mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-12-27 15:51:30 -05:00
When we exec a new task we forget to flush the set of locked GCS mode bits.
Since we do flush the rest of the state this means that if GCS is locked
the new task will be unable to enable GCS, it will be locked as being
disabled. Add the expected flush.
Fixes: fc84bc5378 ("arm64/gcs: Context switch GCS state for EL0")
Cc: <stable@vger.kernel.org> # 6.13.x
Reported-by: Yury Khrustalev <Yury.Khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Tested-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
973 lines
24 KiB
C
973 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Based on arch/arm/kernel/process.c
|
|
*
|
|
* Original Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*/
|
|
#include <linux/compat.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/export.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/user.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/random.h>
|
|
#include <linux/hw_breakpoint.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/notifier.h>
|
|
#include <trace/events/power.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/thread_info.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/stacktrace.h>
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/arch_timer.h>
|
|
#include <asm/compat.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/exec.h>
|
|
#include <asm/fpsimd.h>
|
|
#include <asm/gcs.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/mte.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/pointer_auth.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/system_misc.h>
|
|
|
|
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
|
|
#include <linux/stackprotector.h>
|
|
unsigned long __stack_chk_guard __ro_after_init;
|
|
EXPORT_SYMBOL(__stack_chk_guard);
|
|
#endif
|
|
|
|
/*
|
|
* Function pointers to optional machine specific functions
|
|
*/
|
|
void (*pm_power_off)(void);
|
|
EXPORT_SYMBOL_GPL(pm_power_off);
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
void __noreturn arch_cpu_idle_dead(void)
|
|
{
|
|
cpu_die();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called by kexec, immediately prior to machine_kexec().
|
|
*
|
|
* This must completely disable all secondary CPUs; simply causing those CPUs
|
|
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
|
|
* kexec'd kernel to use any and all RAM as it sees fit, without having to
|
|
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
|
|
* functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
|
|
*/
|
|
void machine_shutdown(void)
|
|
{
|
|
smp_shutdown_nonboot_cpus(reboot_cpu);
|
|
}
|
|
|
|
/*
|
|
* Halting simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this.
|
|
*/
|
|
void machine_halt(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
while (1);
|
|
}
|
|
|
|
/*
|
|
* Power-off simply requires that the secondary CPUs stop performing any
|
|
* activity (executing tasks, handling interrupts). smp_send_stop()
|
|
* achieves this. When the system power is turned off, it will take all CPUs
|
|
* with it.
|
|
*/
|
|
void machine_power_off(void)
|
|
{
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
do_kernel_power_off();
|
|
}
|
|
|
|
/*
|
|
* Restart requires that the secondary CPUs stop performing any activity
|
|
* while the primary CPU resets the system. Systems with multiple CPUs must
|
|
* provide a HW restart implementation, to ensure that all CPUs reset at once.
|
|
* This is required so that any code running after reset on the primary CPU
|
|
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
|
|
* executing pre-reset code, and using RAM that the primary CPU's code wishes
|
|
* to use. Implementing such co-ordination would be essentially impossible.
|
|
*/
|
|
void machine_restart(char *cmd)
|
|
{
|
|
/* Disable interrupts first */
|
|
local_irq_disable();
|
|
smp_send_stop();
|
|
|
|
/*
|
|
* UpdateCapsule() depends on the system being reset via
|
|
* ResetSystem().
|
|
*/
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efi_reboot(reboot_mode, NULL);
|
|
|
|
/* Now call the architecture specific reboot code. */
|
|
do_kernel_restart(cmd);
|
|
|
|
/*
|
|
* Whoops - the architecture was unable to reboot.
