Files
linux/drivers/net/dsa/lantiq/lantiq_gswip_common.c
Daniel Golle 651b253b80 net: dsa: mxl-gsw1xx: fix .shutdown driver operation
The .shutdown operation should call dsa_switch_shutdown() just like
it is done also by the sibling lantiq_gswip driver. Not doing that
results in shutdown or reboot hanging and waiting for the CPU port
becoming free, which introduces a longer delay and a WARNING before
shutdown or reboot in case the driver is built-into the kernel.
Fix this by calling dsa_switch_shutdown() in the driver's shutdown
operation, harmonizing it with what is done in the lantiq_gswip
driver. As a side-effect this now allows to remove the previously
exported gswip_disable_switch() function which no longer got any
users.

Fixes: 22335939ec ("net: dsa: add driver for MaxLinear GSW1xx switch family")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Link: https://patch.msgid.link/77ed91a5206e5dbf5d3e83d7e364ebfda90d31fd.1765241054.git.daniel@makrotopia.org
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-12-18 12:53:21 +01:00

1741 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Lantiq / Intel / MaxLinear GSWIP common function library
*
* Copyright (C) 2025 Daniel Golle <daniel@makrotopia.org>
* Copyright (C) 2023 - 2024 MaxLinear Inc.
* Copyright (C) 2022 Snap One, LLC. All rights reserved.
* Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
* Copyright (C) 2012 John Crispin <john@phrozen.org>
* Copyright (C) 2010 Lantiq Deutschland
*
* The VLAN and bridge model the GSWIP hardware uses does not directly
* matches the model DSA uses.
*
* The hardware has 64 possible table entries for bridges with one VLAN
* ID, one flow id and a list of ports for each bridge. All entries which
* match the same flow ID are combined in the mac learning table, they
* act as one global bridge.
* The hardware does not support VLAN filter on the port, but on the
* bridge, this driver converts the DSA model to the hardware.
*
* The CPU gets all the exception frames which do not match any forwarding
* rule and the CPU port is also added to all bridges. This makes it possible
* to handle all the special cases easily in software.
* At the initialization the driver allocates one bridge table entry for
* each switch port which is used when the port is used without an
* explicit bridge. This prevents the frames from being forwarded
* between all LAN ports by default.
*/
#include "lantiq_gswip.h"
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/phy.h>
#include <linux/phylink.h>
#include <linux/regmap.h>
#include <net/dsa.h>
struct gswip_pce_table_entry {
u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
u16 table; // PCE_TBL_CTRL.ADDR = pData->table
u16 key[8];
u16 val[5];
u16 mask;
u8 gmap;
bool type;
bool valid;
bool key_mode;
};
struct gswip_rmon_cnt_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
/** Receive Packet Count (only packets that are accepted and not discarded). */
MIB_DESC(1, 0x1F, "RxGoodPkts"),
MIB_DESC(1, 0x23, "RxUnicastPkts"),
MIB_DESC(1, 0x22, "RxMulticastPkts"),
MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
MIB_DESC(1, 0x20, "RxGoodPausePkts"),
MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
MIB_DESC(1, 0x12, "Rx64BytePkts"),
MIB_DESC(1, 0x13, "Rx127BytePkts"),
MIB_DESC(1, 0x14, "Rx255BytePkts"),
MIB_DESC(1, 0x15, "Rx511BytePkts"),
MIB_DESC(1, 0x16, "Rx1023BytePkts"),
/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
MIB_DESC(1, 0x17, "RxMaxBytePkts"),
MIB_DESC(1, 0x18, "RxDroppedPkts"),
MIB_DESC(1, 0x19, "RxFilteredPkts"),
MIB_DESC(2, 0x24, "RxGoodBytes"),
MIB_DESC(2, 0x26, "RxBadBytes"),
MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
MIB_DESC(1, 0x0C, "TxGoodPkts"),
MIB_DESC(1, 0x06, "TxUnicastPkts"),
MIB_DESC(1, 0x07, "TxMulticastPkts"),
MIB_DESC(1, 0x00, "Tx64BytePkts"),
MIB_DESC(1, 0x01, "Tx127BytePkts"),
MIB_DESC(1, 0x02, "Tx255BytePkts"),
MIB_DESC(1, 0x03, "Tx511BytePkts"),
MIB_DESC(1, 0x04, "Tx1023BytePkts"),
/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
MIB_DESC(1, 0x05, "TxMaxBytePkts"),
MIB_DESC(1, 0x08, "TxSingleCollCount"),
MIB_DESC(1, 0x09, "TxMultCollCount"),
MIB_DESC(1, 0x0A, "TxLateCollCount"),
MIB_DESC(1, 0x0B, "TxExcessCollCount"),
MIB_DESC(1, 0x0D, "TxPauseCount"),
MIB_DESC(1, 0x10, "TxDroppedPkts"),
MIB_DESC(2, 0x0E, "TxGoodBytes"),
};
static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
u32 cleared)
{
u32 val;
return regmap_read_poll_timeout(priv->gswip, offset, val,
!(val & cleared), 20, 50000);
}
static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 mask, u32 set,
int port)
{
int reg_port;
/* MII_CFG register only exists for MII ports */
if (!(priv->hw_info->mii_ports & BIT(port)))
