resources to load before displaying anything on the client.
## Server Side Rendering with `cargo-leptos`
`cargo-leptos` is now the easiest and most featureful way to build server side rendered apps with hydration. It provides automatic recompilation of client and server code, wasm optimisation, CSS minification, and more! Check out more about it [here](https://github.com/akesson/cargo-leptos)
1. Install cargo-leptos
```bash
cargo install --locked cargo-leptos
```
2. Build the site in watch mode, recompiling on file changes
```bash
cargo leptos watch
```
Open browser on [http://localhost:3000/](http://localhost:3000/)
3. When ready to deploy, run
```bash
cargo leptos build --release
```
## Server Side Rendering without cargo-leptos
To run it as a server side app with hydration, you'll need to have wasm-pack installed.
0. Edit the `[package.metadata.leptos]` section and set `site-root` to `"."`. You'll also want to change the path of the `<StyleSheet / >` component in the root component to point towards the CSS file in the root. This tells leptos that the WASM/JS files generated by wasm-pack are available at `./pkg` and that the CSS files are no longer processed by cargo-leptos. Building to alternative folders is not supported at this time. You'll also want to edit the call to `get_configuration()` to pass in `Some(Cargo.toml)`, so that Leptos will read the settings instead of cargo-leptos. If you do so, your file/folder names cannot include dashes.
1. Install wasm-pack
```bash
cargo install wasm-pack
```
2. Build the Webassembly used to hydrate the HTML from the server
```bash
wasm-pack build --target=web --debug --no-default-features --features=hydrate
```
3. Run the server to serve the Webassembly, JS, and HTML
```bash
cargo run --no-default-features --features=ssr
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -0,0 +1,184 @@
use lazy_static::lazy_static;
use leptos::*;
use leptos_meta::*;
use leptos_router::*;
use serde::{Deserialize, Serialize};
use thiserror::Error;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
// Provides context that manages stylesheets, titles, meta tags, etc.
provide_meta_context(cx);
view! { cx,
<Stylesheet id="leptos" href="/pkg/ssr_modes.css"/>
<Title text="Welcome to Leptos"/>
<Router>
<main>
<Routes>
// Well load the home page with out-of-order streaming and <Suspense/>
<Route path="" view=|cx| view! { cx, <HomePage/> }/>
// We'll load the posts with async rendering, so they can set
// the title and metadata *after* loading the data
<Route
path="/post/:id"
view=|cx| view! { cx, <Post/> }
ssr=SsrMode::Async
/>
</Routes>
</main>
</Router>
}
}
#[component]
fn HomePage(cx: Scope) -> impl IntoView {
// load the posts
let posts =
create_resource(cx, || (), |_| async { list_post_metadata().await });
let posts_view = move || {
posts.with(|posts| posts
.clone()
.map(|posts| {
posts.iter()
.map(|post| view! { cx, <li><a href=format!("/post/{}", post.id)>{&post.title}</a></li>})
.collect::<Vec<_>>()
})
)
};
view! { cx,
<h1>"My Great Blog"</h1>
<Suspense fallback=move || view! { cx, <p>"Loading posts..."</p> }>
<ul>{posts_view}</ul>
</Suspense>
}
}
#[derive(Params, Copy, Clone, Debug, PartialEq, Eq)]
pub struct PostParams {
id: usize,
}
#[component]
fn Post(cx: Scope) -> impl IntoView {
let query = use_params::<PostParams>(cx);
let id = move || {
query.with(|q| {
q.as_ref().map(|q| q.id).map_err(|_| PostError::InvalidId)
})
};
let post = create_resource(cx, id, |id| async move {
match id {
Err(e) => Err(e),
Ok(id) => get_post(id)
.await
.map(|data| data.ok_or(PostError::PostNotFound))
.map_err(|_| PostError::ServerError)
.flatten(),
}
});
let post_view = move || {
post.with(|post| {
post.clone().map(|post| {
view! { cx,
// render content
<h1>{&post.title}</h1>
<p>{&post.content}</p>
// since we're using async rendering for this page,
// this metadata should be included in the actual HTML <head>
// when it's first served
<Title text=post.title/>
<Meta name="description" content=post.content/>
}
})
})
};
view! { cx,
<Suspense fallback=move || view! { cx, <p>"Loading post..."</p> }>
<ErrorBoundary fallback=|cx, errors| {
view! { cx,
<div class="error">
<h1>"Something went wrong."</h1>
<ul>
{move || errors.get()
.into_iter()
.map(|(_, error)| view! { cx, <li>{error.to_string()} </li> })
.collect::<Vec<_>>()
}
</ul>
</div>
}
}>
{post_view}
</ErrorBoundary>
</Suspense>
}
}
// Dummy API
lazy_static! {
static ref POSTS: Vec<Post> = vec![
Post {
id: 0,
title: "My first post".to_string(),
content: "This is my first post".to_string(),
},
Post {
id: 1,
title: "My second post".to_string(),
content: "This is my second post".to_string(),
},
Post {
id: 2,
title: "My third post".to_string(),
content: "This is my third post".to_string(),
},
];
}
#[derive(Error, Debug, Copy, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub enum PostError {
#[error("Invalid post ID.")]
InvalidId,
#[error("Post not found.")]
PostNotFound,
#[error("Server error.")]
ServerError,
}
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct Post {
id: usize,
title: String,
content: String,
}
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PostMetadata {
id: usize,
title: String,
}
#[server(ListPostMetadata, "/api")]
pub async fn list_post_metadata() -> Result<Vec<PostMetadata>, ServerFnError> {
tokio::time::sleep(std::time::Duration::from_secs(1)).await;
Ok(POSTS
.iter()
.map(|data| PostMetadata {
id: data.id,
title: data.title.clone(),
})
.collect())
}
#[server(GetPost, "/api")]
pub async fn get_post(id: usize) -> Result<Option<Post>, ServerFnError> {
tokio::time::sleep(std::time::Duration::from_secs(1)).await;
Ok(POSTS.iter().find(|post| post.id == id).cloned())
}

View File

@@ -0,0 +1,25 @@
#![feature(result_flattening)]
pub mod app;
use cfg_if::cfg_if;
cfg_if! {
if #[cfg(feature = "hydrate")] {
use wasm_bindgen::prelude::wasm_bindgen;
#[wasm_bindgen]
pub fn hydrate() {
use app::*;
use leptos::*;
// initializes logging using the `log` crate
_ = console_log::init_with_level(log::Level::Debug);
console_error_panic_hook::set_once();
leptos::mount_to_body(move |cx| {
view! { cx, <App/> }
});
}
}
}

View File

@@ -0,0 +1,42 @@
#[cfg(feature = "ssr")]
#[actix_web::main]
async fn main() -> std::io::Result<()> {
use actix_files::Files;
use actix_web::*;
use leptos::*;
use leptos_actix::{generate_route_list, LeptosRoutes};
use ssr_modes::app::*;
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_addr;
// Generate the list of routes in your Leptos App
let routes = generate_route_list(|cx| view! { cx, <App/> });
GetPost::register();
ListPostMetadata::register();
HttpServer::new(move || {
let leptos_options = &conf.leptos_options;
let site_root = &leptos_options.site_root;
App::new()
.route("/api/{tail:.*}", leptos_actix::handle_server_fns())
.leptos_routes(
leptos_options.to_owned(),
routes.to_owned(),
|cx| view! { cx, <App/> },
)
.service(Files::new("/", site_root))
//.wrap(middleware::Compress::default())
})
.bind(&addr)?
.run()
.await
}
#[cfg(not(feature = "ssr"))]
pub fn main() {
// no client-side main function
// unless we want this to work with e.g., Trunk for pure client-side testing
// see lib.rs for hydration function instead
}

View File

@@ -0,0 +1,3 @@
body {
font-family: sans-serif;
}

View File

@@ -1,12 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>Cargo Leptos</title>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<!-- INJECT HEAD -->
</head>
<body>
<!-- INJECT BODY -->
</body>
</html>

View File

@@ -20,7 +20,7 @@ cfg_if! {
// Setting this to None means we'll be using cargo-leptos and its env vars.
