Merge tag 'spi-mem-dtr-2' into nand/next

spi: Support DTR in spi-mem

Changes to support DTR with spi-mem.
This commit is contained in:
Miquel Raynal
2025-01-15 19:07:39 +01:00
2518 changed files with 21951 additions and 14200 deletions

View File

@@ -435,7 +435,7 @@ Martin Kepplinger <martink@posteo.de> <martin.kepplinger@ginzinger.com>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@puri.sm>
Martin Kepplinger <martink@posteo.de> <martin.kepplinger@theobroma-systems.com>
Martyna Szapar-Mudlaw <martyna.szapar-mudlaw@linux.intel.com> <martyna.szapar-mudlaw@intel.com>
Mathieu Othacehe <m.othacehe@gmail.com> <othacehe@gnu.org>
Mathieu Othacehe <othacehe@gnu.org> <m.othacehe@gmail.com>
Mat Martineau <martineau@kernel.org> <mathew.j.martineau@linux.intel.com>
Mat Martineau <martineau@kernel.org> <mathewm@codeaurora.org>
Matthew Wilcox <willy@infradead.org> <matthew.r.wilcox@intel.com>
@@ -735,6 +735,7 @@ Wolfram Sang <wsa@kernel.org> <w.sang@pengutronix.de>
Wolfram Sang <wsa@kernel.org> <wsa@the-dreams.de>
Yakir Yang <kuankuan.y@gmail.com> <ykk@rock-chips.com>
Yanteng Si <si.yanteng@linux.dev> <siyanteng@loongson.cn>
Ying Huang <huang.ying.caritas@gmail.com> <ying.huang@intel.com>
Yusuke Goda <goda.yusuke@renesas.com>
Zack Rusin <zack.rusin@broadcom.com> <zackr@vmware.com>
Zhu Yanjun <zyjzyj2000@gmail.com> <yanjunz@nvidia.com>

View File

@@ -76,7 +76,7 @@ Description:
timeout when the pretimeout interrupt is delivered. Pretimeout
is an optional feature.
What: /sys/class/watchdog/watchdogn/pretimeout_avaialable_governors
What: /sys/class/watchdog/watchdogn/pretimeout_available_governors
Date: February 2017
Contact: Wim Van Sebroeck <wim@iguana.be>
Description:

View File

@@ -4822,6 +4822,11 @@
can be preempted anytime. Tasks will also yield
contended spinlocks (if the critical section isn't
explicitly preempt disabled beyond the lock itself).
lazy - Scheduler controlled. Similar to full but instead
of preempting the task immediately, the task gets
one HZ tick time to yield itself before the
preemption will be forced. One preemption is when the
task returns to user space.
print-fatal-signals=
[KNL] debug: print fatal signals

View File

@@ -445,8 +445,10 @@ event code Key Notes
0x1008 0x07 FN+F8 IBM: toggle screen expand
Lenovo: configure UltraNav,
or toggle screen expand.
On newer platforms (2024+)
replaced by 0x131f (see below)
On 2024 platforms replaced by
0x131f (see below) and on newer
platforms (2025 +) keycode is
replaced by 0x1401 (see below).
0x1009 0x08 FN+F9 -
@@ -506,9 +508,11 @@ event code Key Notes
0x1019 0x18 unknown
0x131f ... FN+F8 Platform Mode change.
0x131f ... FN+F8 Platform Mode change (2024 systems).
Implemented in driver.
0x1401 ... FN+F8 Platform Mode change (2025 + systems).
Implemented in driver.
... ... ...
0x1020 0x1F unknown

View File

@@ -436,7 +436,7 @@ AnonHugePmdMapped).
The number of file transparent huge pages mapped to userspace is available
by reading ShmemPmdMapped and ShmemHugePages fields in ``/proc/meminfo``.
To identify what applications are mapping file transparent huge pages, it
is necessary to read ``/proc/PID/smaps`` and count the FileHugeMapped fields
is necessary to read ``/proc/PID/smaps`` and count the FilePmdMapped fields
for each mapping.
Note that reading the smaps file is expensive and reading it

