When user shadow stack is in use, Write=0,Dirty=1 is treated by the CPU as
shadow stack memory. So for shadow stack memory this bit combination is
valid, but when Dirty=1,Write=1 (conventionally writable) memory is being
write protected, the kernel has been taught to transition the Dirty=1
bit to SavedDirty=1, to avoid inadvertently creating shadow stack
memory. It does this inside pte_wrprotect() because it knows the PTE is
not intended to be a writable shadow stack entry, it is supposed to be
write protected.
However, when a PTE is created by a raw prot using mk_pte(), mk_pte()
can't know whether to adjust Dirty=1 to SavedDirty=1. It can't
distinguish between the caller intending to create a shadow stack PTE or
needing the SavedDirty shift.
The kernel has been updated to not do this, and so Write=0,Dirty=1
memory should only be created by the pte_mkfoo() helpers. Add a warning
to make sure no new mk_pte() start doing this, like, for example,
set_memory_rox() did.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-19-rick.p.edgecombe%40intel.com
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which requires some core mm changes to function
properly.
One sharp edge is that PTEs that are both Write=0 and Dirty=1 are
treated as shadow by the CPU, but this combination used to be created by
the kernel on x86. Previous patches have changed the kernel to now avoid
creating these PTEs unless they are for shadow stack memory. In case any
missed corners of the kernel are still creating PTEs like this for
non-shadow stack memory, and to catch any re-introductions of the logic,
warn if any shadow stack PTEs (Write=0, Dirty=1) are found in non-shadow
stack VMAs when they are being zapped. This won't catch transient cases
but should have decent coverage.
In order to check if a PTE is shadow stack in core mm code, add two arch
breakouts arch_check_zapped_pte/pmd(). This will allow shadow stack
specific code to be kept in arch/x86.
Only do the check if shadow stack is supported by the CPU and configured
because in rare cases older CPUs may write Dirty=1 to a Write=0 CPU on
older CPUs. This check is handled in pte_shstk()/pmd_shstk().
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-18-rick.p.edgecombe%40intel.com
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which requires some core mm changes to function
properly.
The architecture of shadow stack constrains the ability of userspace to
move the shadow stack pointer (SSP) in order to prevent corrupting or
switching to other shadow stacks. The RSTORSSP instruction can move the
SSP to different shadow stacks, but it requires a specially placed token
in order to do this. However, the architecture does not prevent
incrementing the stack pointer to wander onto an adjacent shadow stack. To
prevent this in software, enforce guard pages at the beginning of shadow
stack VMAs, such that there will always be a gap between adjacent shadow
stacks.
Make the gap big enough so that no userspace SSP changing operations
(besides RSTORSSP), can move the SSP from one stack to the next. The
SSP can be incremented or decremented by CALL, RET and INCSSP. CALL and
RET can move the SSP by a maximum of 8 bytes, at which point the shadow
stack would be accessed.
The INCSSP instruction can also increment the shadow stack pointer. It
is the shadow stack analog of an instruction like:
addq $0x80, %rsp
However, there is one important difference between an ADD on %rsp and
INCSSP. In addition to modifying SSP, INCSSP also reads from the memory
of the first and last elements that were "popped". It can be thought of
as acting like this:
READ_ONCE(ssp); // read+discard top element on stack
ssp += nr_to_pop * 8; // move the shadow stack
READ_ONCE(ssp-8); // read+discard last popped stack element
The maximum distance INCSSP can move the SSP is 2040 bytes, before it
would read the memory. Therefore, a single page gap will be enough to
prevent any operation from shifting the SSP to an adjacent stack, since
it would have to land in the gap at least once, causing a fault.
This could be accomplished by using VM_GROWSDOWN, but this has a
downside. The behavior would allow shadow stacks to grow, which is
unneeded and adds a strange difference to how most regular stacks work.