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
// Generate the list of routes in your Leptos App
let routes = generate_route_list(|cx| view! { cx, <App/> });

View File

@@ -8,7 +8,7 @@ crate-type = ["cdylib", "rlib"]
[dependencies]
actix-files = { version = "0.6.2", optional = true }
actix-web = { version = "4.2.1", optional = true, features = ["openssl", "macros"] }
actix-web = { version = "4.2.1", optional = true, features = ["macros"] }
anyhow = "1.0.68"
broadcaster = "1.0.0"
console_log = "0.2.0"
@@ -29,6 +29,7 @@ sqlx = { version = "0.6.2", features = [
"runtime-tokio-rustls",
"sqlite",
], optional = true }
wasm-bindgen = "0.2"
[features]
default = ["ssr"]
@@ -49,26 +50,26 @@ skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]
# The name used by wasm-bindgen/cargo-leptos for the JS/WASM bundle. Defaults to the crate name
output-name = "todo_app_sqlite"
output-name = "todo_app_sqlite"
# The site root folder is where cargo-leptos generate all output. WARNING: all content of this folder will be erased on a rebuild. Use it in your server setup.
site-root = "target/site"
# The site-root relative folder where all compiled output (JS, WASM and CSS) is written
# Defaults to pkg
site-pkg-dir = "pkg"
site-pkg-dir = "pkg"
# [Optional] The source CSS file. If it ends with .sass or .scss then it will be compiled by dart-sass into CSS. The CSS is optimized by Lightning CSS before being written to <site-root>/<site-pkg>/app.css
style-file = "./style.css"
# [Optional] Files in the asset-dir will be copied to the site-root directory
assets-dir = "public"
# The IP and port (ex: 127.0.0.1:3000) where the server serves the content. Use it in your server setup.
site-addr = "127.0.0.1:3000"
site-addr = "127.0.0.1:3000"
# The port to use for automatic reload monitoring
reload-port = 3001
reload-port = 3001
# [Optional] Command to use when running end2end tests. It will run in the end2end dir.
end2end-cmd = "npx playwright test"
# The browserlist query used for optimizing the CSS.
browserquery = "defaults"
browserquery = "defaults"
# Set by cargo-leptos watch when building with tha tool. Controls whether autoreload JS will be included in the head
watch = false
watch = false
# The environment Leptos will run in, usually either "DEV" or "PROD"
env = "DEV"
# The features to use when compiling the bin target

View File

@@ -29,7 +29,7 @@ cfg_if! {
// Setting this to None means we'll be using cargo-leptos and its env vars.
let conf = get_configuration(None).await.unwrap();
let addr = conf.leptos_options.site_address.clone();
let addr = conf.leptos_options.site_addr.clone();
// Generate the list of routes in your Leptos App
let routes = generate_route_list(|cx| view! { cx, <TodoApp/> });

View File

@@ -36,22 +36,26 @@ sqlx = { version = "0.6.2", features = [
], optional = true }
thiserror = "1.0.38"
tracing = "0.1.37"
wasm-bindgen = "0.2"
[features]
default = ["csr"]
csr = ["leptos/csr", "leptos_meta/csr", "leptos_router/csr"]
hydrate = ["leptos/hydrate", "leptos_meta/hydrate", "leptos_router/hydrate"]
ssr = ["dep:axum", "dep:tower", "dep:tower-http", "dep:tokio", "dep:sqlx", "leptos/ssr", "leptos_meta/ssr", "leptos_router/ssr", "dep:leptos_axum"]
ssr = [
"dep:axum",
"dep:tower",
"dep:tower-http",
"dep:tokio",
"dep:sqlx",
"leptos/ssr",
"leptos_meta/ssr",
"leptos_router/ssr",
"dep:leptos_axum",
]
[package.metadata.cargo-all-features]
denylist = [
"axum",
"tower",
"tower-http",
"tokio",
"sqlx",
"leptos_axum",
]
denylist = ["axum", "tower", "tower-http", "tokio", "sqlx", "leptos_axum"]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[package.metadata.leptos]

View File

@@ -1,8 +1,6 @@
use crate::errors::TodoAppError;
use cfg_if::cfg_if;
use leptos::Errors;
use leptos::*;
use leptos::{Errors, *};
#[cfg(feature = "ssr")]
use leptos_axum::ResponseOptions;
@@ -23,14 +21,12 @@ pub fn ErrorTemplate(
};
// Get Errors from Signal
let errors = errors.get().0;
// Downcast lets us take a type that implements `std::error::Error`
let errors: Vec<TodoAppError> = errors
.get()
.into_iter()
.filter_map(|(_k, v)| v.downcast_ref::<TodoAppError>().cloned())
.filter_map(|(_, v)| v.downcast_ref::<TodoAppError>().cloned())
.collect();
println!("Errors: {errors:#?}");
// Only the response code for the first error is actually sent from the server
// this may be customized by the specific application
@@ -51,7 +47,7 @@ pub fn ErrorTemplate(
// a unique key for each item as a reference
key=|(index, _error)| *index
// renders each item to a view
view= move |error| {
view= move |cx, error| {
let error_string = error.1.to_string();
let error_code= error.1.status_code();
view! {

View File

@@ -43,7 +43,7 @@ if #[cfg(feature = "ssr")] {
// Setting this to None means we'll be using cargo-leptos and its env vars
let conf = get_configuration(None).await.unwrap();
let leptos_options = conf.leptos_options;
let addr = leptos_options.site_address;
let addr = leptos_options.site_addr;
let routes = generate_route_list(|cx| view! { cx, <TodoApp/> }).await;
// build our application with a route

View File

@@ -11,7 +11,7 @@ console_error_panic_hook = "0.1.7"
uuid = { version = "1", features = ["v4", "js", "serde"] }
serde = { version = "1", features = ["derive"] }
serde_json = "1"
web-sys = { version = "0.3", features = ["Storage"] }
web-sys = { version = "0.3.60", features = ["Storage"] }
[dev-dependencies]
wasm-bindgen-test = "0.3.0"

View File

@@ -1,4 +1,4 @@
use leptos::{web_sys::HtmlInputElement, *};
use leptos::{html::Input, leptos_dom::helpers::location_hash, *};
use storage::TodoSerialized;
use uuid::Uuid;
@@ -12,12 +12,15 @@ const STORAGE_KEY: &str = "todos-leptos";
// Basic operations to manipulate the todo list: nothing really interesting here
impl Todos {
pub fn new(cx: Scope) -> Self {
let starting_todos = if let Ok(Some(storage)) = window().local_storage() {
let starting_todos = if let Ok(Some(storage)) = window().local_storage()
{
storage
.get_item(STORAGE_KEY)
.ok()
.flatten()
.and_then(|value| serde_json::from_str::<Vec<TodoSerialized>>(&value).ok())
.and_then(|value| {
serde_json::from_str::<Vec<TodoSerialized>>(&value).ok()
})
.map(|values| {
values
.into_iter()
@@ -89,7 +92,12 @@ impl Todo {
Self::new_with_completed(cx, id, title, false)
}
pub fn new_with_completed(cx: Scope, id: Uuid, title: String, completed: bool) -> Self {
pub fn new_with_completed(
cx: Scope,
id: Uuid,
title: String,
completed: bool,
) -> Self {
// RwSignal combines the getter and setter in one struct, rather than separating
// the getter from the setter. This makes it more convenient in some cases, such
// as when we're putting the signals into a struct and passing it around. There's
@@ -129,22 +137,24 @@ pub fn TodoMVC(cx: Scope) -> impl IntoView {
// Handle the three filter modes: All, Active, and Completed
let (mode, set_mode) = create_signal(cx, Mode::All);
window_event_listener("hashchange", move |_| {
let new_mode = location_hash().map(|hash| route(&hash)).unwrap_or_default();
let new_mode =
location_hash().map(|hash| route(&hash)).unwrap_or_default();
set_mode(new_mode);
});
// Callback to add a todo on pressing the `Enter` key, if the field isn't empty
let input_ref = NodeRef::<Input>::new(cx);
let add_todo = move |ev: web_sys::KeyboardEvent| {
let target = event_target::<HtmlInputElement>(&ev);
let input = input_ref.get().unwrap();
ev.stop_propagation();
let key_code = ev.key_code();
if key_code == ENTER_KEY {
let title = event_target_value(&ev);
let title = input.value();
let title = title.trim();
if !title.is_empty() {
let new = Todo::new(cx, Uuid::new_v4(), title.to_string());
set_todos.update(|t| t.add(new));
target.set_value("");
input.set_value("");
}
}
};
@@ -184,7 +194,8 @@ pub fn TodoMVC(cx: Scope) -> impl IntoView {
.iter()
.map(TodoSerialized::from)
.collect::<Vec<_>>();
let json = serde_json::to_string(&objs).expect("couldn't serialize Todos");
let json =
serde_json::to_string(&objs).expect("couldn't serialize Todos");
if storage.set_item(STORAGE_KEY, &json).is_err() {
log::error!("error while trying to set item in localStorage");
}
@@ -201,6 +212,7 @@ pub fn TodoMVC(cx: Scope) -> impl IntoView {
placeholder="What needs to be done?"
