Joel Fernandes (Google) 754aa6427e srcu: Clarify comments on memory barrier "E"
There is an smp_mb() named "E" in srcu_flip() immediately before the
increment (flip) of the srcu_struct structure's ->srcu_idx.

The purpose of E is to order the preceding scan's read of lock counters
against the flipping of the ->srcu_idx, in order to prevent new readers
from continuing to use the old ->srcu_idx value, which might needlessly
extend the grace period.

However, this ordering is already enforced because of the control
dependency between the preceding scan and the ->srcu_idx flip.
This control dependency exists because atomic_long_read() is used
to scan the counts, because WRITE_ONCE() is used to flip ->srcu_idx,
and because ->srcu_idx is not flipped until the ->srcu_lock_count[] and
->srcu_unlock_count[] counts match.  And such a match cannot happen when
there is an in-flight reader that started before the flip (observation
courtesy Mathieu Desnoyers).

The litmus test below (courtesy of Frederic Weisbecker, with changes
for ctrldep by Boqun and Joel) shows this:

C srcu
(*
 * bad condition: P0's first scan (SCAN1) saw P1's idx=0 LOCK count inc, though P1 saw flip.
 *
 * So basically, the ->po ordering on both P0 and P1 is enforced via ->ppo
 * (control deps) on both sides, and both P0 and P1 are interconnected by ->rf
 * relations. Combining the ->ppo with ->rf, a cycle is impossible.
 *)

{}

// updater
P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
        int lock1;
        int unlock1;
        int lock0;
        int unlock0;

        // SCAN1
        unlock1 = READ_ONCE(*UNLOCK1);
        smp_mb(); // A
        lock1 = READ_ONCE(*LOCK1);

        // FLIP
        if (lock1 == unlock1) {   // Control dep
                smp_mb(); // E    // Remove E and still passes.
                WRITE_ONCE(*IDX, 1);
                smp_mb(); // D

                // SCAN2
                unlock0 = READ_ONCE(*UNLOCK0);
                smp_mb(); // A
                lock0 = READ_ONCE(*LOCK0);
        }
}

// reader
P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
        int tmp;
        int idx1;
        int idx2;

        // 1st reader
        idx1 = READ_ONCE(*IDX);
        if (idx1 == 0) {         // Control dep
                tmp = READ_ONCE(*LOCK0);
                WRITE_ONCE(*LOCK0, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK0);
                WRITE_ONCE(*UNLOCK0, tmp + 1);
        } else {
                tmp = READ_ONCE(*LOCK1);
                WRITE_ONCE(*LOCK1, tmp + 1);
                smp_mb(); /* B and C */
                tmp = READ_ONCE(*UNLOCK1);
                WRITE_ONCE(*UNLOCK1, tmp + 1);
        }
}

exists (0:lock1=1 /\ 1:idx1=1)

More complicated litmus tests with multiple SRCU readers also show that
memory barrier E is not needed.

This commit therefore clarifies the comment on memory barrier E.

Why not also remove that redundant smp_mb()?

Because control dependencies are quite fragile due to their not being
recognized by most compilers and tools.  Control dependencies therefore
exact an ongoing maintenance burden, and such a burden cannot be justified
in this slowpath.  Therefore, that smp_mb() stays until such time as
its overhead becomes a measurable problem in a real workload running on
a real production system, or until such time as compilers start paying
attention to this sort of control dependency.

Co-developed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Co-developed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Co-developed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
2023-04-05 13:47:18 +00:00
2023-03-05 10:49:37 -08:00
2022-09-28 09:02:20 +02:00
2023-03-05 14:52:03 -08:00

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.
Description
No description provided
Readme 3.4 GiB
Languages
C 97.1%
Assembly 1%
Shell 0.6%
Rust 0.4%
Python 0.4%
Other 0.3%