In the maple tree code, there is some logic for retrying the unmapped
area search if a guard gap is violated. This retry should happen for
shadow stack guard gap violations as well. This logic currently only
checks for VM_GROWSDOWN for start gaps. Since shadow stacks also have
a start gap as well, create an new define VM_STARTGAP_FLAGS to hold
all the VM flag bits that have start gaps, and make mmap use it.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-17-rick.p.edgecombe%40intel.com
The CPU performs "shadow stack accesses" when it expects to encounter
shadow stack mappings. These accesses can be implicit (via CALL/RET
instructions) or explicit (instructions like WRSS).
Shadow stack accesses to shadow-stack mappings can result in faults in
normal, valid operation just like regular accesses to regular mappings.
Shadow stacks need some of the same features like delayed allocation, swap
and copy-on-write. The kernel needs to use faults to implement those
features.
The architecture has concepts of both shadow stack reads and shadow stack
writes. Any shadow stack access to non-shadow stack memory will generate
a fault with the shadow stack error code bit set.
This means that, unlike normal write protection, the fault handler needs
to create a type of memory that can be written to (with instructions that
generate shadow stack writes), even to fulfill a read access. So in the
case of COW memory, the COW needs to take place even with a shadow stack
read. Otherwise the page will be left (shadow stack) writable in
userspace. So to trigger the appropriate behavior, set FAULT_FLAG_WRITE
for shadow stack accesses, even if the access was a shadow stack read.
For the purpose of making this clearer, consider the following example.
If a process has a shadow stack, and forks, the shadow stack PTEs will
become read-only due to COW. If the CPU in one process performs a shadow
stack read access to the shadow stack, for example executing a RET and
causing the CPU to read the shadow stack copy of the return address, then
in order for the fault to be resolved the PTE will need to be set with
shadow stack permissions. But then the memory would be changeable from
userspace (from CALL, RET, WRSS, etc). So this scenario needs to trigger
COW, otherwise the shared page would be changeable from both processes.
Shadow stack accesses can also result in errors, such as when a shadow
stack overflows, or if a shadow stack access occurs to a non-shadow-stack
mapping. Also, generate the errors for invalid shadow stack accesses.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-16-rick.p.edgecombe%40intel.com
New processors that support Shadow Stack regard Write=0,Dirty=1 PTEs as
shadow stack pages.
In normal cases, it can be helpful to create Write=1 PTEs as also Dirty=1
if HW dirty tracking is not needed, because if the Dirty bit is not already
set the CPU has to set Dirty=1 when the memory gets written to. This
creates additional work for the CPU. So traditional wisdom was to simply
set the Dirty bit whenever you didn't care about it. However, it was never
really very helpful for read-only kernel memory.
When CR4.CET=1 and IA32_S_CET.SH_STK_EN=1, some instructions can write to
such supervisor memory. The kernel does not set IA32_S_CET.SH_STK_EN, so
avoiding kernel Write=0,Dirty=1 memory is not strictly needed for any
functional reason. But having Write=0,Dirty=1 kernel memory doesn't have
any functional benefit either, so to reduce ambiguity between shadow stack
and regular Write=0 pages, remove Dirty=1 from any kernel Write=0 PTEs.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-14-rick.p.edgecombe%40intel.com
The recently introduced _PAGE_SAVED_DIRTY should be used instead of the
HW Dirty bit whenever a PTE is Write=0, in order to not inadvertently
create shadow stack PTEs. Update pte_mk*() helpers to do this, and apply
the same changes to pmd and pud. Since there is no x86 version of
pte_mkwrite() to hold this arch specific logic, create one. Add it to
x86/mm/pgtable.c instead of x86/asm/include/pgtable.h as future patches
will require it to live in pgtable.c and it will make the diff easier
for reviewers.
Since CPUs without shadow stack support could create Write=0,Dirty=1
PTEs, only return true for pte_shstk() if the CPU also supports shadow
stack. This will prevent these HW creates PTEs as showing as true for
pte_write().
For pte_modify() this is a bit trickier. It takes a "raw" pgprot_t which
was not necessarily created with any of the existing PTE bit helpers.
That means that it can return a pte_t with Write=0,Dirty=1, a shadow
stack PTE, when it did not intend to create one.