return;
reg_port = port + priv->hw_info->mii_port_reg_offset;
regmap_write_bits(priv->mii, GSWIP_MII_CFGp(reg_port), mask,
set);
}
static int gswip_mdio_poll(struct gswip_priv *priv)
{
u32 ctrl;
return regmap_read_poll_timeout(priv->mdio, GSWIP_MDIO_CTRL, ctrl,
!(ctrl & GSWIP_MDIO_CTRL_BUSY), 40, 4000);
}
static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
{
struct gswip_priv *priv = bus->priv;
int err;
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
regmap_write(priv->mdio, GSWIP_MDIO_WRITE, val);
regmap_write(priv->mdio, GSWIP_MDIO_CTRL,
GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
(reg & GSWIP_MDIO_CTRL_REGAD_MASK));
return 0;
}
static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
{
struct gswip_priv *priv = bus->priv;
u32 val;
int err;
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
regmap_write(priv->mdio, GSWIP_MDIO_CTRL,
GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
(reg & GSWIP_MDIO_CTRL_REGAD_MASK));
err = gswip_mdio_poll(priv);
if (err) {
dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
return err;
}
err = regmap_read(priv->mdio, GSWIP_MDIO_READ, &val);
if (err)
return err;
return val;
}
static int gswip_mdio(struct gswip_priv *priv)
{
struct device_node *mdio_np, *switch_np = priv->dev->of_node;
struct device *dev = priv->dev;
struct mii_bus *bus;
int err = 0;
mdio_np = of_get_compatible_child(switch_np, "lantiq,xrx200-mdio");
if (!mdio_np)
mdio_np = of_get_child_by_name(switch_np, "mdio");
if (!of_device_is_available(mdio_np))
goto out_put_node;
bus = devm_mdiobus_alloc(dev);
if (!bus) {
err = -ENOMEM;
goto out_put_node;
}
bus->priv = priv;
bus->read = gswip_mdio_rd;
bus->write = gswip_mdio_wr;
bus->name = "lantiq,xrx200-mdio";
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(priv->dev));
bus->parent = priv->dev;
err = devm_of_mdiobus_register(dev, bus, mdio_np);
out_put_node:
of_node_put(mdio_np);
return err;
}
static int gswip_pce_table_entry_read(struct gswip_priv *priv,
struct gswip_pce_table_entry *tbl)
{
int i;
int err;
u32 crtl;
u32 tmp;
u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
mutex_lock(&priv->pce_table_lock);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
goto out_unlock;
regmap_write(priv->gswip, GSWIP_PCE_TBL_ADDR, tbl->index);
regmap_write_bits(priv->gswip, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK |
GSWIP_PCE_TBL_CTRL_BAS,
tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
goto out_unlock;
for (i = 0; i < ARRAY_SIZE(tbl->key); i++) {
err = regmap_read(priv->gswip, GSWIP_PCE_TBL_KEY(i), &tmp);
if (err)
goto out_unlock;
tbl->key[i] = tmp;
}
for (i = 0; i < ARRAY_SIZE(tbl->val); i++) {
err = regmap_read(priv->gswip, GSWIP_PCE_TBL_VAL(i), &tmp);
if (err)
goto out_unlock;
tbl->val[i] = tmp;
}
err = regmap_read(priv->gswip, GSWIP_PCE_TBL_MASK, &tmp);
if (err)
goto out_unlock;
tbl->mask = tmp;
err = regmap_read(priv->gswip, GSWIP_PCE_TBL_CTRL, &crtl);
if (err)
goto out_unlock;
tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
out_unlock:
mutex_unlock(&priv->pce_table_lock);
return err;
}
static int gswip_pce_table_entry_write(struct gswip_priv *priv,
struct gswip_pce_table_entry *tbl)
{
int i;
int err;
u32 crtl;
u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
mutex_lock(&priv->pce_table_lock);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err) {
mutex_unlock(&priv->pce_table_lock);
return err;
}
regmap_write(priv->gswip, GSWIP_PCE_TBL_ADDR, tbl->index);
regmap_write_bits(priv->gswip, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
tbl->table | addr_mode);
for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
regmap_write(priv->gswip, GSWIP_PCE_TBL_KEY(i), tbl->key[i]);
for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
regmap_write(priv->gswip, GSWIP_PCE_TBL_VAL(i), tbl->val[i]);
regmap_write_bits(priv->gswip, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
tbl->table | addr_mode);
regmap_write(priv->gswip, GSWIP_PCE_TBL_MASK, tbl->mask);
regmap_read(priv->gswip, GSWIP_PCE_TBL_CTRL, &crtl);
crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
GSWIP_PCE_TBL_CTRL_GMAP_MASK);
if (tbl->type)
crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
if (tbl->valid)
crtl |= GSWIP_PCE_TBL_CTRL_VLD;
crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
crtl |= GSWIP_PCE_TBL_CTRL_BAS;
regmap_write(priv->gswip, GSWIP_PCE_TBL_CTRL, crtl);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
mutex_unlock(&priv->pce_table_lock);
return err;
}
/* Add the LAN port into a bridge with the CPU port by
* default. This prevents automatic forwarding of
* packages between the LAN ports when no explicit
* bridge is configured.