autofocus
on:keydown=add_todo
node_ref=input_ref
/>
</header>
<section
@@ -216,7 +228,7 @@ pub fn TodoMVC(cx: Scope) -> impl IntoView {
<For
each=filtered_todos
key=|todo| todo.id
view=move |todo: Todo| view! { cx, <Todo todo /> }
view=move |cx, todo: Todo| view! { cx, <Todo todo /> }
/>
</ul>
</section>
@@ -262,7 +274,7 @@ pub fn Todo(cx: Scope, todo: Todo) -> impl IntoView {
let set_todos = use_context::<WriteSignal<Todos>>(cx).unwrap();
// this will be filled by _ref=input below
let todo_input = NodeRef::<HtmlElement<Input>>::new(cx);
let todo_input = NodeRef::<Input>::new(cx);
let save = move |value: &str| {
let value = value.trim();

View File

@@ -1,27 +1,33 @@
use crate::Todo;
use leptos::Scope;
use serde::{Deserialize, Serialize};
use leptos::{
signal_prelude::*,
Scope,
};
use serde::{
Deserialize,
Serialize,
};
use uuid::Uuid;
#[derive(Serialize, Deserialize)]
pub struct TodoSerialized {
pub id: Uuid,
pub title: String,
pub completed: bool,
pub id: Uuid,
pub title: String,
pub completed: bool,
}
impl TodoSerialized {
pub fn into_todo(self, cx: Scope) -> Todo {
Todo::new_with_completed(cx, self.id, self.title, self.completed)
}
pub fn into_todo(self, cx: Scope) -> Todo {
Todo::new_with_completed(cx, self.id, self.title, self.completed)
}
}
impl From<&Todo> for TodoSerialized {
fn from(todo: &Todo) -> Self {
Self {
id: todo.id,
title: todo.title.get(),
completed: todo.completed.get(),
}
fn from(todo: &Todo) -> Self {
Self {
id: todo.id,
title: todo.title.get(),
completed: todo.completed.get(),
}
}
}

View File

@@ -13,5 +13,6 @@ futures = "0.3"
leptos = { workspace = true, features = ["ssr"] }
leptos_meta = { workspace = true, features = ["ssr"] }
leptos_router = { workspace = true, features = ["ssr"] }
leptos_integration_utils = { workspace = true }
parking_lot = "0.12.1"
regex = "1.7.0"

View File

@@ -13,9 +13,14 @@ use actix_web::{
web::Bytes,
*,
};
use futures::{Future, StreamExt};
use futures::{Future, Stream, StreamExt};
use http::StatusCode;
use leptos::*;
use leptos::{
leptos_dom::ssr::render_to_stream_with_prefix_undisposed_with_context,
leptos_server::{server_fn_by_path, Payload},
*,
};
use leptos_integration_utils::{build_async_response, html_parts};
use leptos_meta::*;
use leptos_router::*;
use parking_lot::RwLock;
@@ -32,11 +37,19 @@ pub struct ResponseParts {
impl ResponseParts {
/// Insert a header, overwriting any previous value with the same key
pub fn insert_header(&mut self, key: header::HeaderName, value: header::HeaderValue) {
pub fn insert_header(
&mut self,
key: header::HeaderName,
value: header::HeaderValue,
) {
self.headers.insert(key, value);
}
/// Append a header, leaving any header with the same key intact
pub fn append_header(&mut self, key: header::HeaderName, value: header::HeaderValue) {
pub fn append_header(
&mut self,
key: header::HeaderName,
value: header::HeaderValue,
) {
self.headers.append(key, value);
}
}
@@ -60,13 +73,21 @@ impl ResponseOptions {
res_parts.status = Some(status);
}
/// Insert a header, overwriting any previous value with the same key
pub fn insert_header(&self, key: header::HeaderName, value: header::HeaderValue) {
pub fn insert_header(
&self,
key: header::HeaderName,
value: header::HeaderValue,
) {
let mut writeable = self.0.write();
let res_parts = &mut *writeable;
res_parts.headers.insert(key, value);
}
/// Append a header, leaving any header with the same key intact
pub fn append_header(&self, key: header::HeaderName, value: header::HeaderValue) {
pub fn append_header(
&self,
key: header::HeaderName,
value: header::HeaderValue,
) {
let mut writeable = self.0.write();
let res_parts = &mut *writeable;
res_parts.headers.append(key, value);
@@ -77,12 +98,14 @@ impl ResponseOptions {
/// it sets a [StatusCode] of 302 and a [LOCATION](header::LOCATION) header with the provided value.
/// If looking to redirect from the client, `leptos_router::use_navigate()` should be used instead.
pub fn redirect(cx: leptos::Scope, path: &str) {
let response_options = use_context::<ResponseOptions>(cx).unwrap();
response_options.set_status(StatusCode::FOUND);
response_options.insert_header(
header::LOCATION,
header::HeaderValue::from_str(path).expect("Failed to create HeaderValue"),
);
if let Some(response_options) = use_context::<ResponseOptions>(cx) {
response_options.set_status(StatusCode::FOUND);
response_options.insert_header(
header::LOCATION,
header::HeaderValue::from_str(path)
.expect("Failed to create HeaderValue"),
);
}
}
/// An Actix [Route](actix_web::Route) that listens for a `POST` request with
@@ -173,7 +196,8 @@ pub fn handle_server_fns_with_context(
match server_fn(cx, body).await {
Ok(serialized) => {
let res_options = use_context::<ResponseOptions>(cx).unwrap();
let res_options =
use_context::<ResponseOptions>(cx).unwrap();
// clean up the scope, which we only needed to run the server fn
disposer.dispose();
@@ -183,7 +207,8 @@ pub fn handle_server_fns_with_context(
let mut res_parts = res_options.0.write();
if accept_header == Some("application/json")
|| accept_header == Some("application/x-www-form-urlencoded")
|| accept_header
== Some("application/x-www-form-urlencoded")
|| accept_header == Some("application/cbor")
{
res = HttpResponse::Ok();
@@ -221,7 +246,9 @@ pub fn handle_server_fns_with_context(
res.body(Bytes::from(data))
}
Payload::Url(data) => {
res.content_type("application/x-www-form-urlencoded");
res.content_type(
"application/x-www-form-urlencoded",
);
res.body(data)
}
Payload::Json(data) => {
@@ -230,13 +257,15 @@ pub fn handle_server_fns_with_context(
}
}
}
Err(e) => HttpResponse::InternalServerError().body(e.to_string()),
Err(e) => HttpResponse::InternalServerError()
.body(e.to_string()),
}
} else {
HttpResponse::BadRequest().body(format!(
"Could not find a server function at the route {:?}. \
\n\nIt's likely that you need to call ServerFn::register() on the \
server function type, somewhere in your `main` function.",
\n\nIt's likely that you need to call \
ServerFn::register() on the server function type, \
somewhere in your `main` function.",
req.path()
))
}
@@ -246,37 +275,45 @@ pub fn handle_server_fns_with_context(
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], serving an HTML stream of your application.
/// to route it using [leptos_router], serving an HTML stream of your application. The stream
/// will include fallback content for any `<Suspense/>` nodes, and be immediately interactive,
/// but requires some client-side JavaScript.
///
/// The provides a [MetaContext] and a [RouterIntegrationContext] to apps context before
/// rendering it, and includes any meta tags injected using [leptos_meta].
///
/// The HTML stream is rendered using [render_to_stream], and includes everything described in
/// the documentation for that function.
/// The HTML stream is rendered using [render_to_stream](leptos::ssr::render_to_stream), and
/// includes everything described in the documentation for that function.
///
/// This can then be set up at an appropriate route in your application:
/// ```
/// use actix_web::{HttpServer, App};
/// use actix_web::{App, HttpServer};
/// use leptos::*;
/// use std::{env,net::SocketAddr};
/// use std::{env, net::SocketAddr};
///
/// #[component]
/// fn MyApp(cx: Scope) -> impl IntoView {
/// view! { cx, <main>"Hello, world!"</main> }
/// view! { cx, <main>"Hello, world!"</main> }
/// }
///
/// # if false { // don't actually try to run a server in a doctest...