Modify it to also move _PAGE_DIRTY to _PAGE_SAVED_DIRTY. To avoid
creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
1. Marking Write=0 PTEs Dirty=1
2. Marking Dirty=1 PTEs Write=0
The first case cannot happen as the existing behavior of pte_modify() is to
filter out any Dirty bit passed in newprot. Handle the second case by
shifting _PAGE_DIRTY=1 to _PAGE_SAVED_DIRTY=1 if the PTE was write
protected by the pte_modify() call. Apply the same changes to pmd_modify().
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-13-rick.p.edgecombe%40intel.com
When shadow stack is in use, Write=0,Dirty=1 PTE are preserved for
shadow stack. Copy-on-write PTEs then have Write=0,SavedDirty=1.
When a PTE goes from Write=1,Dirty=1 to Write=0,SavedDirty=1, it could
become a transient shadow stack PTE in two cases:
1. Some processors can start a write but end up seeing a Write=0 PTE by
the time they get to the Dirty bit, creating a transient shadow stack
PTE. However, this will not occur on processors supporting shadow
stack, and a TLB flush is not necessary.
2. When _PAGE_DIRTY is replaced with _PAGE_SAVED_DIRTY non-atomically, a
transient shadow stack PTE can be created as a result.
Prevent the second case when doing a write protection and Dirty->SavedDirty
shift at the same time with a CMPXCHG loop. The first case
Note, in the PAE case CMPXCHG will need to operate on 8 byte, but
try_cmpxchg() will not use CMPXCHG8B, so it cannot operate on a full PAE
PTE. However the exiting logic is not operating on a full 8 byte region
either, and relies on the fact that the Write bit is in the first 4
bytes when doing the clear_bit(). Since both the Dirty, SavedDirty and
Write bits are in the first 4 bytes, casting to a long will be similar to
the existing behavior which also casts to a long.
Dave Hansen, Jann Horn, Andy Lutomirski, and Peter Zijlstra provided many
insights to the issue. Jann Horn provided the CMPXCHG solution.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-12-rick.p.edgecombe%40intel.com
Some OSes have a greater dependence on software available bits in PTEs than
Linux. That left the hardware architects looking for a way to represent a
new memory type (shadow stack) within the existing bits. They chose to
repurpose a lightly-used state: Write=0,Dirty=1. So in order to support
shadow stack memory, Linux should avoid creating memory with this PTE bit
combination unless it intends for it to be shadow stack.
The reason it's lightly used is that Dirty=1 is normally set by HW
_before_ a write. A write with a Write=0 PTE would typically only generate
a fault, not set Dirty=1. Hardware can (rarely) both set Dirty=1 *and*
generate the fault, resulting in a Write=0,Dirty=1 PTE. Hardware which
supports shadow stacks will no longer exhibit this oddity.
So that leaves Write=0,Dirty=1 PTEs created in software. To avoid
inadvertently created shadow stack memory, in places where Linux normally
creates Write=0,Dirty=1, it can use the software-defined _PAGE_SAVED_DIRTY
in place of the hardware _PAGE_DIRTY. In other words, whenever Linux needs
to create Write=0,Dirty=1, it instead creates Write=0,SavedDirty=1 except
for shadow stack, which is Write=0,Dirty=1.
There are six bits left available to software in the 64-bit PTE after
consuming a bit for _PAGE_SAVED_DIRTY. For 32 bit, the same bit as
_PAGE_BIT_UFFD_WP is used, since user fault fd is not supported on 32
bit. This leaves one unused software bit on 32 bit (_PAGE_BIT_SOFT_DIRTY,
as this is also not supported on 32 bit).
Implement only the infrastructure for _PAGE_SAVED_DIRTY. Changes to
actually begin creating _PAGE_SAVED_DIRTY PTEs will follow once other
pieces are in place.
Since this SavedDirty shifting is done for all x86 CPUs, this leaves
the possibility for the hardware oddity to still create Write=0,Dirty=1
PTEs in rare cases. Since these CPUs also don't support shadow stack, this
will be harmless as it was before the introduction of SavedDirty.