*/
static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
{
struct gswip_pce_table_entry vlan_active = {0,};
struct gswip_pce_table_entry vlan_mapping = {0,};
int err;
vlan_active.index = port + 1;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.key[0] = GSWIP_VLAN_UNAWARE_PVID;
vlan_active.val[0] = port + 1 /* fid */;
vlan_active.valid = add;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
return err;
}
if (!add)
return 0;
vlan_mapping.index = port + 1;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
vlan_mapping.val[0] = GSWIP_VLAN_UNAWARE_PVID;
vlan_mapping.val[1] = BIT(port) | dsa_cpu_ports(priv->ds);
vlan_mapping.val[2] = 0;
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
return err;
}
return 0;
}
static int gswip_port_set_learning(struct gswip_priv *priv, int port,
bool enable)
{
if (!GSWIP_VERSION_GE(priv, GSWIP_VERSION_2_2))
return -EOPNOTSUPP;
/* learning disable bit */
return regmap_update_bits(priv->gswip, GSWIP_PCE_PCTRL_3p(port),
GSWIP_PCE_PCTRL_3_LNDIS,
enable ? 0 : GSWIP_PCE_PCTRL_3_LNDIS);
}
static int gswip_port_pre_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct gswip_priv *priv = ds->priv;
unsigned long supported = 0;
if (GSWIP_VERSION_GE(priv, GSWIP_VERSION_2_2))
supported |= BR_LEARNING;
if (flags.mask & ~supported)
return -EINVAL;
return 0;
}
static int gswip_port_bridge_flags(struct dsa_switch *ds, int port,
struct switchdev_brport_flags flags,
struct netlink_ext_ack *extack)
{
struct gswip_priv *priv = ds->priv;
if (flags.mask & BR_LEARNING)
return gswip_port_set_learning(priv, port,
!!(flags.val & BR_LEARNING));
return 0;
}
static int gswip_port_setup(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
int err;
if (!dsa_is_cpu_port(ds, port)) {
err = gswip_add_single_port_br(priv, port, true);
if (err)
return err;
}
return 0;
}
static int gswip_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct gswip_priv *priv = ds->priv;
if (!dsa_is_cpu_port(ds, port)) {
u32 mdio_phy = 0;
if (phydev)
mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
regmap_write_bits(priv->mdio, GSWIP_MDIO_PHYp(port),
GSWIP_MDIO_PHY_ADDR_MASK,
mdio_phy);
}
/* RMON Counter Enable for port */
regmap_write(priv->gswip, GSWIP_BM_PCFGp(port), GSWIP_BM_PCFG_CNTEN);
/* enable port fetch/store dma & VLAN Modification */
regmap_set_bits(priv->gswip, GSWIP_FDMA_PCTRLp(port),
GSWIP_FDMA_PCTRL_EN | GSWIP_FDMA_PCTRL_VLANMOD_BOTH);
regmap_set_bits(priv->gswip, GSWIP_SDMA_PCTRLp(port),
GSWIP_SDMA_PCTRL_EN);
return 0;
}
static void gswip_port_disable(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
regmap_clear_bits(priv->gswip, GSWIP_FDMA_PCTRLp(port),
GSWIP_FDMA_PCTRL_EN);
regmap_clear_bits(priv->gswip, GSWIP_SDMA_PCTRLp(port),
GSWIP_SDMA_PCTRL_EN);
}
static int gswip_pce_load_microcode(struct gswip_priv *priv)
{
int i;
int err;
regmap_write_bits(priv->gswip, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_ADDR_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_MASK |
GSWIP_PCE_TBL_CTRL_OPMOD_ADWR,
GSWIP_PCE_TBL_CTRL_OPMOD_ADWR);
regmap_write(priv->gswip, GSWIP_PCE_TBL_MASK, 0);
for (i = 0; i < priv->hw_info->pce_microcode_size; i++) {
regmap_write(priv->gswip, GSWIP_PCE_TBL_ADDR, i);
regmap_write(priv->gswip, GSWIP_PCE_TBL_VAL(0),
(*priv->hw_info->pce_microcode)[i].val_0);
regmap_write(priv->gswip, GSWIP_PCE_TBL_VAL(1),
(*priv->hw_info->pce_microcode)[i].val_1);
regmap_write(priv->gswip, GSWIP_PCE_TBL_VAL(2),
(*priv->hw_info->pce_microcode)[i].val_2);
regmap_write(priv->gswip, GSWIP_PCE_TBL_VAL(3),
(*priv->hw_info->pce_microcode)[i].val_3);
/* start the table access: */
regmap_set_bits(priv->gswip, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
GSWIP_PCE_TBL_CTRL_BAS);
if (err)
return err;
}
/* tell the switch that the microcode is loaded */
regmap_set_bits(priv->gswip, GSWIP_PCE_GCTRL_0,
GSWIP_PCE_GCTRL_0_MC_VALID);
return 0;
}
static void gswip_port_commit_pvid(struct gswip_priv *priv, int port)
{
struct dsa_port *dp = dsa_to_port(priv->ds, port);
struct net_device *br = dsa_port_bridge_dev_get(dp);
u32 vinr;
int idx;
if (!dsa_port_is_user(dp))
return;
if (br) {
u16 pvid = GSWIP_VLAN_UNAWARE_PVID;
if (br_vlan_enabled(br))
br_vlan_get_pvid(br, &pvid);
/* VLAN-aware bridge ports with no PVID will use Active VLAN
* index 0. The expectation is that this drops all untagged and
* VID-0 tagged ingress traffic.
*/
idx = 0;
for (int i = priv->hw_info->max_ports;
i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == br &&
priv->vlans[i].vid == pvid) {
idx = i;
break;
}
}
} else {
/* The Active VLAN table index as configured by
* gswip_add_single_port_br()
*/
idx = port + 1;
}
vinr = idx ? GSWIP_PCE_VCTRL_VINR_ALL : GSWIP_PCE_VCTRL_VINR_TAGGED;
regmap_write_bits(priv->gswip, GSWIP_PCE_VCTRL(port),
GSWIP_PCE_VCTRL_VINR,
FIELD_PREP(GSWIP_PCE_VCTRL_VINR, vinr));
/* Note that in GSWIP 2.2 VLAN mode the VID needs to be programmed
* directly instead of referencing the index in the Active VLAN Tablet.
* However, without the VLANMD bit (9) in PCE_GCTRL_1 (0x457) even
* GSWIP 2.2 and newer hardware maintain the GSWIP 2.1 behavior.