/// #[actix_web::main]
/// async fn main() -> std::io::Result<()> {
/// let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
/// let addr = conf.leptos_options.site_address.clone();
/// let addr = conf.leptos_options.site_addr.clone();
/// HttpServer::new(move || {
/// let leptos_options = &conf.leptos_options;
///
///
/// App::new()
/// // {tail:.*} passes the remainder of the URL as the route
/// // the actual routing will be handled by `leptos_router`
/// .route("/{tail:.*}", leptos_actix::render_app_to_stream(leptos_options.to_owned(), |cx| view! { cx, <MyApp/> }))
/// .route(
/// "/{tail:.*}",
/// leptos_actix::render_app_to_stream(
/// leptos_options.to_owned(),
/// |cx| view! { cx, <MyApp/> },
/// ),
/// )
/// })
/// .bind(&addr)?
/// .run()
@@ -301,6 +338,133 @@ where
render_app_to_stream_with_context(options, |_cx| {}, app_fn)
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], serving an in-order HTML stream of your application.
/// This stream will pause at each `<Suspense/>` node and wait for it to resolve befores
/// sending down its HTML. The app will become interactive once it has fully loaded.
///
/// The provides a [MetaContext] and a [RouterIntegrationContext] to apps context before
/// rendering it, and includes any meta tags injected using [leptos_meta].
///
/// The HTML stream is rendered using [render_to_stream_in_order], and includes everything described in
/// the documentation for that function.
///
/// This can then be set up at an appropriate route in your application:
/// ```
/// use actix_web::{App, HttpServer};
/// use leptos::*;
/// use std::{env, net::SocketAddr};
///
/// #[component]
/// fn MyApp(cx: Scope) -> impl IntoView {
/// view! { cx, <main>"Hello, world!"</main> }
/// }
///
/// # if false { // don't actually try to run a server in a doctest...
/// #[actix_web::main]
/// async fn main() -> std::io::Result<()> {
/// let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
/// let addr = conf.leptos_options.site_addr.clone();
/// HttpServer::new(move || {
/// let leptos_options = &conf.leptos_options;
///
/// App::new()
/// // {tail:.*} passes the remainder of the URL as the route
/// // the actual routing will be handled by `leptos_router`
/// .route(
/// "/{tail:.*}",
/// leptos_actix::render_app_to_stream_in_order(
/// leptos_options.to_owned(),
/// |cx| view! { cx, <MyApp/> },
/// ),
/// )
/// })
/// .bind(&addr)?
/// .run()
/// .await
/// }
/// # }
/// ```
///
/// ## Provided Context Types
/// This function always provides context values including the following types:
/// - [ResponseOptions]
/// - [HttpRequest](actix_web::HttpRequest)
/// - [MetaContext](leptos_meta::MetaContext)
/// - [RouterIntegrationContext](leptos_router::RouterIntegrationContext)
pub fn render_app_to_stream_in_order<IV>(
options: LeptosOptions,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + 'static,
) -> Route
where
IV: IntoView,
{
render_app_to_stream_in_order_with_context(options, |_cx| {}, app_fn)
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], asynchronously rendering an HTML page after all
/// `async` [Resource](leptos::Resource)s have loaded.
///
/// The provides a [MetaContext] and a [RouterIntegrationContext] to the apps context before
/// rendering it, and includes any meta tags injected using [leptos_meta].
///
/// The HTML stream is rendered using [render_to_string_async], and includes everything described in
/// the documentation for that function.
///
/// This can then be set up at an appropriate route in your application:
/// ```
/// use actix_web::{App, HttpServer};
/// use leptos::*;
/// use std::{env, net::SocketAddr};
///
/// #[component]
/// fn MyApp(cx: Scope) -> impl IntoView {
/// view! { cx, <main>"Hello, world!"</main> }
/// }
///
/// # if false { // don't actually try to run a server in a doctest...
/// #[actix_web::main]
/// async fn main() -> std::io::Result<()> {
/// let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
/// let addr = conf.leptos_options.site_addr.clone();
/// HttpServer::new(move || {
/// let leptos_options = &conf.leptos_options;
///
/// App::new()
/// // {tail:.*} passes the remainder of the URL as the route
/// // the actual routing will be handled by `leptos_router`
/// .route(
/// "/{tail:.*}",
/// leptos_actix::render_app_async(
/// leptos_options.to_owned(),
/// |cx| view! { cx, <MyApp/> },
/// ),
/// )
/// })
/// .bind(&addr)?
/// .run()
/// .await
/// }
/// # }
/// ```
///
/// ## Provided Context Types
/// This function always provides context values including the following types:
/// - [ResponseOptions]
/// - [HttpRequest](actix_web::HttpRequest)
/// - [MetaContext](leptos_meta::MetaContext)
/// - [RouterIntegrationContext](leptos_router::RouterIntegrationContext)
pub fn render_app_async<IV>(
options: LeptosOptions,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + 'static,
) -> Route
where
IV: IntoView,
{
render_app_async_with_context(options, |_cx| {}, app_fn)
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], serving an HTML stream of your application.
///
@@ -342,42 +506,139 @@ where
})
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], serving an in-order HTML stream of your application.
///
/// This function allows you to provide additional information to Leptos for your route.
/// It could be used to pass in Path Info, Connection Info, or anything your heart desires.
///
/// ## Provided Context Types
/// This function always provides context values including the following types:
/// - [ResponseOptions]
/// - [HttpRequest](actix_web::HttpRequest)
/// - [MetaContext](leptos_meta::MetaContext)
/// - [RouterIntegrationContext](leptos_router::RouterIntegrationContext)
pub fn render_app_to_stream_in_order_with_context<IV>(
options: LeptosOptions,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + 'static,
) -> Route
where
IV: IntoView,
{
web::get().to(move |req: HttpRequest| {
let options = options.clone();
let app_fn = app_fn.clone();
let additional_context = additional_context.clone();
let res_options = ResponseOptions::default();
async move {
let app = {
let app_fn = app_fn.clone();
let res_options = res_options.clone();
move |cx| {
provide_contexts(cx, &req, res_options);
(app_fn)(cx).into_view(cx)
}
};
stream_app_in_order(&options, app, res_options, additional_context)
.await
}
})
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], asynchronously serving the page once all `async`
/// [Resource](leptos::Resource)s have loaded.
///
/// This function allows you to provide additional information to Leptos for your route.
/// It could be used to pass in Path Info, Connection Info, or anything your heart desires.
///
/// ## Provided Context Types
/// This function always provides context values including the following types:
/// - [ResponseOptions]
/// - [HttpRequest](actix_web::HttpRequest)
/// - [MetaContext](leptos_meta::MetaContext)
/// - [RouterIntegrationContext](leptos_router::RouterIntegrationContext)
pub fn render_app_async_with_context<IV>(
options: LeptosOptions,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + 'static,
) -> Route
where
IV: IntoView,
{
web::get().to(move |req: HttpRequest| {
let options = options.clone();
let app_fn = app_fn.clone();
let additional_context = additional_context.clone();
let res_options = ResponseOptions::default();
async move {
let app = {
let app_fn = app_fn.clone();
let res_options = res_options.clone();
move |cx| {
provide_contexts(cx, &req, res_options);
(app_fn)(cx).into_view(cx)
}
};
render_app_async_helper(
&options,
app,
res_options,
additional_context,
)
.await
}
})
}
/// Returns an Actix [Route](actix_web::Route) that listens for a `GET` request and tries
/// to route it using [leptos_router], serving an HTML stream of your application.
///
/// The provides a [MetaContext] and a [RouterIntegrationContext] to apps context before
/// rendering it, and includes any meta tags injected using [leptos_meta].
///
/// The HTML stream is rendered using [render_to_stream], and includes everything described in
/// the documentation for that function.
/// The HTML stream is rendered using [render_to_stream](leptos::ssr::render_to_stream), and
/// includes everything described in the documentation for that function.
///
/// This can then be set up at an appropriate route in your application:
/// ```
/// use actix_web::{HttpServer, App};
/// use actix_web::{App, HttpServer};
/// use leptos::*;
/// use std::{env,net::SocketAddr};
/// use leptos_actix::DataResponse;
/// use std::{env, net::SocketAddr};
///
/// #[component]
/// fn MyApp(cx: Scope, data: &'static str) -> impl IntoView {
/// view! { cx, <main>"Hello, world!"</main> }
/// view! { cx, <main>"Hello, world!"</main> }
/// }
///
/// # if false { // don't actually try to run a server in a doctest...