|
|
*/
|
|
printk("Reboot failed -- System halted\n");
|
|
while (1);
|
|
}
|
|
|
|
#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
|
|
static const char *const btypes[] = {
|
|
bstr(NONE, "--"),
|
|
bstr( JC, "jc"),
|
|
bstr( C, "-c"),
|
|
bstr( J , "j-")
|
|
};
|
|
#undef bstr
|
|
|
|
static void print_pstate(struct pt_regs *regs)
|
|
{
|
|
u64 pstate = regs->pstate;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
|
|
pstate,
|
|
pstate & PSR_AA32_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_AA32_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_AA32_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
|
|
pstate & PSR_AA32_T_BIT ? "T32" : "A32",
|
|
pstate & PSR_AA32_E_BIT ? "BE" : "LE",
|
|
pstate & PSR_AA32_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_AA32_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_AA32_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_AA32_DIT_BIT ? '+' : '-',
|
|
pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
|
|
} else {
|
|
const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
|
|
PSR_BTYPE_SHIFT];
|
|
|
|
printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
|
|
pstate,
|
|
pstate & PSR_N_BIT ? 'N' : 'n',
|
|
pstate & PSR_Z_BIT ? 'Z' : 'z',
|
|
pstate & PSR_C_BIT ? 'C' : 'c',
|
|
pstate & PSR_V_BIT ? 'V' : 'v',
|
|
pstate & PSR_D_BIT ? 'D' : 'd',
|
|
pstate & PSR_A_BIT ? 'A' : 'a',
|
|
pstate & PSR_I_BIT ? 'I' : 'i',
|
|
pstate & PSR_F_BIT ? 'F' : 'f',
|
|
pstate & PSR_PAN_BIT ? '+' : '-',
|
|
pstate & PSR_UAO_BIT ? '+' : '-',
|
|
pstate & PSR_TCO_BIT ? '+' : '-',
|
|
pstate & PSR_DIT_BIT ? '+' : '-',
|
|
pstate & PSR_SSBS_BIT ? '+' : '-',
|
|
btype_str);
|
|
}
|
|
}
|
|
|
|
void __show_regs(struct pt_regs *regs)
|
|
{
|
|
int i, top_reg;
|
|
u64 lr, sp;
|
|
|
|
if (compat_user_mode(regs)) {
|
|
lr = regs->compat_lr;
|
|
sp = regs->compat_sp;
|
|
top_reg = 12;
|
|
} else {
|
|
lr = regs->regs[30];
|
|
sp = regs->sp;
|
|
top_reg = 29;
|
|
}
|
|
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
print_pstate(regs);
|
|
|
|
if (!user_mode(regs)) {
|
|
printk("pc : %pS\n", (void *)regs->pc);
|
|
printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr));
|
|
} else {
|
|
printk("pc : %016llx\n", regs->pc);
|
|
printk("lr : %016llx\n", lr);
|
|
}
|
|
|
|
printk("sp : %016llx\n", sp);
|
|
|
|
if (system_uses_irq_prio_masking())
|
|
printk("pmr: %08x\n", regs->pmr);
|
|
|
|
i = top_reg;
|
|
|
|
while (i >= 0) {
|
|
printk("x%-2d: %016llx", i, regs->regs[i]);
|
|
|
|
while (i-- % 3)
|
|
pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
__show_regs(regs);
|
|
dump_backtrace(regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static void tls_thread_flush(void)
|
|
{
|
|
write_sysreg(0, tpidr_el0);
|
|
if (system_supports_tpidr2())
|
|
write_sysreg_s(0, SYS_TPIDR2_EL0);
|
|
|
|
if (is_compat_task()) {
|
|
current->thread.uw.tp_value = 0;
|
|
|
|
/*
|
|
* We need to ensure ordering between the shadow state and the
|
|
* hardware state, so that we don't corrupt the hardware state
|
|
* with a stale shadow state during context switch.