*/
regmap_write(priv->gswip, GSWIP_PCE_DEFPVID(port), idx);
}
static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering,
struct netlink_ext_ack *extack)
{
struct gswip_priv *priv = ds->priv;
if (vlan_filtering) {
/* Use tag based VLAN */
regmap_write_bits(priv->gswip, GSWIP_PCE_VCTRL(port),
GSWIP_PCE_VCTRL_VSR |
GSWIP_PCE_VCTRL_UVR |
GSWIP_PCE_VCTRL_VIMR |
GSWIP_PCE_VCTRL_VEMR |
GSWIP_PCE_VCTRL_VID0,
GSWIP_PCE_VCTRL_UVR |
GSWIP_PCE_VCTRL_VIMR |
GSWIP_PCE_VCTRL_VEMR |
GSWIP_PCE_VCTRL_VID0);
regmap_clear_bits(priv->gswip, GSWIP_PCE_PCTRL_0p(port),
GSWIP_PCE_PCTRL_0_TVM);
} else {
/* Use port based VLAN */
regmap_write_bits(priv->gswip, GSWIP_PCE_VCTRL(port),
GSWIP_PCE_VCTRL_UVR |
GSWIP_PCE_VCTRL_VIMR |
GSWIP_PCE_VCTRL_VEMR |
GSWIP_PCE_VCTRL_VID0 |
GSWIP_PCE_VCTRL_VSR,
GSWIP_PCE_VCTRL_VSR);
regmap_set_bits(priv->gswip, GSWIP_PCE_PCTRL_0p(port),
GSWIP_PCE_PCTRL_0_TVM);
}
gswip_port_commit_pvid(priv, port);
return 0;
}
static void gswip_mii_delay_setup(struct gswip_priv *priv, struct dsa_port *dp,
phy_interface_t interface)
{
u32 tx_delay = GSWIP_MII_PCDU_TXDLY_DEFAULT;
u32 rx_delay = GSWIP_MII_PCDU_RXDLY_DEFAULT;
struct device_node *port_dn = dp->dn;
u16 mii_pcdu_reg;
/* As MII_PCDU registers only exist for MII ports, silently return
* unless the port is an MII port
*/
if (!(priv->hw_info->mii_ports & BIT(dp->index)))
return;
switch (dp->index + priv->hw_info->mii_port_reg_offset) {
case 0:
mii_pcdu_reg = GSWIP_MII_PCDU0;
break;
case 1:
mii_pcdu_reg = GSWIP_MII_PCDU1;
break;
case 5:
mii_pcdu_reg = GSWIP_MII_PCDU5;
break;
default:
return;
}
/* legacy code to set default delays according to the interface mode */
switch (interface) {
case PHY_INTERFACE_MODE_RGMII_ID:
tx_delay = 0;
rx_delay = 0;
break;
case PHY_INTERFACE_MODE_RGMII_RXID:
rx_delay = 0;
break;
case PHY_INTERFACE_MODE_RGMII_TXID:
tx_delay = 0;
break;
default:
break;
}
/* allow settings delays using device tree properties */
of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay);
of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay);
regmap_write_bits(priv->mii, mii_pcdu_reg,
GSWIP_MII_PCDU_TXDLY_MASK |
GSWIP_MII_PCDU_RXDLY_MASK,
GSWIP_MII_PCDU_TXDLY(tx_delay) |
GSWIP_MII_PCDU_RXDLY(rx_delay));
}
static int gswip_setup(struct dsa_switch *ds)
{
unsigned int cpu_ports = dsa_cpu_ports(ds);
struct gswip_priv *priv = ds->priv;
struct dsa_port *cpu_dp;
int err, i;
regmap_write(priv->gswip, GSWIP_SWRES, GSWIP_SWRES_R0);
usleep_range(5000, 10000);
regmap_write(priv->gswip, GSWIP_SWRES, 0);
/* disable port fetch/store dma on all ports */
for (i = 0; i < priv->hw_info->max_ports; i++) {
gswip_port_disable(ds, i);
gswip_port_vlan_filtering(ds, i, false, NULL);
}
/* enable Switch */
regmap_set_bits(priv->mdio, GSWIP_MDIO_GLOB, GSWIP_MDIO_GLOB_ENABLE);
err = gswip_pce_load_microcode(priv);
if (err) {
dev_err(priv->dev, "writing PCE microcode failed, %i\n", err);
return err;
}
/* Default unknown Broadcast/Multicast/Unicast port maps */
regmap_write(priv->gswip, GSWIP_PCE_PMAP1, cpu_ports);
regmap_write(priv->gswip, GSWIP_PCE_PMAP2, cpu_ports);
regmap_write(priv->gswip, GSWIP_PCE_PMAP3, cpu_ports);
/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
* interoperability problem with this auto polling mechanism because
* their status registers think that the link is in a different state
* than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
* as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
* auto polling state machine consider the link being negotiated with
* 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
* to the switch port being completely dead (RX and TX are both not
* working).
* Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
* GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
* it would work fine for a few minutes to hours and then stop, on
* other device it would no traffic could be sent or received at all.
* Testing shows that when PHY auto polling is disabled these problems
* go away.
*/
regmap_write(priv->mdio, GSWIP_MDIO_MDC_CFG0, 0x0);
/* Configure the MDIO Clock 2.5 MHz */
regmap_write_bits(priv->mdio, GSWIP_MDIO_MDC_CFG1, 0xff, 0x09);
/* bring up the mdio bus */
err = gswip_mdio(priv);
if (err) {
dev_err(priv->dev, "mdio bus setup failed\n");
return err;
}
/* Disable the xMII interface and clear it's isolation bit */
for (i = 0; i < priv->hw_info->max_ports; i++)
gswip_mii_mask_cfg(priv,
GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
0, i);
dsa_switch_for_each_cpu_port(cpu_dp, ds) {
/* enable special tag insertion on cpu port */
regmap_set_bits(priv->gswip, GSWIP_FDMA_PCTRLp(cpu_dp->index),
GSWIP_FDMA_PCTRL_STEN);
/* accept special tag in ingress direction */
regmap_set_bits(priv->gswip,
GSWIP_PCE_PCTRL_0p(cpu_dp->index),
GSWIP_PCE_PCTRL_0_INGRESS);
}
regmap_set_bits(priv->gswip, GSWIP_BM_QUEUE_GCTRL,
GSWIP_BM_QUEUE_GCTRL_GL_MOD);
/* VLAN aware Switching */
regmap_set_bits(priv->gswip, GSWIP_PCE_GCTRL_0,
GSWIP_PCE_GCTRL_0_VLAN);
/* Flush MAC Table */
regmap_set_bits(priv->gswip, GSWIP_PCE_GCTRL_0,
GSWIP_PCE_GCTRL_0_MTFL);
err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
GSWIP_PCE_GCTRL_0_MTFL);
if (err) {
dev_err(priv->dev, "MAC flushing didn't finish\n");
return err;
}
ds->mtu_enforcement_ingress = true;
return 0;
}
static void gswip_teardown(struct dsa_switch *ds)
{
struct gswip_priv *priv = ds->priv;
regmap_clear_bits(priv->mdio, GSWIP_MDIO_GLOB, GSWIP_MDIO_GLOB_ENABLE);
}
static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
struct gswip_priv *priv = ds->priv;
return priv->hw_info->tag_protocol;
}
static int gswip_vlan_active_create(struct gswip_priv *priv,
struct net_device *bridge,
int fid, u16 vid)
{
struct gswip_pce_table_entry vlan_active = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
int idx = -1;
int err;
int i;
/* Look for a free slot */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (!priv->vlans[i].bridge) {
idx = i;
break;
}
}
if (idx == -1)
return -ENOSPC;
if (fid == -1)
fid = idx;
vlan_active.index = idx;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.key[0] = vid;
vlan_active.val[0] = fid;
vlan_active.valid = true;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
return err;
}
priv->vlans[idx].bridge = bridge;
priv->vlans[idx].vid = vid;
priv->vlans[idx].fid = fid;
return idx;
}
static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
{
struct gswip_pce_table_entry vlan_active = {0,};
int err;
vlan_active.index = idx;
vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
vlan_active.valid = false;
err = gswip_pce_table_entry_write(priv, &vlan_active);
if (err)
dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
priv->vlans[idx].bridge = NULL;
return err;
}
static int gswip_vlan_add(struct gswip_priv *priv, struct net_device *bridge,
int port, u16 vid, bool untagged, bool pvid,
bool vlan_aware)
{
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
unsigned int cpu_ports = dsa_cpu_ports(priv->ds);
bool active_vlan_created = false;
int fid = -1, idx = -1;
int i, err;
/* Check if there is already a page for this bridge */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge) {
if (vlan_aware) {
if (fid != -1 && fid != priv->vlans[i].fid)
dev_err(priv->dev, "one bridge with multiple flow ids\n");
fid = priv->vlans[i].fid;
}
if (priv->vlans[i].vid == vid) {
idx = i;
break;
}
}
}
/* If this bridge is not programmed yet, add a Active VLAN table
* entry in a free slot and prepare the VLAN mapping table entry.