/// #[actix_web::main]
/// async fn main() -> std::io::Result<()> {
/// let conf = get_configuration(Some("Cargo.toml")).await.unwrap();
/// let addr = conf.leptos_options.site_address.clone();
/// let addr = conf.leptos_options.site_addr.clone();
/// HttpServer::new(move || {
/// let leptos_options = &conf.leptos_options;
///
///
/// App::new()
/// // {tail:.*} passes the remainder of the URL as the route
/// // the actual routing will be handled by `leptos_router`
/// .route("/{tail:.*}", leptos_actix::render_preloaded_data_app(
/// leptos_options.to_owned(),
/// |req| async move { Ok(DataResponse::Data("async func that can preload data")) },
/// |cx, data| view! { cx, <MyApp data/> })
/// .route(
/// "/{tail:.*}",
/// leptos_actix::render_preloaded_data_app(
/// leptos_options.to_owned(),
/// |req| async move {
/// Ok(DataResponse::Data(
/// "async func that can preload data",
/// ))
/// },
/// |cx, data| view! { cx, <MyApp data/> },
/// ),
/// )
/// })
/// .bind(&addr)?
@@ -393,6 +654,9 @@ where
/// - [HttpRequest](actix_web::HttpRequest)
/// - [MetaContext](leptos_meta::MetaContext)
/// - [RouterIntegrationContext](leptos_router::RouterIntegrationContext)
#[deprecated = "You can now use `render_app_async` with `create_resource` and \
`<Suspense/>` to achieve async rendering without manually \
preloading data."]
pub fn render_preloaded_data_app<Data, Fut, IV>(
options: LeptosOptions,
data_fn: impl Fn(HttpRequest) -> Fut + Clone + 'static,
@@ -430,7 +694,11 @@ where
})
}
fn provide_contexts(cx: leptos::Scope, req: &HttpRequest, res_options: ResponseOptions) {
fn provide_contexts(
cx: leptos::Scope,
req: &HttpRequest,
res_options: ResponseOptions,
) {
let path = leptos_corrected_path(req);
let integration = ServerIntegration { path };
@@ -457,25 +725,44 @@ async fn stream_app(
res_options: ResponseOptions,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
) -> HttpResponse<BoxBody> {
let (stream, runtime, scope) = render_to_stream_with_prefix_undisposed_with_context(
app,
move |cx| {
let meta = use_context::<MetaContext>(cx);
let head = meta
.as_ref()
.map(|meta| meta.dehydrate())
.unwrap_or_default();
let body_meta = meta
.as_ref()
.and_then(|meta| meta.body.as_string())
.unwrap_or_default();
format!("{head}</head><body{body_meta}>").into()
},
additional_context,
);
let (stream, runtime, scope) =
render_to_stream_with_prefix_undisposed_with_context(
app,
move |cx| generate_head_metadata(cx).into(),
additional_context,
);
build_stream_response(options, res_options, stream, runtime, scope).await
}
async fn stream_app_in_order(
options: &LeptosOptions,
app: impl FnOnce(leptos::Scope) -> View + 'static,
res_options: ResponseOptions,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
) -> HttpResponse<BoxBody> {
let (stream, runtime, scope) =
leptos::ssr::render_to_stream_in_order_with_prefix_undisposed_with_context(
app,
move |cx| {
generate_head_metadata(cx).into()
},
additional_context,
);
build_stream_response(options, res_options, stream, runtime, scope).await
}
async fn build_stream_response(
options: &LeptosOptions,
res_options: ResponseOptions,
stream: impl Stream<Item = String> + 'static,
runtime: RuntimeId,
scope: ScopeId,
) -> HttpResponse {
let cx = leptos::Scope { runtime, id: scope };
let (head, tail) = html_parts(options, use_context::<MetaContext>(cx).as_ref());
let (head, tail) =
html_parts(options, use_context::<MetaContext>(cx).as_ref());
let mut stream = Box::pin(
futures::stream::once(async move { head.clone() })
@@ -487,22 +774,19 @@ async fn stream_app(
.map(|html| Ok(web::Bytes::from(html)) as Result<web::Bytes>),
);
// Get the first, second, and third chunks in the stream, which renders the app shell, and thus allows Resources to run
// Get the first and second in the stream, which renders the app shell, and thus allows Resources to run
let first_chunk = stream.next().await;
let second_chunk = stream.next().await;
let third_chunk = stream.next().await;
let res_options = res_options.0.read();
let (status, mut headers) = (res_options.status, res_options.headers.clone());
let (status, mut headers) =
(res_options.status, res_options.headers.clone());
let status = status.unwrap_or_default();
let complete_stream = futures::stream::iter([
first_chunk.unwrap(),
second_chunk.unwrap(),
third_chunk.unwrap(),
])
.chain(stream);
let complete_stream =
futures::stream::iter([first_chunk.unwrap(), second_chunk.unwrap()])
.chain(stream);
let mut res = HttpResponse::Ok()
.content_type("text/html")
.streaming(complete_stream);
@@ -519,71 +803,48 @@ async fn stream_app(
res
}
fn html_parts(options: &LeptosOptions, meta_context: Option<&MetaContext>) -> (String, String) {
// Because wasm-pack adds _bg to the end of the WASM filename, and we want to mantain compatibility with it's default options
// we add _bg to the wasm files if cargo-leptos doesn't set the env var LEPTOS_OUTPUT_NAME
// Otherwise we need to add _bg because wasm_pack always does. This is not the same as options.output_name, which is set regardless
let output_name = &options.output_name;
let mut wasm_output_name = output_name.clone();
if std::env::var("LEPTOS_OUTPUT_NAME").is_err() {
wasm_output_name.push_str("_bg");
async fn render_app_async_helper(
options: &LeptosOptions,
app: impl FnOnce(leptos::Scope) -> View + 'static,
res_options: ResponseOptions,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
) -> HttpResponse<BoxBody> {
let (stream, runtime, scope) =
leptos::ssr::render_to_stream_in_order_with_prefix_undisposed_with_context(
app,
move |_| "".into(),
additional_context,
);
let html = build_async_response(stream, options, runtime, scope).await;
let res_options = res_options.0.read();
let (status, mut headers) =
(res_options.status, res_options.headers.clone());
let status = status.unwrap_or_default();
let mut res = HttpResponse::Ok().content_type("text/html").body(html);
// Add headers manipulated in the response
for (key, value) in headers.drain() {
if let Some(key) = key {
res.headers_mut().append(key, value);
}
}
let site_ip = &options.site_address.ip().to_string();
let reload_port = options.reload_port;
let pkg_path = &options.site_pkg_dir;
let leptos_autoreload = match std::env::var("LEPTOS_WATCH").is_ok() {
true => format!(
r#"
<script crossorigin="">(function () {{
var ws = new WebSocket('ws://{site_ip}:{reload_port}/live_reload');
ws.onmessage = (ev) => {{
let msg = JSON.parse(ev.data);
if (msg.all) window.location.reload();
if (msg.css) {{
const link = document.querySelector("link#leptos");
if (link) {{
let href = link.getAttribute('href').split('?')[0];
let newHref = href + '?version=' + new Date().getMilliseconds();
link.setAttribute('href', newHref);
}} else {{
console.warn("Could not find link#leptos");
}}
}};
}};
ws.onclose = () => console.warn('Live-reload stopped. Manual reload necessary.');
}})()
</script>
"#
),
false => "".to_string(),
};
let html_metadata = meta_context
.and_then(|mc| mc.html.as_string())
.unwrap_or_default();
let head = format!(
r#"<!DOCTYPE html>
<html{html_metadata}>
<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<link rel="modulepreload" href="/{pkg_path}/{output_name}.js">
<link rel="preload" href="/{pkg_path}/{wasm_output_name}.wasm" as="fetch" type="application/wasm" crossorigin="">
<script type="module">import init, {{ hydrate }} from '/{pkg_path}/{output_name}.js'; init('/{pkg_path}/{wasm_output_name}.wasm').then(hydrate);</script>
{leptos_autoreload}
"#
);
let tail = "</body></html>".to_string();
(head, tail)
// Set status to what is returned in the function
let res_status = res.status_mut();
*res_status = status;
// Return the response
res
}
/// Generates a list of all routes defined in Leptos's Router in your app. We can then use this to automatically
/// create routes in Actix's App without having to use wildcard matching or fallbacks. Takes in your root app Element
/// as an argument so it can walk you app tree. This version is tailored to generated Actix compatible paths.