View File

@@ -251,9 +251,7 @@ performance supported in `AMD CPPC Performance Capability <perf_cap_>`_).
In some ASICs, the highest CPPC performance is not the one in the ``_CPC``
table, so we need to expose it to sysfs. If boost is not active, but
still supported, this maximum frequency will be larger than the one in
``cpuinfo``. On systems that support preferred core, the driver will have
different values for some cores than others and this will reflect the values
advertised by the platform at bootup.
``cpuinfo``.
This attribute is read-only.
``amd_pstate_lowest_nonlinear_freq``

View File

@@ -255,8 +255,9 @@ stable kernels.
+----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip08 SMMU PMCG | #162001800 | N/A |
+----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip{08,09,10,10C| #162001900 | N/A |
| | ,11} SMMU PMCG | | |
| Hisilicon | Hip{08,09,09A,10| #162001900 | N/A |
| | ,10C,11} | | |
| | SMMU PMCG | | |
+----------------+-----------------+-----------------+-----------------------------+
| Hisilicon | Hip09 | #162100801 | HISILICON_ERRATUM_162100801 |
+----------------+-----------------+-----------------+-----------------------------+

View File

@@ -46,7 +46,7 @@ Please note that due to macro expansion that argument needs to be a
preprocessor symbol. E.g. to export the symbol ``usb_stor_suspend`` into the
namespace ``USB_STORAGE``, use::
EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);
EXPORT_SYMBOL_NS(usb_stor_suspend, "USB_STORAGE");
The corresponding ksymtab entry struct ``kernel_symbol`` will have the member
``namespace`` set accordingly. A symbol that is exported without a namespace will
@@ -68,7 +68,7 @@ is to define the default namespace in the ``Makefile`` of the subsystem. E.g. to
export all symbols defined in usb-common into the namespace USB_COMMON, add a
line like this to drivers/usb/common/Makefile::
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE=USB_COMMON
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE='"USB_COMMON"'
That will affect all EXPORT_SYMBOL() and EXPORT_SYMBOL_GPL() statements. A
symbol exported with EXPORT_SYMBOL_NS() while this definition is present, will
@@ -79,7 +79,7 @@ A second option to define the default namespace is directly in the compilation
unit as preprocessor statement. The above example would then read::
#undef DEFAULT_SYMBOL_NAMESPACE
#define DEFAULT_SYMBOL_NAMESPACE USB_COMMON
#define DEFAULT_SYMBOL_NAMESPACE "USB_COMMON"
within the corresponding compilation unit before any EXPORT_SYMBOL macro is
used.
@@ -94,7 +94,7 @@ for the namespaces it uses symbols from. E.g. a module using the
usb_stor_suspend symbol from above, needs to import the namespace USB_STORAGE
using a statement like::
MODULE_IMPORT_NS(USB_STORAGE);
MODULE_IMPORT_NS("USB_STORAGE");
This will create a ``modinfo`` tag in the module for each imported namespace.
This has the side effect, that the imported namespaces of a module can be

View File

@@ -114,8 +114,9 @@ patternProperties:
table that specifies the PPID to LIODN mapping. Needed if the PAMU is
used. Value is a 12 bit value where value is a LIODN ID for this JR.
This property is normally set by boot firmware.
$ref: /schemas/types.yaml#/definitions/uint32
maximum: 0xfff
$ref: /schemas/types.yaml#/definitions/uint32-array
items:
- maximum: 0xfff
'^rtic@[0-9a-f]+$':
type: object
@@ -186,8 +187,9 @@ patternProperties:
Needed if the PAMU is used. Value is a 12 bit value where value
is a LIODN ID for this JR. This property is normally set by boot
firmware.
$ref: /schemas/types.yaml#/definitions/uint32
maximum: 0xfff
$ref: /schemas/types.yaml#/definitions/uint32-array
items:
- maximum: 0xfff
fsl,rtic-region:
description:

View File

@@ -90,7 +90,7 @@ properties:
adi,dsi-lanes:
description: Number of DSI data lanes connected to the DSI host.
$ref: /schemas/types.yaml#/definitions/uint32
enum: [ 1, 2, 3, 4 ]
enum: [ 2, 3, 4 ]
"#sound-dai-cells":
const: 0

View File

@@ -82,7 +82,7 @@ examples:
uimage@100000 {
reg = <0x0100000 0x200000>;
compress = "lzma";
compression = "lzma";
};
};

View File

@@ -113,11 +113,8 @@ allOf:
maxItems: 1
- if:
properties:
compatible:
contains:
enum:
- fsl,imx95-usb-phy
required:
- orientation-switch
then:
$ref: /schemas/usb/usb-switch.yaml#

View File

@@ -55,6 +55,10 @@ patternProperties:
patternProperties:
"^power-domain@[0-9a-f]+$":
$ref: "#/$defs/power-domain-node"
patternProperties:
"^power-domain@[0-9a-f]+$":
$ref: "#/$defs/power-domain-node"
unevaluatedProperties: false
unevaluatedProperties: false
unevaluatedProperties: false
unevaluatedProperties: false

View File

@@ -18,6 +18,7 @@ properties:
compatible:
enum:
- qcom,qca6390-pmu
- qcom,wcn6750-pmu
- qcom,wcn6855-pmu
- qcom,wcn7850-pmu
@@ -27,6 +28,9 @@ properties:
vddaon-supply:
description: VDD_AON supply regulator handle
vddasd-supply:
description: VDD_ASD supply regulator handle
vdddig-supply:
description: VDD_DIG supply regulator handle
@@ -42,6 +46,9 @@ properties:
vddio1p2-supply:
description: VDD_IO_1P2 supply regulator handle
vddrfa0p8-supply:
description: VDD_RFA_0P8 supply regulator handle
vddrfa0p95-supply:
description: VDD_RFA_0P95 supply regulator handle
@@ -51,12 +58,18 @@ properties:
vddrfa1p3-supply:
description: VDD_RFA_1P3 supply regulator handle
vddrfa1p7-supply:
description: VDD_RFA_1P7 supply regulator handle
vddrfa1p8-supply:
description: VDD_RFA_1P8 supply regulator handle
vddrfa1p9-supply:
description: VDD_RFA_1P9 supply regulator handle
vddrfa2p2-supply:
description: VDD_RFA_2P2 supply regulator handle
vddpcie1p3-supply:
description: VDD_PCIE_1P3 supply regulator handle
@@ -119,6 +132,20 @@ allOf:
- vddpcie1p3-supply
- vddpcie1p9-supply
- vddio-supply
- if:
properties:
compatible:
contains:
const: qcom,wcn6750-pmu
then:
required:
- vddaon-supply
- vddasd-supply
- vddpmu-supply
- vddrfa0p8-supply
- vddrfa1p2-supply
- vddrfa1p7-supply
- vddrfa2p2-supply
- if:
properties:
compatible:

View File

@@ -35,6 +35,7 @@ properties:
fsl,liodn:
$ref: /schemas/types.yaml#/definitions/uint32-array
maxItems: 2
description: See pamu.txt. Two LIODN(s). DQRR LIODN (DLIODN) and Frame LIODN
(FLIODN)
@@ -69,6 +70,7 @@ patternProperties:
type: object
properties:
fsl,liodn:
$ref: /schemas/types.yaml#/definitions/uint32-array
description: See pamu.txt, PAMU property used for static LIODN assignment
fsl,iommu-parent:

View File

@@ -51,7 +51,7 @@ properties:
description: Power supply for AVDD, providing 1.8V.
cpvdd-supply:
description: Power supply for CPVDD, providing 3.5V.
description: Power supply for CPVDD, providing 1.8V.
hp-detect-gpios:
description:

View File

@@ -0,0 +1,47 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/watchdog/airoha,en7581-wdt.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Airoha EN7581 Watchdog Timer
maintainers:
- Christian Marangi <ansuelsmth@gmail.com>
allOf:
- $ref: watchdog.yaml#
properties:
compatible:
const: airoha,en7581-wdt
reg:
maxItems: 1
clocks:
description: BUS clock (timer ticks at half the BUS clock)
maxItems: 1
clock-names:
const: bus
required:
- compatible
- reg
- clocks
- clock-names
unevaluatedProperties: false
examples:
- |
#include <dt-bindings/clock/en7523-clk.h>
watchdog@1fbf0100 {
compatible = "airoha,en7581-wdt";
reg = <0x1fbf0100 0x3c>;
clocks = <&scuclk EN7523_CLK_BUS>;
clock-names = "bus";
};

View File

@@ -48,6 +48,8 @@ properties:
clocks:
maxItems: 1
big-endian: true
fsl,ext-reset-output:
$ref: /schemas/types.yaml#/definitions/flag
description: |
@@ -93,6 +95,18 @@ allOf:
properties:
fsl,suspend-in-wait: false
- if:
not:
properties:
compatible:
contains:
enum:
- fsl,ls1012a-wdt
- fsl,ls1043a-wdt
then:
properties:
big-endian: false
unevaluatedProperties: false
examples:

View File

@@ -26,6 +26,8 @@ properties:
- qcom,apss-wdt-msm8994
- qcom,apss-wdt-qcm2290
- qcom,apss-wdt-qcs404
- qcom,apss-wdt-qcs615
- qcom,apss-wdt-qcs8300
- qcom,apss-wdt-sa8255p
- qcom,apss-wdt-sa8775p
- qcom,apss-wdt-sc7180

View File

@@ -26,6 +26,7 @@ properties:
- samsung,exynos7-wdt # for Exynos7
- samsung,exynos850-wdt # for Exynos850
- samsung,exynosautov9-wdt # for Exynosautov9
- samsung,exynosautov920-wdt # for Exynosautov920
- items:
- enum:
- tesla,fsd-wdt
@@ -77,6 +78,7 @@ allOf:
- samsung,exynos7-wdt
- samsung,exynos850-wdt
- samsung,exynosautov9-wdt
- samsung,exynosautov920-wdt
then:
required:
- samsung,syscon-phandle
@@ -88,6 +90,7 @@ allOf:
- google,gs101-wdt
- samsung,exynos850-wdt
- samsung,exynosautov9-wdt
- samsung,exynosautov920-wdt
then:
properties:
clocks:

View File

@@ -3,3 +3,853 @@
=================
Process Addresses
=================
.. toctree::
:maxdepth: 3
Userland memory ranges are tracked by the kernel via Virtual Memory Areas or
'VMA's of type :c:struct:`!struct vm_area_struct`.
Each VMA describes a virtually contiguous memory range with identical
attributes, each described by a :c:struct:`!struct vm_area_struct`
object. Userland access outside of VMAs is invalid except in the case where an
adjacent stack VMA could be extended to contain the accessed address.
All VMAs are contained within one and only one virtual address space, described
by a :c:struct:`!struct mm_struct` object which is referenced by all tasks (that is,
threads) which share the virtual address space. We refer to this as the
:c:struct:`!mm`.
Each mm object contains a maple tree data structure which describes all VMAs
within the virtual address space.
.. note:: An exception to this is the 'gate' VMA which is provided by
architectures which use :c:struct:`!vsyscall` and is a global static
object which does not belong to any specific mm.
-------
Locking
-------
The kernel is designed to be highly scalable against concurrent read operations
on VMA **metadata** so a complicated set of locks are required to ensure memory
corruption does not occur.
.. note:: Locking VMAs for their metadata does not have any impact on the memory
they describe nor the page tables that map them.
Terminology
-----------
* **mmap locks** - Each MM has a read/write semaphore :c:member:`!mmap_lock`
which locks at a process address space granularity which can be acquired via
:c:func:`!mmap_read_lock`, :c:func:`!mmap_write_lock` and variants.
* **VMA locks** - The VMA lock is at VMA granularity (of course) which behaves
as a read/write semaphore in practice. A VMA read lock is obtained via
:c:func:`!lock_vma_under_rcu` (and unlocked via :c:func:`!vma_end_read`) and a
write lock via :c:func:`!vma_start_write` (all VMA write locks are unlocked
automatically when the mmap write lock is released). To take a VMA write lock
you **must** have already acquired an :c:func:`!mmap_write_lock`.
* **rmap locks** - When trying to access VMAs through the reverse mapping via a
:c:struct:`!struct address_space` or :c:struct:`!struct anon_vma` object
(reachable from a folio via :c:member:`!folio->mapping`). VMAs must be stabilised via
:c:func:`!anon_vma_[try]lock_read` or :c:func:`!anon_vma_[try]lock_write` for
anonymous memory and :c:func:`!i_mmap_[try]lock_read` or
:c:func:`!i_mmap_[try]lock_write` for file-backed memory. We refer to these
locks as the reverse mapping locks, or 'rmap locks' for brevity.
We discuss page table locks separately in the dedicated section below.
The first thing **any** of these locks achieve is to **stabilise** the VMA
within the MM tree. That is, guaranteeing that the VMA object will not be
deleted from under you nor modified (except for some specific fields
described below).
Stabilising a VMA also keeps the address space described by it around.
Lock usage
----------
If you want to **read** VMA metadata fields or just keep the VMA stable, you
must do one of the following:
* Obtain an mmap read lock at the MM granularity via :c:func:`!mmap_read_lock` (or a
suitable variant), unlocking it with a matching :c:func:`!mmap_read_unlock` when
you're done with the VMA, *or*
* Try to obtain a VMA read lock via :c:func:`!lock_vma_under_rcu`. This tries to
acquire the lock atomically so might fail, in which case fall-back logic is
required to instead obtain an mmap read lock if this returns :c:macro:`!NULL`,
*or*
* Acquire an rmap lock before traversing the locked interval tree (whether
anonymous or file-backed) to obtain the required VMA.
If you want to **write** VMA metadata fields, then things vary depending on the
field (we explore each VMA field in detail below). For the majority you must:
* Obtain an mmap write lock at the MM granularity via :c:func:`!mmap_write_lock` (or a
suitable variant), unlocking it with a matching :c:func:`!mmap_write_unlock` when
you're done with the VMA, *and*
* Obtain a VMA write lock via :c:func:`!vma_start_write` for each VMA you wish to
modify, which will be released automatically when :c:func:`!mmap_write_unlock` is
called.
* If you want to be able to write to **any** field, you must also hide the VMA
from the reverse mapping by obtaining an **rmap write lock**.
VMA locks are special in that you must obtain an mmap **write** lock **first**
in order to obtain a VMA **write** lock. A VMA **read** lock however can be
obtained without any other lock (:c:func:`!lock_vma_under_rcu` will acquire then
release an RCU lock to lookup the VMA for you).
