Yosry Ahmed c11bcbc0a5 mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding
the per-CPU acomp_ctx mutex.  crypto_free_acomp() then holds scomp_lock
(through crypto_exit_scomp_ops_async()).

On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through
crypto_scomp_init_tfm()), and then allocates memory.  If the allocation
results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.

The above dependencies can cause an ABBA deadlock.  For example in the
following scenario:

(1) Task A running on CPU #1:
    crypto_alloc_acomp_node()
      Holds scomp_lock
      Enters reclaim
      Reads per_cpu_ptr(pool->acomp_ctx, 1)

(2) Task A is descheduled

(3) CPU #1 goes offline
    zswap_cpu_comp_dead(CPU #1)
      Holds per_cpu_ptr(pool->acomp_ctx, 1))
      Calls crypto_free_acomp()
      Waits for scomp_lock

(4) Task A running on CPU #2:
      Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1
      DEADLOCK

Since there is no requirement to call crypto_free_acomp() with the per-CPU
acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is
unlocked.  Also move the acomp_request_free() and kfree() calls for
consistency and to avoid any potential sublte locking dependencies in the
future.

With this, only setting acomp_ctx fields to NULL occurs with the mutex
held.  This is similar to how zswap_cpu_comp_prepare() only initializes
acomp_ctx fields with the mutex held, after performing all allocations
before holding the mutex.

Opportunistically, move the NULL check on acomp_ctx so that it takes place
before the mutex dereference.

Link: https://lkml.kernel.org/r/20250226185625.2672936-1-yosry.ahmed@linux.dev
Fixes: 12dcb0ef54 ("mm: zswap: properly synchronize freeing resources during CPU hotunplug")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Co-developed-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reported-by: syzbot+1a517ccfcbc6a7ab0f82@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67bcea51.050a0220.bbfd1.0096.GAE@google.com/
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Nhat Pham <nphamcs@gmail.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Murphy <lists@colorremedies.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-01 15:14:43 -07:00
2024-09-01 20:43:24 -07:00
2022-09-28 09:02:20 +02:00
2025-02-19 14:53:27 -07:00
2024-03-18 03:36:32 -06:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the reStructuredText markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 3.5 GiB
Languages
C 97.1%
Assembly 1%
Shell 0.6%
Rust 0.4%
Python 0.4%
Other 0.3%