*/
if (idx == -1) {
idx = gswip_vlan_active_create(priv, bridge, fid, vid);
if (idx < 0)
return idx;
active_vlan_created = true;
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
} else {
/* Read the existing VLAN mapping entry from the switch */
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
err = gswip_pce_table_entry_read(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
err);
return err;
}
}
/* VLAN ID byte, maps to the VLAN ID of vlan active table */
vlan_mapping.val[0] = vid;
/* Update the VLAN mapping entry and write it to the switch */
vlan_mapping.val[1] |= cpu_ports;
vlan_mapping.val[1] |= BIT(port);
if (vlan_aware)
vlan_mapping.val[2] |= cpu_ports;
if (untagged)
vlan_mapping.val[2] &= ~BIT(port);
else
vlan_mapping.val[2] |= BIT(port);
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
/* In case an Active VLAN was creaetd delete it again */
if (active_vlan_created)
gswip_vlan_active_remove(priv, idx);
return err;
}
gswip_port_commit_pvid(priv, port);
return 0;
}
static int gswip_vlan_remove(struct gswip_priv *priv,
struct net_device *bridge, int port,
u16 vid)
{
struct gswip_pce_table_entry vlan_mapping = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
int idx = -1;
int i;
int err;
/* Check if there is already a page for this bridge */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge &&
priv->vlans[i].vid == vid) {
idx = i;
break;
}
}
if (idx == -1) {
dev_err(priv->dev, "Port %d cannot find VID %u of bridge %s\n",
port, vid, bridge ? bridge->name : "(null)");
return -ENOENT;
}
vlan_mapping.index = idx;
vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
err = gswip_pce_table_entry_read(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
return err;
}
vlan_mapping.val[1] &= ~BIT(port);
vlan_mapping.val[2] &= ~BIT(port);
err = gswip_pce_table_entry_write(priv, &vlan_mapping);
if (err) {
dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
return err;
}
/* In case all ports are removed from the bridge, remove the VLAN */
if (!(vlan_mapping.val[1] & ~dsa_cpu_ports(priv->ds))) {
err = gswip_vlan_active_remove(priv, idx);
if (err) {
dev_err(priv->dev, "failed to write active VLAN: %d\n",
err);
return err;
}
}
gswip_port_commit_pvid(priv, port);
return 0;
}
static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
struct dsa_bridge bridge,
bool *tx_fwd_offload,
struct netlink_ext_ack *extack)
{
struct net_device *br = bridge.dev;
struct gswip_priv *priv = ds->priv;
int err;
/* Set up the VLAN for VLAN-unaware bridging for this port, and remove
* it from the "single-port bridge" through which it was operating as
* standalone.
*/
err = gswip_vlan_add(priv, br, port, GSWIP_VLAN_UNAWARE_PVID,
true, true, false);
if (err)
return err;
return gswip_add_single_port_br(priv, port, false);
}
static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
struct dsa_bridge bridge)
{
struct net_device *br = bridge.dev;
struct gswip_priv *priv = ds->priv;
/* Add the port back to the "single-port bridge", and remove it from
* the VLAN-unaware PVID created for this bridge.
*/
gswip_add_single_port_br(priv, port, true);
gswip_vlan_remove(priv, br, port, GSWIP_VLAN_UNAWARE_PVID);
}
static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
struct gswip_priv *priv = ds->priv;
unsigned int max_ports = priv->hw_info->max_ports;
int pos = max_ports;
int i, idx = -1;
/* We only support VLAN filtering on bridges */
if (!dsa_is_cpu_port(ds, port) && !bridge)
return -EOPNOTSUPP;
/* Check if there is already a page for this VLAN */
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge &&
priv->vlans[i].vid == vlan->vid) {
idx = i;
break;
}
}
/* If this VLAN is not programmed yet, we have to reserve
* one entry in the VLAN table. Make sure we start at the
* next position round.
*/
if (idx == -1) {
/* Look for a free slot */
for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
if (!priv->vlans[pos].bridge) {
idx = pos;
pos++;
break;
}
}
if (idx == -1) {
NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
return -ENOSPC;
}
}
return 0;
}
static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
struct gswip_priv *priv = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
int err;
if (vlan->vid == GSWIP_VLAN_UNAWARE_PVID)
return 0;
err = gswip_port_vlan_prepare(ds, port, vlan, extack);
if (err)
return err;
/* We have to receive all packets on the CPU port and should not
* do any VLAN filtering here. This is also called with bridge
* NULL and then we do not know for which bridge to configure
* this.