pub fn generate_route_list<IV>(app_fn: impl FnOnce(leptos::Scope) -> IV + 'static) -> Vec<String>
pub fn generate_route_list<IV>(
app_fn: impl FnOnce(leptos::Scope) -> IV + 'static,
) -> Vec<(String, SsrMode)>
where
IV: IntoView + 'static,
{
@@ -591,12 +852,12 @@ where
// Empty strings screw with Actix pathing, they need to be "/"
routes = routes
.iter()
.map(|s| {
.into_iter()
.map(|(s, mode)| {
if s.is_empty() {
return "/".to_string();
return ("/".to_string(), mode);
}
s.to_string()
(s, mode)
})
.collect();
@@ -606,14 +867,14 @@ where
// Match `:some_word` but only capture `some_word` in the groups to replace with `{some_word}`
let capture_re = Regex::new(r":((?:[^.,/]+)+)[^/]?").unwrap();
let routes: Vec<String> = routes
.iter()
.map(|s| wildcard_re.replace_all(s, "{tail:.*}").to_string())
.map(|s| capture_re.replace_all(&s, "{$1}").to_string())
let routes: Vec<(String, SsrMode)> = routes
.into_iter()
.map(|(s, m)| (wildcard_re.replace_all(&s, "{tail:.*}").to_string(), m))
.map(|(s, m)| (capture_re.replace_all(&s, "{$1}").to_string(), m))
.collect();
if routes.is_empty() {
vec!["/".to_string()]
vec![("/".to_string(), Default::default())]
} else {
routes
}
@@ -624,18 +885,22 @@ pub enum DataResponse<T> {
Response(actix_web::dev::Response<BoxBody>),
}
/// This trait allows one to pass a list of routes and a render function to Axum's router, letting us avoid
/// This trait allows one to pass a list of routes and a render function to Actix's router, letting us avoid
/// having to use wildcards or manually define all routes in multiple places.
pub trait LeptosRoutes {
fn leptos_routes<IV>(
self,
options: LeptosOptions,
paths: Vec<String>,
paths: Vec<(String, SsrMode)>,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + Send + 'static,
) -> Self
where
IV: IntoView + 'static;
#[deprecated = "You can now use `leptos_routes` and a `<Route \
mode=SsrMode::Async/>`
to achieve async rendering without manually preloading \
data."]
fn leptos_preloaded_data_routes<Data, Fut, IV>(
self,
options: LeptosOptions,
@@ -651,7 +916,7 @@ pub trait LeptosRoutes {
fn leptos_routes_with_context<IV>(
self,
options: LeptosOptions,
paths: Vec<String>,
paths: Vec<(String, SsrMode)>,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + Send + 'static,
) -> Self
@@ -663,22 +928,23 @@ pub trait LeptosRoutes {
/// to those paths to Leptos's renderer.
impl<T> LeptosRoutes for actix_web::App<T>
where
T: ServiceFactory<ServiceRequest, Config = (), Error = Error, InitError = ()>,
T: ServiceFactory<
ServiceRequest,
Config = (),
Error = Error,
InitError = (),
>,
{
fn leptos_routes<IV>(
self,
options: LeptosOptions,
paths: Vec<String>,
paths: Vec<(String, SsrMode)>,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + Send + 'static,
) -> Self
where
IV: IntoView + 'static,
{
let mut router = self;
for path in paths.iter() {
router = router.route(path, render_app_to_stream(options.clone(), app_fn.clone()));
}
router
self.leptos_routes_with_context(options, paths, |_| {}, app_fn)
}
fn leptos_preloaded_data_routes<Data, Fut, IV>(
@@ -698,7 +964,12 @@ where
for path in paths.iter() {
router = router.route(
path,
render_preloaded_data_app(options.clone(), data_fn.clone(), app_fn.clone()),
#[allow(deprecated)]
render_preloaded_data_app(
options.clone(),
data_fn.clone(),
app_fn.clone(),
),
);
}
router
@@ -707,7 +978,7 @@ where
fn leptos_routes_with_context<IV>(
self,
options: LeptosOptions,
paths: Vec<String>,
paths: Vec<(String, SsrMode)>,
additional_context: impl Fn(leptos::Scope) + 'static + Clone + Send,
app_fn: impl Fn(leptos::Scope) -> IV + Clone + Send + 'static,
) -> Self
@@ -715,14 +986,28 @@ where
IV: IntoView + 'static,
{
let mut router = self;
for path in paths.iter() {
for (path, mode) in paths.iter() {
router = router.route(
path,
render_app_to_stream_with_context(
options.clone(),
additional_context.clone(),
app_fn.clone(),
),
match mode {
SsrMode::OutOfOrder => render_app_to_stream_with_context(
options.clone(),
additional_context.clone(),
app_fn.clone(),
),
SsrMode::InOrder => {
render_app_to_stream_in_order_with_context(
options.clone(),
additional_context.clone(),
app_fn.clone(),
)
}
SsrMode::Async => render_app_async_with_context(
options.clone(),
additional_context.clone(),
app_fn.clone(),
),
},
);
}
router

View File

@@ -16,5 +16,6 @@ leptos = { workspace = true, features = ["ssr"] }
leptos_meta = { workspace = true, features = ["ssr"] }
leptos_router = { workspace = true, features = ["ssr"] }
leptos_config = { workspace = true }
leptos_integration_utils = { workspace = true }
tokio = { version = "1", features = ["full"] }
parking_lot = "0.12.1"

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,15 @@
[package]
name = "leptos_integration_utils"
version = { workspace = true }
edition = "2021"
authors = ["Greg Johnston"]
license = "MIT"
repository = "https://github.com/leptos-rs/leptos"
description = "Utilities to help build server integrations for the Leptos web framework."
[dependencies]
futures = "0.3"
leptos = { workspace = true, features = ["ssr"] }
leptos_meta = { workspace = true, features = ["ssr"] }
leptos_router = { workspace = true, features = ["ssr"] }
leptos_config = { workspace = true }

View File

@@ -0,0 +1,100 @@
use futures::{Stream, StreamExt};
use leptos::{use_context, RuntimeId, ScopeId};
use leptos_config::LeptosOptions;
use leptos_meta::MetaContext;
pub fn html_parts(
options: &LeptosOptions,
meta: Option<&MetaContext>,
) -> (String, &'static str) {
let pkg_path = &options.site_pkg_dir;
let output_name = &options.output_name;
// Because wasm-pack adds _bg to the end of the WASM filename, and we want to mantain compatibility with it's default options
// we add _bg to the wasm files if cargo-leptos doesn't set the env var LEPTOS_OUTPUT_NAME
// Otherwise we need to add _bg because wasm_pack always does. This is not the same as options.output_name, which is set regardless
let mut wasm_output_name = output_name.clone();
if std::env::var("LEPTOS_OUTPUT_NAME").is_err() {
wasm_output_name.push_str("_bg");
}
let site_ip = &options.site_addr.ip().to_string();
let reload_port = options.reload_port;
let leptos_autoreload = match std::env::var("LEPTOS_WATCH").is_ok() {
true => format!(
r#"
<script crossorigin="">(function () {{
var ws = new WebSocket('ws://{site_ip}:{reload_port}/live_reload');
ws.onmessage = (ev) => {{
let msg = JSON.parse(ev.data);
if (msg.all) window.location.reload();
if (msg.css) {{
let found = false;
document.querySelectorAll("link").forEach((link) => {{
if (link.getAttribute('href').includes(msg.css)) {{
let newHref = '/' + msg.css + '?version=' + new Date().getMilliseconds();
link.setAttribute('href', newHref);
found = true;
}}
}});
if (!found) console.warn(`CSS hot-reload: Could not find a <link href=/\"${{msg.css}}\"> element`);
}};
}};
ws.onclose = () => console.warn('Live-reload stopped. Manual reload necessary.');
}})()
</script>
"#
),
false => "".to_string(),
};
let html_metadata =
meta.and_then(|mc| mc.html.as_string()).unwrap_or_default();
let head = format!(
r#"<!DOCTYPE html>
<html{html_metadata}>
<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<link rel="modulepreload" href="/{pkg_path}/{output_name}.js">
<link rel="preload" href="/{pkg_path}/{wasm_output_name}.wasm" as="fetch" type="application/wasm" crossorigin="">
<script type="module">import init, {{ hydrate }} from '/{pkg_path}/{output_name}.js'; init('/{pkg_path}/{wasm_output_name}.wasm').then(hydrate);</script>
{leptos_autoreload}
"#
);
let tail = "</body></html>";
(head, tail)
}
pub async fn build_async_response(
stream: impl Stream<Item = String> + 'static,
options: &LeptosOptions,
runtime: RuntimeId,
scope: ScopeId,
) -> String {
let mut buf = String::new();
let mut stream = Box::pin(stream);
while let Some(chunk) = stream.next().await {
buf.push_str(&chunk);
}
let cx = leptos::Scope { runtime, id: scope };
let (head, tail) =
html_parts(options, use_context::<MetaContext>(cx).as_ref());
// in async, we load the meta content *now*, after the suspenses have resolved
let meta = use_context::<MetaContext>(cx);
let head_meta = meta
.as_ref()
.map(|meta| meta.dehydrate())
.unwrap_or_default();
let body_meta = meta
.as_ref()
.and_then(|meta| meta.body.as_string())
.unwrap_or_default();
runtime.dispose();
format!("{head}{head_meta}</head><body{body_meta}>{buf}{tail}")
}

21
leptos/Makefile.toml Normal file
View File

@@ -0,0 +1,21 @@
[tasks.build-wasm]
clear = true
dependencies = ["build-hydrate", "build-csr"]
[tasks.build-hydrate]
command = "cargo"
args = [
"build",
"--no-default-features",
"--features=hydrate",
"--target=wasm32-unknown-unknown",
]
[tasks.build-csr]
command = "cargo"
args = [
"build",
"--no-default-features",
"--features=csr",
"--target=wasm32-unknown-unknown",
]

View File

@@ -1,7 +1,9 @@
use crate::Children;
use leptos_dom::{Errors, IntoView};
use leptos_macro::component;
use leptos_reactive::{create_rw_signal, provide_context, RwSignal, Scope};
use leptos_macro::{component, view};
use leptos_reactive::{
create_rw_signal, provide_context, signal_prelude::*, RwSignal, Scope,
};
/// When you render a `Result<_, _>` in your view, in the `Err` case it will
/// render nothing, and search up through the view tree for an `<ErrorBoundary/>`.