|
|
*/
|
|
barrier();
|
|
write_sysreg(0, tpidrro_el0);
|
|
}
|
|
}
|
|
|
|
static void flush_tagged_addr_state(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
|
|
clear_thread_flag(TIF_TAGGED_ADDR);
|
|
}
|
|
|
|
static void flush_poe(void)
|
|
{
|
|
if (!system_supports_poe())
|
|
return;
|
|
|
|
write_sysreg_s(POR_EL0_INIT, SYS_POR_EL0);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_GCS
|
|
|
|
static void flush_gcs(void)
|
|
{
|
|
if (!system_supports_gcs())
|
|
return;
|
|
|
|
current->thread.gcspr_el0 = 0;
|
|
current->thread.gcs_base = 0;
|
|
current->thread.gcs_size = 0;
|
|
current->thread.gcs_el0_mode = 0;
|
|
current->thread.gcs_el0_locked = 0;
|
|
write_sysreg_s(GCSCRE0_EL1_nTR, SYS_GCSCRE0_EL1);
|
|
write_sysreg_s(0, SYS_GCSPR_EL0);
|
|
}
|
|
|
|
static int copy_thread_gcs(struct task_struct *p,
|
|
const struct kernel_clone_args *args)
|
|
{
|
|
unsigned long gcs;
|
|
|
|
if (!system_supports_gcs())
|
|
return 0;
|
|
|
|
p->thread.gcs_base = 0;
|
|
p->thread.gcs_size = 0;
|
|
|
|
p->thread.gcs_el0_mode = current->thread.gcs_el0_mode;
|
|
p->thread.gcs_el0_locked = current->thread.gcs_el0_locked;
|
|
|
|
gcs = gcs_alloc_thread_stack(p, args);
|
|
if (IS_ERR_VALUE(gcs))
|
|
return PTR_ERR((void *)gcs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static void flush_gcs(void) { }
|
|
static int copy_thread_gcs(struct task_struct *p,
|
|
const struct kernel_clone_args *args)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
void flush_thread(void)
|
|
{
|
|
fpsimd_flush_thread();
|
|
tls_thread_flush();
|
|
flush_ptrace_hw_breakpoint(current);
|
|
flush_tagged_addr_state();
|
|
flush_poe();
|
|
flush_gcs();
|
|
}
|
|
|
|
void arch_release_task_struct(struct task_struct *tsk)
|
|
{
|
|
fpsimd_release_task(tsk);
|
|
}
|
|
|
|
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
/*
|
|
* The current/src task's FPSIMD state may or may not be live, and may
|
|
* have been altered by ptrace after entry to the kernel. Save the
|
|
* effective FPSIMD state so that this will be copied into dst.
|
|
*/
|
|
fpsimd_save_and_flush_current_state();
|
|
fpsimd_sync_from_effective_state(src);
|
|
|
|
*dst = *src;
|
|
|
|
/*
|
|
* Drop stale reference to src's sve_state and convert dst to
|
|
* non-streaming FPSIMD mode.
|
|
*/
|
|
dst->thread.fp_type = FP_STATE_FPSIMD;
|
|
dst->thread.sve_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SVE);
|
|
task_smstop_sm(dst);
|
|
|
|
/*
|
|
* Drop stale reference to src's sme_state and ensure dst has ZA
|
|
* disabled.
|
|
*
|
|
* When necessary, ZA will be inherited later in copy_thread_za().
|
|
*/
|
|
dst->thread.sme_state = NULL;
|
|
clear_tsk_thread_flag(dst, TIF_SME);
|
|
dst->thread.svcr &= ~SVCR_ZA_MASK;
|
|
|
|
/* clear any pending asynchronous tag fault raised by the parent */
|
|
clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_thread_za(struct task_struct *dst, struct task_struct *src)
|
|
{
|
|
if (!thread_za_enabled(&src->thread))
|
|
return 0;
|
|
|
|
dst->thread.sve_state = kzalloc(sve_state_size(src),
|
|
GFP_KERNEL);
|
|
if (!dst->thread.sve_state)
|
|
return -ENOMEM;
|
|
|
|
dst->thread.sme_state = kmemdup(src->thread.sme_state,
|
|
sme_state_size(src),
|
|
GFP_KERNEL);
|
|
if (!dst->thread.sme_state) {
|
|
kfree(dst->thread.sve_state);
|
|
dst->thread.sve_state = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_tsk_thread_flag(dst, TIF_SME);
|
|
dst->thread.svcr |= SVCR_ZA_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage void ret_from_fork(void) asm("ret_from_fork");
|
|
|
|
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
|
|
{
|
|
u64 clone_flags = args->flags;
|
|
unsigned long stack_start = args->stack;
|
|
unsigned long tls = args->tls;
|
|
struct pt_regs *childregs = task_pt_regs(p);
|
|
int ret;
|
|
|
|
memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
|
|
|
|
/*
|
|
* In case p was allocated the same task_struct pointer as some
|
|
* other recently-exited task, make sure p is disassociated from
|
|
* any cpu that may have run that now-exited task recently.
|
|
* Otherwise we could erroneously skip reloading the FPSIMD
|
|
* registers for p.
|
|
*/
|
|
fpsimd_flush_task_state(p);
|
|
|
|
ptrauth_thread_init_kernel(p);
|
|
|
|
if (likely(!args->fn)) {
|
|
*childregs = *current_pt_regs();
|
|
childregs->regs[0] = 0;
|
|
|
|
/*
|
|
* Read the current TLS pointer from tpidr_el0 as it may be
|
|
* out-of-sync with the saved value.