This constrains the impact of writers on readers, as a writer can interact with
one VMA while a reader interacts with another simultaneously.
.. note:: The primary users of VMA read locks are page fault handlers, which
means that without a VMA write lock, page faults will run concurrent with
whatever you are doing.
Examining all valid lock states:
.. table::
========= ======== ========= ======= ===== =========== ==========
mmap lock VMA lock rmap lock Stable? Read? Write most? Write all?
========= ======== ========= ======= ===== =========== ==========
\- \- \- N N N N
\- R \- Y Y N N
\- \- R/W Y Y N N
R/W \-/R \-/R/W Y Y N N
W W \-/R Y Y Y N
W W W Y Y Y Y
========= ======== ========= ======= ===== =========== ==========
.. warning:: While it's possible to obtain a VMA lock while holding an mmap read lock,
attempting to do the reverse is invalid as it can result in deadlock - if
another task already holds an mmap write lock and attempts to acquire a VMA
write lock that will deadlock on the VMA read lock.
All of these locks behave as read/write semaphores in practice, so you can
obtain either a read or a write lock for each of these.
.. note:: Generally speaking, a read/write semaphore is a class of lock which
permits concurrent readers. However a write lock can only be obtained
once all readers have left the critical region (and pending readers
made to wait).
This renders read locks on a read/write semaphore concurrent with other
readers and write locks exclusive against all others holding the semaphore.
VMA fields
^^^^^^^^^^
We can subdivide :c:struct:`!struct vm_area_struct` fields by their purpose, which makes it
easier to explore their locking characteristics:
.. note:: We exclude VMA lock-specific fields here to avoid confusion, as these
are in effect an internal implementation detail.
.. table:: Virtual layout fields
===================== ======================================== ===========
Field Description Write lock
===================== ======================================== ===========
:c:member:`!vm_start` Inclusive start virtual address of range mmap write,
VMA describes. VMA write,
rmap write.
:c:member:`!vm_end` Exclusive end virtual address of range mmap write,
VMA describes. VMA write,
rmap write.
:c:member:`!vm_pgoff` Describes the page offset into the file, mmap write,
the original page offset within the VMA write,
virtual address space (prior to any rmap write.
:c:func:`!mremap`), or PFN if a PFN map
and the architecture does not support
:c:macro:`!CONFIG_ARCH_HAS_PTE_SPECIAL`.
===================== ======================================== ===========
These fields describes the size, start and end of the VMA, and as such cannot be
modified without first being hidden from the reverse mapping since these fields
are used to locate VMAs within the reverse mapping interval trees.
.. table:: Core fields
============================ ======================================== =========================
Field Description Write lock
============================ ======================================== =========================
:c:member:`!vm_mm` Containing mm_struct. None - written once on
initial map.
:c:member:`!vm_page_prot` Architecture-specific page table mmap write, VMA write.
protection bits determined from VMA
flags.
:c:member:`!vm_flags` Read-only access to VMA flags describing N/A
attributes of the VMA, in union with
private writable
:c:member:`!__vm_flags`.
:c:member:`!__vm_flags` Private, writable access to VMA flags mmap write, VMA write.
field, updated by
:c:func:`!vm_flags_*` functions.
:c:member:`!vm_file` If the VMA is file-backed, points to a None - written once on
struct file object describing the initial map.
underlying file, if anonymous then
:c:macro:`!NULL`.
:c:member:`!vm_ops` If the VMA is file-backed, then either None - Written once on
the driver or file-system provides a initial map by
:c:struct:`!struct vm_operations_struct` :c:func:`!f_ops->mmap()`.
object describing callbacks to be
invoked on VMA lifetime events.
:c:member:`!vm_private_data` A :c:member:`!void *` field for Handled by driver.
driver-specific metadata.
============================ ======================================== =========================
These are the core fields which describe the MM the VMA belongs to and its attributes.
.. table:: Config-specific fields
================================= ===================== ======================================== ===============
Field Configuration option Description Write lock
================================= ===================== ======================================== ===============