@@ -45,8 +47,16 @@ where
// Run children so that they render and execute resources
let children = children(cx);
move || match errors.get().0.is_empty() {
true => children.clone().into_view(cx),
false => fallback(cx, errors).into_view(cx),
move || {
match errors.with(Errors::is_empty) {
true => children.clone().into_view(cx),
false => view! { cx,
<>
{fallback(cx, errors)}
<leptos-error-boundary style="display: none">{children.clone()}</leptos-error-boundary>
</>
}
.into_view(cx),
}
}
}

View File

@@ -30,7 +30,7 @@ use std::hash::Hash;
/// // a unique key for each item
/// key=|counter| counter.id
/// // renders each item to a view
/// view=move |counter: Counter| {
/// view=move |cx, counter: Counter| {
/// view! {
/// cx,
/// <button>"Value: " {move || counter.count.get()}</button>
@@ -54,7 +54,7 @@ pub fn For<IF, I, T, EF, N, KF, K>(
where
IF: Fn() -> I + 'static,
I: IntoIterator<Item = T>,
EF: Fn(T) -> N + 'static,
EF: Fn(Scope, T) -> N + 'static,
N: IntoView,
KF: Fn(&T) -> K + 'static,
K: Eq + Hash + 'static,

View File

@@ -34,6 +34,8 @@
//! communication via contexts, and the `<For/>` component for efficient keyed list updates.
//! - [`counters_stable`](https://github.com/leptos-rs/leptos/tree/main/examples/counters_stable) adapts the `counters` example
//! to show how to use Leptos with `stable` Rust.
//! - [`error_boundary`](https://github.com/leptos-rs/leptos/tree/main/examples/error_boundary) shows how to use
//! `Result` types to handle errors.
//! - [`parent_child`](https://github.com/leptos-rs/leptos/tree/main/examples/parent_child) shows four different
//! ways a parent component can communicate with a child, including passing a closure, context, and more
//! - [`todomvc`](https://github.com/leptos-rs/leptos/tree/main/examples/todomvc) implements the classic to-do
@@ -130,7 +132,7 @@
//!
//! #[component]
//! fn SimpleCounter(cx: Scope, initial_value: i32) -> impl IntoView {
//! todo!()
//! todo!()
//! }
//!
//! pub fn main() {
@@ -139,16 +141,32 @@
//! # }
//! ```
pub use leptos_config::*;
pub use leptos_dom;
pub use leptos_dom::wasm_bindgen::{JsCast, UnwrapThrowExt};
pub use leptos_dom::*;
pub use leptos_config::{self, get_configuration, LeptosOptions};
#[cfg(not(all(
target_arch = "wasm32",
any(feature = "csr", feature = "hydrate")
)))]
/// Utilities for server-side rendering HTML.
pub mod ssr {
pub use leptos_dom::{ssr::*, ssr_in_order::*};
}
pub use leptos_dom::{
self, create_node_ref, debug_warn, document, error, ev,
helpers::{
event_target, event_target_checked, event_target_value,
request_animation_frame, request_idle_callback, set_interval,
set_timeout, window_event_listener,
},
html, log, math, mount_to, mount_to_body, svg, warn, window, Attribute,
Class, Errors, Fragment, HtmlElement, IntoAttribute, IntoClass,
IntoProperty, IntoView, NodeRef, Property, View,
};
pub use leptos_macro::*;
pub use leptos_reactive::*;
pub use leptos_server;
pub use leptos_server::*;
pub use tracing;
pub use leptos_server::{
self, create_action, create_multi_action, create_server_action,
create_server_multi_action, Action, MultiAction, ServerFn, ServerFnError,
};
pub use typed_builder;
mod error_boundary;
pub use error_boundary::*;
@@ -159,10 +177,11 @@ pub use show::*;
mod suspense;
pub use suspense::*;
mod transition;
#[cfg(debug_assertions)]
#[doc(hidden)]
pub use tracing;
pub use transition::*;
pub use leptos_reactive::debug_warn;
extern crate self as leptos;
/// The most common type for the `children` property on components,
@@ -176,3 +195,22 @@ pub type ChildrenFn = Box<dyn Fn(Scope) -> Fragment>;
/// A type for the `children` property on components that can be called
/// more than once, but may mutate the children.
pub type ChildrenFnMut = Box<dyn FnMut(Scope) -> Fragment>;
/// A type for taking anything that implements [`IntoAttribute`].