*/
if (dsa_is_cpu_port(ds, port))
return 0;
return gswip_vlan_add(priv, bridge, port, vlan->vid, untagged, pvid,
true);
}
static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
struct gswip_priv *priv = ds->priv;
if (vlan->vid == GSWIP_VLAN_UNAWARE_PVID)
return 0;
/* We have to receive all packets on the CPU port and should not
* do any VLAN filtering here. This is also called with bridge
* NULL and then we do not know for which bridge to configure
* this.
*/
if (dsa_is_cpu_port(ds, port))
return 0;
return gswip_vlan_remove(priv, bridge, port, vlan->vid);
}
static void gswip_port_fast_age(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
struct gswip_pce_table_entry mac_bridge = {0,};
int i;
int err;
for (i = 0; i < 2048; i++) {
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.index = i;
err = gswip_pce_table_entry_read(priv, &mac_bridge);
if (err) {
dev_err(priv->dev, "failed to read mac bridge: %d\n",
err);
return;
}
if (!mac_bridge.valid)
continue;
if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC)
continue;
if (port != FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
mac_bridge.val[0]))
continue;
mac_bridge.valid = false;
err = gswip_pce_table_entry_write(priv, &mac_bridge);
if (err) {
dev_err(priv->dev, "failed to write mac bridge: %d\n",
err);
return;
}
}
}
static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct gswip_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
regmap_clear_bits(priv->gswip, GSWIP_SDMA_PCTRLp(port),
GSWIP_SDMA_PCTRL_EN);
return;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
break;
case BR_STATE_LEARNING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
break;
case BR_STATE_FORWARDING:
stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
break;
default:
dev_err(priv->dev, "invalid STP state: %d\n", state);
return;
}
regmap_set_bits(priv->gswip, GSWIP_SDMA_PCTRLp(port),
GSWIP_SDMA_PCTRL_EN);
regmap_write_bits(priv->gswip, GSWIP_PCE_PCTRL_0p(port),
GSWIP_PCE_PCTRL_0_PSTATE_MASK,
stp_state);
}
static int gswip_port_fdb(struct dsa_switch *ds, int port,
struct net_device *bridge, const unsigned char *addr,
u16 vid, bool add)
{
struct gswip_priv *priv = ds->priv;
struct gswip_pce_table_entry mac_bridge = {0,};
unsigned int max_ports = priv->hw_info->max_ports;
int fid = -1;
int i;
int err;
for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
if (priv->vlans[i].bridge == bridge) {
fid = priv->vlans[i].fid;
break;
}
}
if (fid == -1) {
dev_err(priv->dev, "no FID found for bridge %s\n",
bridge->name);
return -EINVAL;
}
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.key_mode = true;
mac_bridge.key[0] = addr[5] | (addr[4] << 8);
mac_bridge.key[1] = addr[3] | (addr[2] << 8);
mac_bridge.key[2] = addr[1] | (addr[0] << 8);
mac_bridge.key[3] = FIELD_PREP(GSWIP_TABLE_MAC_BRIDGE_KEY3_FID, fid);
mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
if (GSWIP_VERSION_GE(priv, GSWIP_VERSION_2_2_ETC))
mac_bridge.val[1] = add ? (GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC |
GSWIP_TABLE_MAC_BRIDGE_VAL1_VALID) : 0;
else
mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC;
mac_bridge.valid = add;
err = gswip_pce_table_entry_write(priv, &mac_bridge);
if (err)
dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
return err;
}
static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
if (db.type != DSA_DB_BRIDGE)
return -EOPNOTSUPP;
return gswip_port_fdb(ds, port, db.bridge.dev, addr, vid, true);
}
static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid,
struct dsa_db db)
{
if (db.type != DSA_DB_BRIDGE)
return -EOPNOTSUPP;
return gswip_port_fdb(ds, port, db.bridge.dev, addr, vid, false);
}
static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct gswip_priv *priv = ds->priv;
struct gswip_pce_table_entry mac_bridge = {0,};
unsigned char addr[ETH_ALEN];
int i;
int err;
for (i = 0; i < 2048; i++) {
mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
mac_bridge.index = i;
err = gswip_pce_table_entry_read(priv, &mac_bridge);
if (err) {
dev_err(priv->dev,
"failed to read mac bridge entry %d: %d\n",
i, err);
return err;
}
if (!mac_bridge.valid)
continue;
addr[5] = mac_bridge.key[0] & 0xff;
addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
addr[3] = mac_bridge.key[1] & 0xff;
addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
addr[1] = mac_bridge.key[2] & 0xff;
addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_VAL1_STATIC) {
if (mac_bridge.val[0] & BIT(port)) {
err = cb(addr, 0, true, data);
if (err)
return err;
}
} else {
if (port == FIELD_GET(GSWIP_TABLE_MAC_BRIDGE_VAL0_PORT,
mac_bridge.val[0])) {
err = cb(addr, 0, false, data);
if (err)
return err;
}
}
}
return 0;
}
static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
{
/* Includes 8 bytes for special header. */
return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
}
static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
{
struct gswip_priv *priv = ds->priv;
/* CPU port always has maximum mtu of user ports, so use it to set
* switch frame size, including 8 byte special header.
*/
if (dsa_is_cpu_port(ds, port)) {
new_mtu += 8;
regmap_write(priv->gswip, GSWIP_MAC_FLEN,
VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN);
}
/* Enable MLEN for ports with non-standard MTUs, including the special
* header on the CPU port added above.