:c:member:`!anon_name` CONFIG_ANON_VMA_NAME A field for storing a mmap write,
:c:struct:`!struct anon_vma_name` VMA write.
object providing a name for anonymous
mappings, or :c:macro:`!NULL` if none
is set or the VMA is file-backed. The
underlying object is reference counted
and can be shared across multiple VMAs
for scalability.
:c:member:`!swap_readahead_info` CONFIG_SWAP Metadata used by the swap mechanism mmap read,
to perform readahead. This field is swap-specific
accessed atomically. lock.
:c:member:`!vm_policy` CONFIG_NUMA :c:type:`!mempolicy` object which mmap write,
describes the NUMA behaviour of the VMA write.
VMA. The underlying object is reference
counted.
:c:member:`!numab_state` CONFIG_NUMA_BALANCING :c:type:`!vma_numab_state` object which mmap read,
describes the current state of numab-specific
NUMA balancing in relation to this VMA. lock.
Updated under mmap read lock by
:c:func:`!task_numa_work`.
:c:member:`!vm_userfaultfd_ctx` CONFIG_USERFAULTFD Userfaultfd context wrapper object of mmap write,
type :c:type:`!vm_userfaultfd_ctx`, VMA write.
either of zero size if userfaultfd is
disabled, or containing a pointer
to an underlying
:c:type:`!userfaultfd_ctx` object which
describes userfaultfd metadata.
================================= ===================== ======================================== ===============
These fields are present or not depending on whether the relevant kernel
configuration option is set.
.. table:: Reverse mapping fields
=================================== ========================================= ============================
Field Description Write lock
=================================== ========================================= ============================
:c:member:`!shared.rb` A red/black tree node used, if the mmap write, VMA write,
mapping is file-backed, to place the VMA i_mmap write.
in the
:c:member:`!struct address_space->i_mmap`
red/black interval tree.
:c:member:`!shared.rb_subtree_last` Metadata used for management of the mmap write, VMA write,
interval tree if the VMA is file-backed. i_mmap write.
:c:member:`!anon_vma_chain` List of pointers to both forked/CoWd mmap read, anon_vma write.
:c:type:`!anon_vma` objects and
:c:member:`!vma->anon_vma` if it is
non-:c:macro:`!NULL`.
:c:member:`!anon_vma` :c:type:`!anon_vma` object used by When :c:macro:`NULL` and
anonymous folios mapped exclusively to setting non-:c:macro:`NULL`:
this VMA. Initially set by mmap read, page_table_lock.
:c:func:`!anon_vma_prepare` serialised
by the :c:macro:`!page_table_lock`. This When non-:c:macro:`NULL` and
is set as soon as any page is faulted in. setting :c:macro:`NULL`:
mmap write, VMA write,
anon_vma write.
=================================== ========================================= ============================
These fields are used to both place the VMA within the reverse mapping, and for
anonymous mappings, to be able to access both related :c:struct:`!struct anon_vma` objects
and the :c:struct:`!struct anon_vma` in which folios mapped exclusively to this VMA should
reside.
.. note:: If a file-backed mapping is mapped with :c:macro:`!MAP_PRIVATE` set
then it can be in both the :c:type:`!anon_vma` and :c:type:`!i_mmap`
trees at the same time, so all of these fields might be utilised at
once.
Page tables
-----------
We won't speak exhaustively on the subject but broadly speaking, page tables map
virtual addresses to physical ones through a series of page tables, each of
which contain entries with physical addresses for the next page table level
(along with flags), and at the leaf level the physical addresses of the
underlying physical data pages or a special entry such as a swap entry,
migration entry or other special marker. Offsets into these pages are provided
by the virtual address itself.
In Linux these are divided into five levels - PGD, P4D, PUD, PMD and PTE. Huge
pages might eliminate one or two of these levels, but when this is the case we
typically refer to the leaf level as the PTE level regardless.
.. note:: In instances where the architecture supports fewer page tables than
five the kernel cleverly 'folds' page table levels, that is stubbing
out functions related to the skipped levels. This allows us to
conceptually act as if there were always five levels, even if the
compiler might, in practice, eliminate any code relating to missing
ones.
There are four key operations typically performed on page tables:
1. **Traversing** page tables - Simply reading page tables in order to traverse
them. This only requires that the VMA is kept stable, so a lock which
establishes this suffices for traversal (there are also lockless variants
which eliminate even this requirement, such as :c:func:`!gup_fast`).