///
/// ```rust
/// use leptos::*;
///
/// #[component]
/// pub fn MyHeading(
/// cx: Scope,
/// text: String,
/// #[prop(optional, into)] class: Option<AttributeValue>,
/// ) -> impl IntoView {
/// view! {
/// cx,
/// <h1 class=class>{text}</h1>
/// }
/// }
/// ```
pub type AttributeValue = Box<dyn IntoAttribute>;

View File

@@ -1,6 +1,6 @@
use leptos::component;
use leptos_dom::{Fragment, IntoView};
use leptos_reactive::{create_memo, Scope};
use leptos_reactive::{create_memo, signal_prelude::*, Scope};
/// A component that will show its children when the `when` condition is `true`,
/// and show the fallback when it is `false`, without rerendering every time

View File

@@ -1,6 +1,5 @@
use cfg_if::cfg_if;
use leptos_dom::HydrationCtx;
use leptos_dom::{DynChild, Fragment, IntoView};
use leptos_dom::{DynChild, Fragment, HydrationCtx, IntoView};
use leptos_macro::component;
use leptos_reactive::{provide_context, Scope, SuspenseContext};
use std::rc::Rc;
@@ -63,8 +62,6 @@ where
F: Fn() -> E + 'static,
E: IntoView,
{
#[cfg(not(any(feature = "csr", feature = "hydrate")))]
let id_before_suspense = HydrationCtx::peek();
let context = SuspenseContext::new(cx);
// provide this SuspenseContext to any resources below it
@@ -86,13 +83,16 @@ where
fallback().into_view(cx)
}
} else {
use leptos_reactive::signal_prelude::*;
// run the child; we'll probably throw this away, but it will register resource reads
let child = orig_child(cx).into_view(cx);
let after_original_child = HydrationCtx::id();
let initial = {
// no resources were read under this, so just return the child
if context.pending_resources.get() == 0 {
child.clone()
child
}
// show the fallback, but also prepare to stream HTML
else {
@@ -100,10 +100,11 @@ where
cx.register_suspense(
context,
&id_before_suspense.to_string(),
&current_id.to_string(),
// out-of-order streaming
{
let current_id = current_id.clone();
let orig_child = Rc::clone(&orig_child);
move || {
HydrationCtx::continue_from(current_id.clone());
DynChild::new(move || orig_child(cx))
@@ -111,6 +112,16 @@ where
.render_to_string(cx)
.to_string()
}
},
// in-order streaming
{
let current_id = current_id.clone();
move || {
HydrationCtx::continue_from(current_id.clone());
DynChild::new(move || orig_child(cx))
.into_view(cx)
.into_stream_chunks(cx)
}
}
);
@@ -119,8 +130,7 @@ where
}
};
HydrationCtx::continue_from(current_id.clone());
HydrationCtx::continue_from(after_original_child);
initial
}
}

View File

@@ -19,7 +19,9 @@ use std::{cell::RefCell, rc::Rc};
/// # use leptos::*;
/// # if false {
/// # run_scope(create_runtime(), |cx| {
/// async fn fetch_cats(how_many: u32) -> Option<Vec<String>> { Some(vec![]) }
/// async fn fetch_cats(how_many: u32) -> Option<Vec<String>> {
/// Some(vec![])
/// }
///
/// let (cat_count, set_cat_count) = create_signal::<u32>(cx, 1);
/// let (pending, set_pending) = create_signal(cx, false);

View File

@@ -16,7 +16,11 @@ fn simple_ssr_test() {
assert_eq!(
rendered.into_view(cx).render_to_string(cx),
"<div id=\"_0-1\"><button id=\"_0-2\">-1</button><span id=\"_0-3\">Value: <!--hk=_0-4o|leptos-dyn-child-start-->0<!--hk=_0-4c|leptos-dyn-child-end-->!</span><button id=\"_0-5\">+1</button></div>"
"<div id=\"_0-1\"><button id=\"_0-2\">-1</button><span \
id=\"_0-3\">Value: \
<!--hk=_0-4o|leptos-dyn-child-start-->0<!\
--hk=_0-4c|leptos-dyn-child-end-->!</span><button \
id=\"_0-5\">+1</button></div>"
);
});
}
@@ -50,7 +54,21 @@ fn ssr_test_with_components() {
assert_eq!(
rendered.into_view(cx).render_to_string(cx),
"<div id=\"_0-1\" class=\"counters\"><!--hk=_0-1-0o|leptos-counter-start--><div id=\"_0-1-1\"><button id=\"_0-1-2\">-1</button><span id=\"_0-1-3\">Value: <!--hk=_0-1-4o|leptos-dyn-child-start-->1<!--hk=_0-1-4c|leptos-dyn-child-end-->!</span><button id=\"_0-1-5\">+1</button></div><!--hk=_0-1-0c|leptos-counter-end--><!--hk=_0-1-5-0o|leptos-counter-start--><div id=\"_0-1-5-1\"><button id=\"_0-1-5-2\">-1</button><span id=\"_0-1-5-3\">Value: <!--hk=_0-1-5-4o|leptos-dyn-child-start-->2<!--hk=_0-1-5-4c|leptos-dyn-child-end-->!</span><button id=\"_0-1-5-5\">+1</button></div><!--hk=_0-1-5-0c|leptos-counter-end--></div>"
"<div class=\"counters\" \
id=\"_0-1\"><!--hk=_0-1-0o|leptos-counter-start--><div \
id=\"_0-1-1\"><button id=\"_0-1-2\">-1</button><span \
id=\"_0-1-3\">Value: \
<!--hk=_0-1-4o|leptos-dyn-child-start-->1<!\
--hk=_0-1-4c|leptos-dyn-child-end-->!</span><button \
id=\"_0-1-5\">+1</button></div><!\
--hk=_0-1-0c|leptos-counter-end--><!\
--hk=_0-1-5-0o|leptos-counter-start--><div \
id=\"_0-1-5-1\"><button id=\"_0-1-5-2\">-1</button><span \
id=\"_0-1-5-3\">Value: \
<!--hk=_0-1-5-4o|leptos-dyn-child-start-->2<!\
--hk=_0-1-5-4c|leptos-dyn-child-end-->!</span><button \
id=\"_0-1-5-5\">+1</button></div><!\
--hk=_0-1-5-0c|leptos-counter-end--></div>"
);
});
}
@@ -84,7 +102,22 @@ fn ssr_test_with_snake_case_components() {
assert_eq!(
rendered.into_view(cx).render_to_string(cx),
"<div id=\"_0-1\" class=\"counters\"><!--hk=_0-1-0o|leptos-snake-case-counter-start--><div id=\"_0-1-1\"><button id=\"_0-1-2\">-1</button><span id=\"_0-1-3\">Value: <!--hk=_0-1-4o|leptos-dyn-child-start-->1<!--hk=_0-1-4c|leptos-dyn-child-end-->!</span><button id=\"_0-1-5\">+1</button></div><!--hk=_0-1-0c|leptos-snake-case-counter-end--><!--hk=_0-1-5-0o|leptos-snake-case-counter-start--><div id=\"_0-1-5-1\"><button id=\"_0-1-5-2\">-1</button><span id=\"_0-1-5-3\">Value: <!--hk=_0-1-5-4o|leptos-dyn-child-start-->2<!--hk=_0-1-5-4c|leptos-dyn-child-end-->!</span><button id=\"_0-1-5-5\">+1</button></div><!--hk=_0-1-5-0c|leptos-snake-case-counter-end--></div>"
"<div class=\"counters\" \
id=\"_0-1\"><!\
--hk=_0-1-0o|leptos-snake-case-counter-start--><div \
id=\"_0-1-1\"><button id=\"_0-1-2\">-1</button><span \
id=\"_0-1-3\">Value: \
<!--hk=_0-1-4o|leptos-dyn-child-start-->1<!\
--hk=_0-1-4c|leptos-dyn-child-end-->!</span><button \
id=\"_0-1-5\">+1</button></div><!\
--hk=_0-1-0c|leptos-snake-case-counter-end--><!\
--hk=_0-1-5-0o|leptos-snake-case-counter-start--><div \
id=\"_0-1-5-1\"><button id=\"_0-1-5-2\">-1</button><span \
id=\"_0-1-5-3\">Value: \
<!--hk=_0-1-5-4o|leptos-dyn-child-start-->2<!\
--hk=_0-1-5-4c|leptos-dyn-child-end-->!</span><button \
id=\"_0-1-5-5\">+1</button></div><!\
--hk=_0-1-5-0c|leptos-snake-case-counter-end--></div>"
);
});
}
@@ -103,7 +136,7 @@ fn test_classes() {
assert_eq!(
rendered.into_view(cx).render_to_string(cx),
"<div id=\"_0-1\" class=\"my big red car\"></div>"
"<div class=\"my big red car\" id=\"_0-1\"></div>"
);
});
}
@@ -114,7 +147,7 @@ fn ssr_with_styles() {
use leptos::*;
_ = create_scope(create_runtime(), |cx| {
let (value, set_value) = create_signal(cx, 0);
let (_, set_value) = create_signal(cx, 0);
let styles = "myclass";
let rendered = view! {
cx, class = styles,
@@ -125,7 +158,8 @@ fn ssr_with_styles() {
assert_eq!(
rendered.into_view(cx).render_to_string(cx),
"<div id=\"_0-1\" class=\" myclass\"><button id=\"_0-2\" class=\"btn myclass\">-1</button></div>"
"<div class=\"myclass\" id=\"_0-1\"><button class=\"btn myclass\" \
id=\"_0-2\">-1</button></div>"
);
});
}
@@ -136,7 +170,7 @@ fn ssr_option() {
use leptos::*;
_ = create_scope(create_runtime(), |cx| {
let (value, set_value) = create_signal(cx, 0);
let (_, _) = create_signal(cx, 0);
let rendered = view! {
cx,
<option/>

View File

@@ -1,5 +1,4 @@
use std::{net::AddrParseError, num::ParseIntError};
use thiserror::Error;
#[derive(Debug, Error, Clone)]

Some files were not shown because too many files have changed in this diff Show More