|
|
*/
|
|
*task_user_tls(p) = read_sysreg(tpidr_el0);
|
|
|
|
if (system_supports_poe())
|
|
p->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
|
|
|
|
if (stack_start) {
|
|
if (is_compat_thread(task_thread_info(p)))
|
|
childregs->compat_sp = stack_start;
|
|
else
|
|
childregs->sp = stack_start;
|
|
}
|
|
|
|
/*
|
|
* Due to the AAPCS64 "ZA lazy saving scheme", PSTATE.ZA and
|
|
* TPIDR2 need to be manipulated as a pair, and either both
|
|
* need to be inherited or both need to be reset.
|
|
*
|
|
* Within a process, child threads must not inherit their
|
|
* parent's TPIDR2 value or they may clobber their parent's
|
|
* stack at some later point.
|
|
*
|
|
* When a process is fork()'d, the child must inherit ZA and
|
|
* TPIDR2 from its parent in case there was dormant ZA state.
|
|
*
|
|
* Use CLONE_VM to determine when the child will share the
|
|
* address space with the parent, and cannot safely inherit the
|
|
* state.
|
|
*/
|
|
if (system_supports_sme()) {
|
|
if (!(clone_flags & CLONE_VM)) {
|
|
p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
|
ret = copy_thread_za(p, current);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
p->thread.tpidr2_el0 = 0;
|
|
WARN_ON_ONCE(p->thread.svcr & SVCR_ZA_MASK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a TLS pointer was passed to clone, use it for the new
|
|
* thread.
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS)
|
|
p->thread.uw.tp_value = tls;
|
|
|
|
ret = copy_thread_gcs(p, args);
|
|
if (ret != 0)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* A kthread has no context to ERET to, so ensure any buggy
|
|
* ERET is treated as an illegal exception return.
|
|
*
|
|
* When a user task is created from a kthread, childregs will
|
|
* be initialized by start_thread() or start_compat_thread().
|
|
*/
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
|
|
childregs->stackframe.type = FRAME_META_TYPE_FINAL;
|
|
|
|
p->thread.cpu_context.x19 = (unsigned long)args->fn;
|
|
p->thread.cpu_context.x20 = (unsigned long)args->fn_arg;
|
|
|
|
if (system_supports_poe())
|
|
p->thread.por_el0 = POR_EL0_INIT;
|
|
}
|
|
p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
|
|
p->thread.cpu_context.sp = (unsigned long)childregs;
|
|
/*
|
|
* For the benefit of the unwinder, set up childregs->stackframe
|
|
* as the final frame for the new task.
|
|
*/
|
|
p->thread.cpu_context.fp = (unsigned long)&childregs->stackframe;
|
|
|
|
ptrace_hw_copy_thread(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void tls_preserve_current_state(void)
|
|
{
|
|
*task_user_tls(current) = read_sysreg(tpidr_el0);
|
|
if (system_supports_tpidr2() && !is_compat_task())
|
|
current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0);
|
|
}
|
|
|
|
static void tls_thread_switch(struct task_struct *next)
|
|
{
|
|
tls_preserve_current_state();
|
|
|
|
if (is_compat_thread(task_thread_info(next)))
|
|
write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
|
|
else
|
|
write_sysreg(0, tpidrro_el0);
|
|
|
|
write_sysreg(*task_user_tls(next), tpidr_el0);
|
|
if (system_supports_tpidr2())
|
|
write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0);
|
|
}
|
|
|
|
/*
|
|
* Force SSBS state on context-switch, since it may be lost after migrating
|
|
* from a CPU which treats the bit as RES0 in a heterogeneous system.
|
|
*/
|
|
static void ssbs_thread_switch(struct task_struct *next)
|
|
{
|
|
/*
|
|
* Nothing to do for kernel threads, but 'regs' may be junk
|
|
* (e.g. idle task) so check the flags and bail early.
|
|
*/
|
|
if (unlikely(next->flags & PF_KTHREAD))
|
|
return;
|
|
|
|
/*
|
|
* If all CPUs implement the SSBS extension, then we just need to
|
|
* context-switch the PSTATE field.