Implement the shifting logic to be branchless. Embed the logic of whether
to do the shifting (including checking the Write bits) so that it can be
called by future callers that would otherwise need additional branching
logic. This efficiency allows the logic of when to do the shifting to be
centralized, making the code easier to reason about.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-11-rick.p.edgecombe%40intel.com
The Control-Flow Enforcement Technology contains two related features,
one of which is Shadow Stacks. Future patches will utilize this feature
for shadow stack support in KVM, so add a CPU feature flags for Shadow
Stacks (CPUID.(EAX=7,ECX=0):ECX[bit 7]).
To protect shadow stack state from malicious modification, the registers
are only accessible in supervisor mode. This implementation
context-switches the registers with XSAVES. Make X86_FEATURE_SHSTK depend
on XSAVES.
The shadow stack feature, enumerated by the CPUID bit described above,
encompasses both supervisor and userspace support for shadow stack. In
near future patches, only userspace shadow stack will be enabled. In
expectation of future supervisor shadow stack support, create a software
CPU capability to enumerate kernel utilization of userspace shadow stack
support. This user shadow stack bit should depend on the HW "shstk"
capability and that logic will be implemented in future patches.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-9-rick.p.edgecombe%40intel.com
Shadow stack provides protection for applications against function return
address corruption. It is active when the processor supports it, the
kernel has CONFIG_X86_SHADOW_STACK enabled, and the application is built
for the feature. This is only implemented for the 64-bit kernel. When it
is enabled, legacy non-shadow stack applications continue to work, but
without protection.
Since there is another feature that utilizes CET (Kernel IBT) that will
share implementation with shadow stacks, create CONFIG_CET to signify
that at least one CET feature is configured.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-7-rick.p.edgecombe%40intel.com
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). Future patches will make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Previous work pte_mkwrite() renamed pte_mkwrite_novma() and converted
callers that don't have a VMA were to use pte_mkwrite_novma(). So now
change pte_mkwrite() to take a VMA and change the remaining callers to
pass a VMA. Apply the same changes for pmd_mkwrite().
No functional change.
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/all/20230613001108.3040476-4-rick.p.edgecombe%40intel.com
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). Future patches will make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Earlier work did the first step, so next move the callers that don't have
a VMA to pte_mkwrite_novma(). Also do the same for pmd_mkwrite(). This
will be ok for the shadow stack feature, as these callers are on kernel
memory which will not need to be made shadow stack, and the other
architectures only currently support one type of memory in pte_mkwrite()
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/all/20230613001108.3040476-3-rick.p.edgecombe%40intel.com
The x86 Shadow stack feature includes a new type of memory called shadow
stack. This shadow stack memory has some unusual properties, which requires
some core mm changes to function properly.
One of these unusual properties is that shadow stack memory is writable,
but only in limited ways. These limits are applied via a specific PTE
bit combination. Nevertheless, the memory is writable, and core mm code
will need to apply the writable permissions in the typical paths that
call pte_mkwrite(). The goal is to make pte_mkwrite() take a VMA, so
that the x86 implementation of it can know whether to create regular
writable or shadow stack mappings.
But there are a couple of challenges to this. Modifying the signatures of
each arch pte_mkwrite() implementation would be error prone because some
are generated with macros and would need to be re-implemented. Also, some
pte_mkwrite() callers operate on kernel memory without a VMA.
So this can be done in a three step process. First pte_mkwrite() can be
renamed to pte_mkwrite_novma() in each arch, with a generic pte_mkwrite()
added that just calls pte_mkwrite_novma(). Next callers without a VMA can
be moved to pte_mkwrite_novma(). And lastly, pte_mkwrite() and all callers
can be changed to take/pass a VMA.
Start the process by renaming pte_mkwrite() to pte_mkwrite_novma() and
adding the pte_mkwrite() wrapper in linux/pgtable.h. Apply the same
pattern for pmd_mkwrite(). Since not all archs have a pmd_mkwrite_novma(),
create a new arch config HAS_HUGE_PAGE that can be used to tell if
pmd_mkwrite() should be defined. Otherwise in the !HAS_HUGE_PAGE cases the
compiler would not be able to find pmd_mkwrite_novma().