*/
if (new_mtu != ETH_DATA_LEN)
regmap_set_bits(priv->gswip, GSWIP_MAC_CTRL_2p(port),
GSWIP_MAC_CTRL_2_MLEN);
else
regmap_clear_bits(priv->gswip, GSWIP_MAC_CTRL_2p(port),
GSWIP_MAC_CTRL_2_MLEN);
return 0;
}
static void gswip_phylink_get_caps(struct dsa_switch *ds, int port,
struct phylink_config *config)
{
struct gswip_priv *priv = ds->priv;
priv->hw_info->phylink_get_caps(ds, port, config);
}
static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
{
u32 mdio_phy;
if (link)
mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
else
mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
regmap_write_bits(priv->mdio, GSWIP_MDIO_PHYp(port),
GSWIP_MDIO_PHY_LINK_MASK, mdio_phy);
}
static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
phy_interface_t interface)
{
u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
switch (speed) {
case SPEED_10:
mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
if (interface == PHY_INTERFACE_MODE_RMII)
mii_cfg = GSWIP_MII_CFG_RATE_M50;
else
mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
break;
case SPEED_100:
mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
if (interface == PHY_INTERFACE_MODE_RMII)
mii_cfg = GSWIP_MII_CFG_RATE_M50;
else
mii_cfg = GSWIP_MII_CFG_RATE_M25;
mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
break;
case SPEED_1000:
mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
mii_cfg = GSWIP_MII_CFG_RATE_M125;
mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
break;
}
regmap_write_bits(priv->mdio, GSWIP_MDIO_PHYp(port),
GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy);
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
regmap_write_bits(priv->gswip, GSWIP_MAC_CTRL_0p(port),
GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0);
}
static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
{
u32 mac_ctrl_0, mdio_phy;
if (duplex == DUPLEX_FULL) {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
} else {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
}
regmap_write_bits(priv->gswip, GSWIP_MAC_CTRL_0p(port),
GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0);
regmap_write_bits(priv->mdio, GSWIP_MDIO_PHYp(port),
GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy);
}
static void gswip_port_set_pause(struct gswip_priv *priv, int port,
bool tx_pause, bool rx_pause)
{
u32 mac_ctrl_0, mdio_phy;
if (tx_pause && rx_pause) {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
GSWIP_MDIO_PHY_FCONRX_EN;
} else if (tx_pause) {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
GSWIP_MDIO_PHY_FCONRX_DIS;
} else if (rx_pause) {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
GSWIP_MDIO_PHY_FCONRX_EN;
} else {
mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
GSWIP_MDIO_PHY_FCONRX_DIS;
}
regmap_write_bits(priv->gswip, GSWIP_MAC_CTRL_0p(port),
GSWIP_MAC_CTRL_0_FCON_MASK, mac_ctrl_0);
regmap_write_bits(priv->mdio, GSWIP_MDIO_PHYp(port),
GSWIP_MDIO_PHY_FCONTX_MASK | GSWIP_MDIO_PHY_FCONRX_MASK,
mdio_phy);
}
static void gswip_phylink_mac_config(struct phylink_config *config,
unsigned int mode,
const struct phylink_link_state *state)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
int port = dp->index;
u32 miicfg = 0;
miicfg |= GSWIP_MII_CFG_LDCLKDIS;
switch (state->interface) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
return;
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_INTERNAL:
miicfg |= GSWIP_MII_CFG_MODE_MIIM;
break;
case PHY_INTERFACE_MODE_REVMII:
miicfg |= GSWIP_MII_CFG_MODE_MIIP;
break;
case PHY_INTERFACE_MODE_RMII:
miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
if (of_property_read_bool(dp->dn, "maxlinear,rmii-refclk-out"))
miicfg |= GSWIP_MII_CFG_RMII_CLK;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
miicfg |= GSWIP_MII_CFG_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_GMII:
miicfg |= GSWIP_MII_CFG_MODE_GMII;
break;
default:
dev_err(dp->ds->dev,
"Unsupported interface: %d\n", state->interface);
return;
}
gswip_mii_mask_cfg(priv,
GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
miicfg, port);
gswip_mii_delay_setup(priv, dp, state->interface);
}
static void gswip_phylink_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
int port = dp->index;
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
if (!dsa_port_is_cpu(dp))
gswip_port_set_link(priv, port, false);
}
static void gswip_phylink_mac_link_up(struct phylink_config *config,
struct phy_device *phydev,
unsigned int mode,
phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
int port = dp->index;
if (!dsa_port_is_cpu(dp) || interface != PHY_INTERFACE_MODE_INTERNAL) {
gswip_port_set_link(priv, port, true);
gswip_port_set_speed(priv, port, speed, interface);
gswip_port_set_duplex(priv, port, duplex);
gswip_port_set_pause(priv, port, tx_pause, rx_pause);
}
gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, GSWIP_MII_CFG_EN, port);
}
static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
uint8_t *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
ethtool_puts(&data, gswip_rmon_cnt[i].name);
}
static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
u32 index)
{
u32 result, val;
int err;
regmap_write(priv->gswip, GSWIP_BM_RAM_ADDR, index);
regmap_write_bits(priv->gswip, GSWIP_BM_RAM_CTRL,
GSWIP_BM_RAM_CTRL_ADDR_MASK | GSWIP_BM_RAM_CTRL_OPMOD |
GSWIP_BM_RAM_CTRL_BAS,
table | GSWIP_BM_RAM_CTRL_BAS);
err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
GSWIP_BM_RAM_CTRL_BAS);
if (err) {
dev_err(priv->dev, "timeout while reading table: %u, index: %u\n",