|
|
*/
|
|
if (alternative_has_cap_unlikely(ARM64_SSBS))
|
|
return;
|
|
|
|
spectre_v4_enable_task_mitigation(next);
|
|
}
|
|
|
|
/*
|
|
* We store our current task in sp_el0, which is clobbered by userspace. Keep a
|
|
* shadow copy so that we can restore this upon entry from userspace.
|
|
*
|
|
* This is *only* for exception entry from EL0, and is not valid until we
|
|
* __switch_to() a user task.
|
|
*/
|
|
DEFINE_PER_CPU(struct task_struct *, __entry_task);
|
|
|
|
static void entry_task_switch(struct task_struct *next)
|
|
{
|
|
__this_cpu_write(__entry_task, next);
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_GCS
|
|
|
|
void gcs_preserve_current_state(void)
|
|
{
|
|
current->thread.gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
|
|
}
|
|
|
|
static void gcs_thread_switch(struct task_struct *next)
|
|
{
|
|
if (!system_supports_gcs())
|
|
return;
|
|
|
|
/* GCSPR_EL0 is always readable */
|
|
gcs_preserve_current_state();
|
|
write_sysreg_s(next->thread.gcspr_el0, SYS_GCSPR_EL0);
|
|
|
|
if (current->thread.gcs_el0_mode != next->thread.gcs_el0_mode)
|
|
gcs_set_el0_mode(next);
|
|
|
|
/*
|
|
* Ensure that GCS memory effects of the 'prev' thread are
|
|
* ordered before other memory accesses with release semantics
|
|
* (or preceded by a DMB) on the current PE. In addition, any
|
|
* memory accesses with acquire semantics (or succeeded by a
|
|
* DMB) are ordered before GCS memory effects of the 'next'
|
|
* thread. This will ensure that the GCS memory effects are
|
|
* visible to other PEs in case of migration.
|
|
*/
|
|
if (task_gcs_el0_enabled(current) || task_gcs_el0_enabled(next))
|
|
gcsb_dsync();
|
|
}
|
|
|
|
#else
|
|
|
|
static void gcs_thread_switch(struct task_struct *next)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
|
|
* CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
|
|
* accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
|
|
* required or PR_TSC_SIGSEGV is set.
|
|
*/
|
|
static void update_cntkctl_el1(struct task_struct *next)
|
|
{
|
|
struct thread_info *ti = task_thread_info(next);
|
|
|
|
if (test_ti_thread_flag(ti, TIF_TSC_SIGSEGV) ||
|
|
has_erratum_handler(read_cntvct_el0) ||
|
|
(IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) &&
|
|
this_cpu_has_cap(ARM64_WORKAROUND_1418040) &&
|
|
is_compat_thread(ti)))
|
|
sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0);
|
|
else
|
|
sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN);
|
|
}
|
|
|
|
static void cntkctl_thread_switch(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
if ((read_ti_thread_flags(task_thread_info(prev)) &
|
|
(_TIF_32BIT | _TIF_TSC_SIGSEGV)) !=
|
|
(read_ti_thread_flags(task_thread_info(next)) &
|
|
(_TIF_32BIT | _TIF_TSC_SIGSEGV)))
|
|
update_cntkctl_el1(next);
|
|
}
|
|
|
|
static int do_set_tsc_mode(unsigned int val)
|
|
{
|
|
bool tsc_sigsegv;
|
|
|
|
if (val == PR_TSC_SIGSEGV)
|
|
tsc_sigsegv = true;
|
|
else if (val == PR_TSC_ENABLE)
|
|
tsc_sigsegv = false;
|
|
else
|
|
return -EINVAL;
|
|
|
|
preempt_disable();
|
|
update_thread_flag(TIF_TSC_SIGSEGV, tsc_sigsegv);
|
|
update_cntkctl_el1(current);
|
|
preempt_enable();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void permission_overlay_switch(struct task_struct *next)
|
|
{
|
|
if (!system_supports_poe())
|
|
return;
|
|
|
|
current->thread.por_el0 = read_sysreg_s(SYS_POR_EL0);
|
|
if (current->thread.por_el0 != next->thread.por_el0) {
|
|
write_sysreg_s(next->thread.por_el0, SYS_POR_EL0);
|
|
/*
|
|
* No ISB required as we can tolerate spurious Overlay faults -
|
|
* the fault handler will check again based on the new value
|
|
* of POR_EL0.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
|
|
* this function must be called with preemption disabled and the update to
|
|
* sctlr_user must be made in the same preemption disabled block so that
|
|
* __switch_to() does not see the variable update before the SCTLR_EL1 one.