No functional change.
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/lkml/CAHk-=wiZjSu7c9sFYZb3q04108stgHff2wfbokGCCgW7riz+8Q@mail.gmail.com/
Link: https://lore.kernel.org/all/20230613001108.3040476-2-rick.p.edgecombe%40intel.com
We just sorted the entries and fields last release, so just out of a
perverse sense of curiosity, I decided to see if we can keep things
ordered for even just one release.
The answer is "No. No we cannot".
I suggest that all kernel developers will need weekly training sessions,
involving a lot of Big Bird and Sesame Street. And at the yearly
maintainer summit, we will all sing the alphabet song together.
I doubt I will keep doing this. At some point "perverse sense of
curiosity" turns into just a cold dark place filled with sadness and
despair.
Repeats: 80e62bc848 ("MAINTAINERS: re-sort all entries and fields")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull dma-mapping fixes from Christoph Hellwig:
- swiotlb area sizing fixes (Petr Tesarik)
* tag 'dma-mapping-6.5-2023-07-09' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: reduce the number of areas to match actual memory pool size
swiotlb: always set the number of areas before allocating the pool
Pull irq update from Borislav Petkov:
- Optimize IRQ domain's name assignment
* tag 'irq_urgent_for_v6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
irqdomain: Use return value of strreplace()
Pull x86 fpu fix from Borislav Petkov:
- Do FPU AP initialization on Xen PV too which got missed by the recent
boot reordering work
* tag 'x86_urgent_for_v6.5_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/xen: Fix secondary processors' FPU initialization
Pull x86 fix from Thomas Gleixner:
"A single fix for the mechanism to park CPUs with an INIT IPI.
On shutdown or kexec, the kernel tries to park the non-boot CPUs with
an INIT IPI. But the same code path is also used by the crash utility.
If the CPU which panics is not the boot CPU then it sends an INIT IPI
to the boot CPU which resets the machine.
Prevent this by validating that the CPU which runs the stop mechanism
is the boot CPU. If not, leave the other CPUs in HLT"
* tag 'x86-core-2023-07-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smp: Don't send INIT to boot CPU
Pull MIPS fixes from Thomas Bogendoerfer:
- fixes for KVM
- fix for loongson build and cpu probing
- DT fixes
* tag 'mips_6.5_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux:
MIPS: kvm: Fix build error with KVM_MIPS_DEBUG_COP0_COUNTERS enabled
MIPS: dts: add missing space before {
MIPS: Loongson: Fix build error when make modules_install
MIPS: KVM: Fix NULL pointer dereference
MIPS: Loongson: Fix cpu_probe_loongson() again
Pull xfs fix from Darrick Wong:
"Nothing exciting here, just getting rid of a gcc warning that I got
tired of seeing when I turn on gcov"
* tag 'xfs-6.5-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: fix uninit warning in xfs_growfs_data
Pull more smb client updates from Steve French:
- fix potential use after free in unmount
- minor cleanup
- add worker to cleanup stale directory leases
* tag '6.5-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6:
cifs: Add a laundromat thread for cached directories
smb: client: remove redundant pointer 'server'
cifs: fix session state transition to avoid use-after-free issue
Lockdep is certainly right to complain about
(&vma->vm_lock->lock){++++}-{3:3}, at: vma_start_write+0x2d/0x3f
but task is already holding lock:
(&mapping->i_mmap_rwsem){+.+.}-{3:3}, at: mmap_region+0x4dc/0x6db
Invert those to the usual ordering.
Fixes: 33313a747e ("mm: lock newly mapped VMA which can be modified after it becomes visible")
Cc: stable@vger.kernel.org
Signed-off-by: Hugh Dickins <hughd@google.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull hotfixes from Andrew Morton:
"16 hotfixes. Six are cc:stable and the remainder address post-6.4
issues"
The merge undoes the disabling of the CONFIG_PER_VMA_LOCK feature, since
it was all hopefully fixed in mainline.