table, index);
return 0;
}
regmap_read(priv->gswip, GSWIP_BM_RAM_VAL(0), &result);
regmap_read(priv->gswip, GSWIP_BM_RAM_VAL(1), &val);
result |= val << 16;
return result;
}
static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct gswip_priv *priv = ds->priv;
const struct gswip_rmon_cnt_desc *rmon_cnt;
int i;
u64 high;
for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
rmon_cnt = &gswip_rmon_cnt[i];
data[i] = gswip_bcm_ram_entry_read(priv, port,
rmon_cnt->offset);
if (rmon_cnt->size == 2) {
high = gswip_bcm_ram_entry_read(priv, port,
rmon_cnt->offset + 1);
data[i] |= high << 32;
}
}
}
static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
{
if (sset != ETH_SS_STATS)
return 0;
return ARRAY_SIZE(gswip_rmon_cnt);
}
static int gswip_set_mac_eee(struct dsa_switch *ds, int port,
struct ethtool_keee *e)
{
if (e->tx_lpi_timer > 0x7f)
return -EINVAL;
return 0;
}
static void gswip_phylink_mac_disable_tx_lpi(struct phylink_config *config)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
regmap_clear_bits(priv->gswip, GSWIP_MAC_CTRL_4p(dp->index),
GSWIP_MAC_CTRL_4_LPIEN);
}
static int gswip_phylink_mac_enable_tx_lpi(struct phylink_config *config,
u32 timer, bool tx_clock_stop)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
return regmap_update_bits(priv->gswip, GSWIP_MAC_CTRL_4p(dp->index),
GSWIP_MAC_CTRL_4_LPIEN |
GSWIP_MAC_CTRL_4_GWAIT_MASK |
GSWIP_MAC_CTRL_4_WAIT_MASK,
GSWIP_MAC_CTRL_4_LPIEN |
GSWIP_MAC_CTRL_4_GWAIT(timer) |
GSWIP_MAC_CTRL_4_WAIT(timer));
}
static bool gswip_support_eee(struct dsa_switch *ds, int port)
{
struct gswip_priv *priv = ds->priv;
if (GSWIP_VERSION_GE(priv, GSWIP_VERSION_2_2))
return true;
return false;
}
static struct phylink_pcs *gswip_phylink_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct dsa_port *dp = dsa_phylink_to_port(config);
struct gswip_priv *priv = dp->ds->priv;
if (priv->hw_info->mac_select_pcs)
return priv->hw_info->mac_select_pcs(config, interface);
return NULL;
}
static const struct phylink_mac_ops gswip_phylink_mac_ops = {
.mac_config = gswip_phylink_mac_config,
.mac_link_down = gswip_phylink_mac_link_down,
.mac_link_up = gswip_phylink_mac_link_up,
.mac_disable_tx_lpi = gswip_phylink_mac_disable_tx_lpi,
.mac_enable_tx_lpi = gswip_phylink_mac_enable_tx_lpi,
.mac_select_pcs = gswip_phylink_mac_select_pcs,
};
static const struct dsa_switch_ops gswip_switch_ops = {
.get_tag_protocol = gswip_get_tag_protocol,
.setup = gswip_setup,
.teardown = gswip_teardown,
.port_setup = gswip_port_setup,
.port_enable = gswip_port_enable,
.port_disable = gswip_port_disable,
.port_pre_bridge_flags = gswip_port_pre_bridge_flags,
.port_bridge_flags = gswip_port_bridge_flags,
.port_bridge_join = gswip_port_bridge_join,
.port_bridge_leave = gswip_port_bridge_leave,
.port_fast_age = gswip_port_fast_age,
.port_vlan_filtering = gswip_port_vlan_filtering,
.port_vlan_add = gswip_port_vlan_add,
.port_vlan_del = gswip_port_vlan_del,
.port_stp_state_set = gswip_port_stp_state_set,
.port_fdb_add = gswip_port_fdb_add,
.port_fdb_del = gswip_port_fdb_del,
.port_fdb_dump = gswip_port_fdb_dump,
.port_change_mtu = gswip_port_change_mtu,
.port_max_mtu = gswip_port_max_mtu,
.phylink_get_caps = gswip_phylink_get_caps,
.get_strings = gswip_get_strings,
.get_ethtool_stats = gswip_get_ethtool_stats,
.get_sset_count = gswip_get_sset_count,
.set_mac_eee = gswip_set_mac_eee,
.support_eee = gswip_support_eee,
.port_hsr_join = dsa_port_simple_hsr_join,
.port_hsr_leave = dsa_port_simple_hsr_leave,
};
static int gswip_validate_cpu_port(struct dsa_switch *ds)
{
struct gswip_priv *priv = ds->priv;
struct dsa_port *cpu_dp;
int cpu_port = -1;
dsa_switch_for_each_cpu_port(cpu_dp, ds) {
if (cpu_port != -1)
return dev_err_probe(ds->dev, -EINVAL,
"only a single CPU port is supported\n");
cpu_port = cpu_dp->index;
}
if (cpu_port == -1)
return dev_err_probe(ds->dev, -EINVAL, "no CPU port defined\n");
if (BIT(cpu_port) & ~priv->hw_info->allowed_cpu_ports)
return dev_err_probe(ds->dev, -EINVAL,
"unsupported CPU port defined\n");
return 0;
}
int gswip_probe_common(struct gswip_priv *priv, u32 version)
{
int err;
mutex_init(&priv->pce_table_lock);
priv->ds = devm_kzalloc(priv->dev, sizeof(*priv->ds), GFP_KERNEL);
if (!priv->ds)
return -ENOMEM;
priv->ds->dev = priv->dev;
priv->ds->num_ports = priv->hw_info->max_ports;
priv->ds->ops = &gswip_switch_ops;
priv->ds->phylink_mac_ops = &gswip_phylink_mac_ops;
priv->ds->priv = priv;
/* The hardware has the 'major/minor' version bytes in the wrong order
* preventing numerical comparisons. Construct a 16-bit unsigned integer
* having the REV field as most significant byte and the MOD field as
* least significant byte. This is effectively swapping the two bytes of
* the version variable, but other than using swab16 it doesn't affect
* the source variable.
*/
priv->version = GSWIP_VERSION_REV(version) << 8 |
GSWIP_VERSION_MOD(version);
err = dsa_register_switch(priv->ds);
if (err)
return dev_err_probe(priv->dev, err, "dsa switch registration failed\n");
err = gswip_validate_cpu_port(priv->ds);
if (err)
goto unregister_switch;
dev_info(priv->dev, "probed GSWIP version %lx mod %lx\n",
GSWIP_VERSION_REV(version), GSWIP_VERSION_MOD(version));
return 0;
unregister_switch:
dsa_unregister_switch(priv->ds);
return err;
}
EXPORT_SYMBOL_GPL(gswip_probe_common);
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_AUTHOR("Daniel Golle <daniel@makrotopia.org>");
MODULE_DESCRIPTION("Lantiq / Intel / MaxLinear GSWIP common functions");
MODULE_LICENSE("GPL");