|
|
*/
|
|
void update_sctlr_el1(u64 sctlr)
|
|
{
|
|
/*
|
|
* EnIA must not be cleared while in the kernel as this is necessary for
|
|
* in-kernel PAC. It will be cleared on kernel exit if needed.
|
|
*/
|
|
sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
|
|
|
|
/* ISB required for the kernel uaccess routines when setting TCF0. */
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Thread switching.
|
|
*/
|
|
__notrace_funcgraph __sched
|
|
struct task_struct *__switch_to(struct task_struct *prev,
|
|
struct task_struct *next)
|
|
{
|
|
struct task_struct *last;
|
|
|
|
fpsimd_thread_switch(next);
|
|
tls_thread_switch(next);
|
|
hw_breakpoint_thread_switch(next);
|
|
contextidr_thread_switch(next);
|
|
entry_task_switch(next);
|
|
ssbs_thread_switch(next);
|
|
cntkctl_thread_switch(prev, next);
|
|
ptrauth_thread_switch_user(next);
|
|
permission_overlay_switch(next);
|
|
gcs_thread_switch(next);
|
|
|
|
/*
|
|
* Complete any pending TLB or cache maintenance on this CPU in case the
|
|
* thread migrates to a different CPU. This full barrier is also
|
|
* required by the membarrier system call. Additionally it makes any
|
|
* in-progress pgtable writes visible to the table walker; See
|
|
* emit_pte_barriers().
|
|
*/
|
|
dsb(ish);
|
|
|
|
/*
|
|
* MTE thread switching must happen after the DSB above to ensure that
|
|
* any asynchronous tag check faults have been logged in the TFSR*_EL1
|
|
* registers.
|
|
*/
|
|
mte_thread_switch(next);
|
|
/* avoid expensive SCTLR_EL1 accesses if no change */
|
|
if (prev->thread.sctlr_user != next->thread.sctlr_user)
|
|
update_sctlr_el1(next->thread.sctlr_user);
|
|
|
|
/* the actual thread switch */
|
|
last = cpu_switch_to(prev, next);
|
|
|
|
return last;
|
|
}
|
|
|
|
struct wchan_info {
|
|
unsigned long pc;
|
|
int count;
|
|
};
|
|
|
|
static bool get_wchan_cb(void *arg, unsigned long pc)
|
|
{
|
|
struct wchan_info *wchan_info = arg;
|
|
|
|
if (!in_sched_functions(pc)) {
|
|
wchan_info->pc = pc;
|
|
return false;
|
|
}
|
|
return wchan_info->count++ < 16;
|
|
}
|
|
|
|
unsigned long __get_wchan(struct task_struct *p)
|
|
{
|
|
struct wchan_info wchan_info = {
|
|
.pc = 0,
|
|
.count = 0,
|
|
};
|
|
|
|
if (!try_get_task_stack(p))
|
|
return 0;
|
|
|
|
arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL);
|
|
|
|
put_task_stack(p);
|
|
|
|
return wchan_info.pc;
|
|
}
|
|
|
|
unsigned long arch_align_stack(unsigned long sp)
|
|
{
|
|
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
|
|
sp -= get_random_u32_below(PAGE_SIZE);
|
|
return sp & ~0xf;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
int compat_elf_check_arch(const struct elf32_hdr *hdr)
|
|
{
|
|
if (!system_supports_32bit_el0())
|
|
return false;
|
|
|
|
if ((hdr)->e_machine != EM_ARM)
|
|
return false;
|
|
|
|
if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
|
|
return false;
|
|
|
|
/*
|
|
* Prevent execve() of a 32-bit program from a deadline task
|
|
* if the restricted affinity mask would be inadmissible on an
|
|
* asymmetric system.
|
|
*/
|
|
return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
|
|
!dl_task_check_affinity(current, system_32bit_el0_cpumask());
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
|
|
*/
|
|
void arch_setup_new_exec(void)
|
|
{
|
|
unsigned long mmflags = 0;
|
|
|
|
if (is_compat_task()) {
|
|
mmflags = MMCF_AARCH32;
|
|
|
|
/*
|
|
* Restrict the CPU affinity mask for a 32-bit task so that
|
|
* it contains only 32-bit-capable CPUs.