* tag 'mm-hotfixes-stable-2023-07-08-10-43' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
lib: dhry: fix sleeping allocations inside non-preemptable section
kasan, slub: fix HW_TAGS zeroing with slub_debug
kasan: fix type cast in memory_is_poisoned_n
mailmap: add entries for Heiko Stuebner
mailmap: update manpage link
bootmem: remove the vmemmap pages from kmemleak in free_bootmem_page
MAINTAINERS: add linux-next info
mailmap: add Markus Schneider-Pargmann
writeback: account the number of pages written back
mm: call arch_swap_restore() from do_swap_page()
squashfs: fix cache race with migration
mm/hugetlb.c: fix a bug within a BUG(): inconsistent pte comparison
docs: update ocfs2-devel mailing list address
MAINTAINERS: update ocfs2-devel mailing list address
mm: disable CONFIG_PER_VMA_LOCK until its fixed
fork: lock VMAs of the parent process when forking
When forking a child process, the parent write-protects anonymous pages
and COW-shares them with the child being forked using copy_present_pte().
We must not take any concurrent page faults on the source vma's as they
are being processed, as we expect both the vma and the pte's behind it
to be stable. For example, the anon_vma_fork() expects the parents
vma->anon_vma to not change during the vma copy.
A concurrent page fault on a page newly marked read-only by the page
copy might trigger wp_page_copy() and a anon_vma_prepare(vma) on the
source vma, defeating the anon_vma_clone() that wasn't done because the
parent vma originally didn't have an anon_vma, but we now might end up
copying a pte entry for a page that has one.
Before the per-vma lock based changes, the mmap_lock guaranteed
exclusion with concurrent page faults. But now we need to do a
vma_start_write() to make sure no concurrent faults happen on this vma
while it is being processed.
This fix can potentially regress some fork-heavy workloads. Kernel
build time did not show noticeable regression on a 56-core machine while
a stress test mapping 10000 VMAs and forking 5000 times in a tight loop
shows ~5% regression. If such fork time regression is unacceptable,
disabling CONFIG_PER_VMA_LOCK should restore its performance. Further
optimizations are possible if this regression proves to be problematic.
Suggested-by: David Hildenbrand <david@redhat.com>
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Closes: https://lore.kernel.org/all/dbdef34c-3a07-5951-e1ae-e9c6e3cdf51b@kernel.org/
Reported-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Closes: https://lore.kernel.org/all/b198d649-f4bf-b971-31d0-e8433ec2a34c@applied-asynchrony.com/
Reported-by: Jacob Young <jacobly.alt@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217624
Fixes: 0bff0aaea0 ("x86/mm: try VMA lock-based page fault handling first")
Cc: stable@vger.kernel.org
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mmap_region adds a newly created VMA into VMA tree and might modify it
afterwards before dropping the mmap_lock. This poses a problem for page
faults handled under per-VMA locks because they don't take the mmap_lock
and can stumble on this VMA while it's still being modified. Currently
this does not pose a problem since post-addition modifications are done
only for file-backed VMAs, which are not handled under per-VMA lock.
However, once support for handling file-backed page faults with per-VMA
locks is added, this will become a race.
Fix this by write-locking the VMA before inserting it into the VMA tree.
Other places where a new VMA is added into VMA tree do not modify it
after the insertion, so do not need the same locking.
Cc: stable@vger.kernel.org
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With recent changes necessitating mmap_lock to be held for write while
expanding a stack, per-VMA locks should follow the same rules and be
write-locked to prevent page faults into the VMA being expanded. Add
the necessary locking.