|
|
*
|
|
* From the perspective of the task, this looks similar to
|
|
* what would happen if the 64-bit-only CPUs were hot-unplugged
|
|
* at the point of execve(), although we try a bit harder to
|
|
* honour the cpuset hierarchy.
|
|
*/
|
|
if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
|
|
force_compatible_cpus_allowed_ptr(current);
|
|
} else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
|
|
relax_compatible_cpus_allowed_ptr(current);
|
|
}
|
|
|
|
current->mm->context.flags = mmflags;
|
|
ptrauth_thread_init_user();
|
|
mte_thread_init_user();
|
|
do_set_tsc_mode(PR_TSC_ENABLE);
|
|
|
|
if (task_spec_ssb_noexec(current)) {
|
|
arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
|
|
PR_SPEC_ENABLE);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
|
|
/*
|
|
* Control the relaxed ABI allowing tagged user addresses into the kernel.
|
|
*/
|
|
static unsigned int tagged_addr_disabled;
|
|
|
|
long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
|
|
{
|
|
unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (system_supports_mte()) {
|
|
valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \
|
|
| PR_MTE_TAG_MASK;
|
|
|
|
if (cpus_have_cap(ARM64_MTE_STORE_ONLY))
|
|
valid_mask |= PR_MTE_STORE_ONLY;
|
|
}
|
|
|
|
if (arg & ~valid_mask)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Do not allow the enabling of the tagged address ABI if globally
|
|
* disabled via sysctl abi.tagged_addr_disabled.
|
|
*/
|
|
if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
|
|
return -EINVAL;
|
|
|
|
if (set_mte_ctrl(task, arg) != 0)
|
|
return -EINVAL;
|
|
|
|
update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
long get_tagged_addr_ctrl(struct task_struct *task)
|
|
{
|
|
long ret = 0;
|
|
struct thread_info *ti = task_thread_info(task);
|
|
|
|
if (is_compat_thread(ti))
|
|
return -EINVAL;
|
|
|
|
if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
|
|
ret = PR_TAGGED_ADDR_ENABLE;
|
|
|
|
ret |= get_mte_ctrl(task);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Global sysctl to disable the tagged user addresses support. This control
|
|
* only prevents the tagged address ABI enabling via prctl() and does not
|
|
* disable it for tasks that already opted in to the relaxed ABI.
|
|
*/
|
|
|
|
static const struct ctl_table tagged_addr_sysctl_table[] = {
|
|
{
|
|
.procname = "tagged_addr_disabled",
|
|
.mode = 0644,
|
|
.data = &tagged_addr_disabled,
|
|
.maxlen = sizeof(int),
|
|
.proc_handler = proc_dointvec_minmax,
|
|
.extra1 = SYSCTL_ZERO,
|
|
.extra2 = SYSCTL_ONE,
|
|
},
|
|
};
|
|
|
|
static int __init tagged_addr_init(void)
|
|
{
|
|
if (!register_sysctl("abi", tagged_addr_sysctl_table))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(tagged_addr_init);
|
|
#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
|
|
|
|
#ifdef CONFIG_BINFMT_ELF
|
|
int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
|
|
bool has_interp, bool is_interp)
|
|
{
|
|
/*
|
|
* For dynamically linked executables the interpreter is
|
|
* responsible for setting PROT_BTI on everything except
|
|
* itself.
|
|
*/
|
|
if (is_interp != has_interp)
|
|
return prot;
|
|
|
|
if (!(state->flags & ARM64_ELF_BTI))
|
|
return prot;
|
|
|
|
if (prot & PROT_EXEC)
|
|
prot |= PROT_BTI;
|
|
|
|
return prot;
|
|
}
|
|
#endif
|
|
|
|
int get_tsc_mode(unsigned long adr)
|
|
{
|
|
unsigned int val;
|
|
|
|
if (is_compat_task())
|
|
return -EINVAL;
|
|
|
|
if (test_thread_flag(TIF_TSC_SIGSEGV))
|
|
val = PR_TSC_SIGSEGV;
|
|
else
|
|
val = PR_TSC_ENABLE;
|
|
|
|
return put_user(val, (unsigned int __user *)adr);
|
|
}
|
|
|
|
int set_tsc_mode(unsigned int val)
|
|
{
|
|
if (is_compat_task())
|
|
return -EINVAL;
|
|
|
|
return do_set_tsc_mode(val);
|
|
}
|