Cc: stable@vger.kernel.org
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull more SCSI updates from James Bottomley:
"A few late arriving patches that missed the initial pull request. It's
mostly bug fixes (the dt-bindings is a fix for the initial pull)"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
scsi: ufs: core: Remove unused function declaration
scsi: target: docs: Remove tcm_mod_builder.py
scsi: target: iblock: Quiet bool conversion warning with pr_preempt use
scsi: dt-bindings: ufs: qcom: Fix ICE phandle
scsi: core: Simplify scsi_cdl_check_cmd()
scsi: isci: Fix comment typo
scsi: smartpqi: Replace one-element arrays with flexible-array members
scsi: target: tcmu: Replace strlcpy() with strscpy()
scsi: ncr53c8xx: Replace strlcpy() with strscpy()
scsi: lpfc: Fix lpfc_name struct packing
Pull more i2c updates from Wolfram Sang:
- xiic patch should have been in the original pull but slipped through
- mpc patch fixes a build regression
- nomadik cleanup
* tag 'i2c-for-6.5-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux:
i2c: mpc: Drop unused variable
i2c: nomadik: Remove a useless call in the remove function
i2c: xiic: Don't try to handle more interrupt events after error
The debugfs_create_dir function returns ERR_PTR in case of error, and the
only correct way to check if an error occurred is 'IS_ERR' inline function.
This patch will replace the null-comparison with IS_ERR.
Signed-off-by: Anup Sharma <anupnewsmail@gmail.com>
Suggested-by: Ivan Orlov <ivan.orlov0322@gmail.com>
Signed-off-by: Jon Mason <jdmason@kudzu.us>
Pull more perf tools updates from Namhyung Kim:
"These are remaining changes and fixes for this cycle.
Build:
- Allow generating vmlinux.h from BTF using `make GEN_VMLINUX_H=1`
and skip if the vmlinux has no BTF.
- Replace deprecated clang -target xxx option by --target=xxx.
perf record:
- Print event attributes with well known type and config symbols in
the debug output like below:
# perf record -e cycles,cpu-clock -C0 -vv true
<SNIP>
------------------------------------------------------------
perf_event_attr:
type 0 (PERF_TYPE_HARDWARE)
size 136
config 0 (PERF_COUNT_HW_CPU_CYCLES)
{ sample_period, sample_freq } 4000
sample_type IP|TID|TIME|CPU|PERIOD|IDENTIFIER
read_format ID
disabled 1
inherit 1
freq 1
sample_id_all 1
exclude_guest 1
------------------------------------------------------------
sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8 = 5
------------------------------------------------------------
perf_event_attr:
type 1 (PERF_TYPE_SOFTWARE)
size 136
config 0 (PERF_COUNT_SW_CPU_CLOCK)
{ sample_period, sample_freq } 4000
sample_type IP|TID|TIME|CPU|PERIOD|IDENTIFIER
read_format ID
disabled 1
inherit 1
freq 1
sample_id_all 1
exclude_guest 1
- Update AMD IBS event error message since it now support per-process
profiling but no priviledge filters.
$ sudo perf record -e ibs_op//k -C 0
Error:
AMD IBS doesn't support privilege filtering. Try again without
the privilege modifiers (like 'k') at the end.
perf lock contention:
- Support CSV style output using -x option
$ sudo perf lock con -ab -x, sleep 1
# output: contended, total wait, max wait, avg wait, type, caller
19, 194232, 21415, 10222, spinlock, process_one_work+0x1f0
15, 162748, 23843, 10849, rwsem:R, do_user_addr_fault+0x40e
4, 86740, 23415, 21685, rwlock:R, ep_poll_callback+0x2d
1, 84281, 84281, 84281, mutex, iwl_mvm_async_handlers_wk+0x135
8, 67608, 27404, 8451, spinlock, __queue_work+0x174
3, 58616, 31125, 19538, rwsem:W, do_mprotect_pkey+0xff
3, 52953, 21172, 17651, rwlock:W, do_epoll_wait+0x248
2, 30324, 19704, 15162, rwsem:R, do_madvise+0x3ad
1, 24619, 24619, 24619, spinlock, rcu_core+0xd4
- Add --output option to save the data to a file not to be interfered
by other debug messages.
Test:
- Fix event parsing test on ARM where there's no raw PMU nor supports
PERF_PMU_CAP_EXTENDED_HW_TYPE.
- Update the lock contention test case for CSV output.
- Fix a segfault in the daemon command test.
Vendor events (JSON):
- Add has_event() to check if the given event is available on system
at runtime. On Intel machines, some transaction events may not be
present when TSC extensions are disabled.
- Update Intel event metrics.
Misc:
- Sort symbols by name using an external array of pointers instead of
a rbtree node in the symbol. This will save 16-bytes or 24-bytes
per symbol whether the sorting is actually requested or not.
- Fix unwinding DWARF callstacks using libdw when --symfs option is
used"
* tag 'perf-tools-for-v6.5-2-2023-07-06' of git://git.kernel.org/pub/scm/linux/kernel/git/perf/perf-tools-next: (38 commits)
perf test: Fix event parsing test when PERF_PMU_CAP_EXTENDED_HW_TYPE isn't supported.
perf test: Fix event parsing test on Arm
perf evsel amd: Fix IBS error message
perf: unwind: Fix symfs with libdw
perf symbol: Fix uninitialized return value in symbols__find_by_name()
perf test: Test perf lock contention CSV output
perf lock contention: Add --output option
perf lock contention: Add -x option for CSV style output
perf lock: Remove stale comments
perf vendor events intel: Update tigerlake to 1.13
perf vendor events intel: Update skylakex to 1.31
perf vendor events intel: Update skylake to 57
perf vendor events intel: Update sapphirerapids to 1.14
perf vendor events intel: Update icelakex to 1.21
perf vendor events intel: Update icelake to 1.19
perf vendor events intel: Update cascadelakex to 1.19
perf vendor events intel: Update meteorlake to 1.03
perf vendor events intel: Add rocketlake events/metrics
perf vendor metrics intel: Make transaction metrics conditional
perf jevents: Support for has_event function
...
Pull bitmap updates from Yury Norov:
"Fixes for different bitmap pieces:
- lib/test_bitmap: increment failure counter properly
The tests that don't use expect_eq() macro to determine that a test
is failured must increment failed_tests explicitly.
- lib/bitmap: drop optimization of bitmap_{from,to}_arr64
bitmap_{from,to}_arr64() optimization is overly optimistic
on 32-bit LE architectures when it's wired to
bitmap_copy_clear_tail().
- nodemask: Drop duplicate check in for_each_node_mask()
As the return value type of first_node() became unsigned, the node
>= 0 became unnecessary.
- cpumask: fix function description kernel-doc notation
- MAINTAINERS: Add bits.h and bitfield.h to the BITMAP API record
Add linux/bits.h and linux/bitfield.h for visibility"
* tag 'bitmap-6.5-rc1' of https://github.com/norov/linux:
MAINTAINERS: Add bitfield.h to the BITMAP API record
MAINTAINERS: Add bits.h to the BITMAP API record
cpumask: fix function description kernel-doc notation
nodemask: Drop duplicate check in for_each_node_mask()
lib/bitmap: drop optimization of bitmap_{from,to}_arr64
lib/test_bitmap: increment failure counter properly
Patch series "Update .mailmap for my work address and fix manpage".
While updating mailmap for the going-away address, I also found that on
current systems the manpage linked from the header comment changed.
And in fact it looks like the git mailmap feature got its own manpage.
This patch (of 2):
On recent systems the git-shortlog manpage only tells people to
See gitmailmap(5)
So instead of sending people on a scavenger hunt, put that info into the
header directly. Though keep the old reference around for older systems.
Link: https://lkml.kernel.org/r/20230704163919.1136784-1-heiko@sntech.de
Link: https://lkml.kernel.org/r/20230704163919.1136784-2-heiko@sntech.de
Signed-off-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
nr_to_write is a count of pages, so we need to decrease it by the number
of pages in the folio we just wrote, not by 1. Most callers specify
either LONG_MAX or 1, so are unaffected, but writeback_sb_inodes() might
end up writing 512x as many pages as it asked for.
Dave added:
: XFS is the only filesystem this would affect, right? AFAIA, nothing
: else enables large folios and uses writeback through
: write_cache_pages() at this point...
:
: In which case, I'd be surprised if much difference, if any, gets
: noticed by anyone.
Link: https://lkml.kernel.org/r/20230628185548.981888-1-willy@infradead.org
Fixes: 793917d997 ("mm/readahead: Add large folio readahead")
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>