2. **Installing** page table mappings - Whether creating a new mapping or
modifying an existing one in such a way as to change its identity. This
requires that the VMA is kept stable via an mmap or VMA lock (explicitly not
rmap locks).
3. **Zapping/unmapping** page table entries - This is what the kernel calls
clearing page table mappings at the leaf level only, whilst leaving all page
tables in place. This is a very common operation in the kernel performed on
file truncation, the :c:macro:`!MADV_DONTNEED` operation via
:c:func:`!madvise`, and others. This is performed by a number of functions
including :c:func:`!unmap_mapping_range` and :c:func:`!unmap_mapping_pages`.
The VMA need only be kept stable for this operation.
4. **Freeing** page tables - When finally the kernel removes page tables from a
userland process (typically via :c:func:`!free_pgtables`) extreme care must
be taken to ensure this is done safely, as this logic finally frees all page
tables in the specified range, ignoring existing leaf entries (it assumes the
caller has both zapped the range and prevented any further faults or
modifications within it).
.. note:: Modifying mappings for reclaim or migration is performed under rmap
lock as it, like zapping, does not fundamentally modify the identity
of what is being mapped.
**Traversing** and **zapping** ranges can be performed holding any one of the
locks described in the terminology section above - that is the mmap lock, the
VMA lock or either of the reverse mapping locks.
That is - as long as you keep the relevant VMA **stable** - you are good to go
ahead and perform these operations on page tables (though internally, kernel
operations that perform writes also acquire internal page table locks to
serialise - see the page table implementation detail section for more details).
When **installing** page table entries, the mmap or VMA lock must be held to
keep the VMA stable. We explore why this is in the page table locking details
section below.
.. warning:: Page tables are normally only traversed in regions covered by VMAs.
If you want to traverse page tables in areas that might not be
covered by VMAs, heavier locking is required.
See :c:func:`!walk_page_range_novma` for details.
**Freeing** page tables is an entirely internal memory management operation and
has special requirements (see the page freeing section below for more details).
.. warning:: When **freeing** page tables, it must not be possible for VMAs
containing the ranges those page tables map to be accessible via
the reverse mapping.
The :c:func:`!free_pgtables` function removes the relevant VMAs
from the reverse mappings, but no other VMAs can be permitted to be
accessible and span the specified range.
Lock ordering
-------------
As we have multiple locks across the kernel which may or may not be taken at the
same time as explicit mm or VMA locks, we have to be wary of lock inversion, and
the **order** in which locks are acquired and released becomes very important.
.. note:: Lock inversion occurs when two threads need to acquire multiple locks,
but in doing so inadvertently cause a mutual deadlock.
For example, consider thread 1 which holds lock A and tries to acquire lock B,
while thread 2 holds lock B and tries to acquire lock A.
Both threads are now deadlocked on each other. However, had they attempted to
acquire locks in the same order, one would have waited for the other to
complete its work and no deadlock would have occurred.
The opening comment in :c:macro:`!mm/rmap.c` describes in detail the required
ordering of locks within memory management code:
.. code-block::
inode->i_rwsem (while writing or truncating, not reading or faulting)
mm->mmap_lock
mapping->invalidate_lock (in filemap_fault)
folio_lock
hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
vma_start_write
mapping->i_mmap_rwsem
anon_vma->rwsem
mm->page_table_lock or pte_lock
swap_lock (in swap_duplicate, swap_info_get)
mmlist_lock (in mmput, drain_mmlist and others)
mapping->private_lock (in block_dirty_folio)
i_pages lock (widely used)
lruvec->lru_lock (in folio_lruvec_lock_irq)
inode->i_lock (in set_page_dirty's __mark_inode_dirty)
bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
sb_lock (within inode_lock in fs/fs-writeback.c)
i_pages lock (widely used, in set_page_dirty,
in arch-dependent flush_dcache_mmap_lock,
within bdi.wb->list_lock in __sync_single_inode)
There is also a file-system specific lock ordering comment located at the top of
:c:macro:`!mm/filemap.c`:
.. code-block::
->i_mmap_rwsem (truncate_pagecache)
->private_lock (__free_pte->block_dirty_folio)
->swap_lock (exclusive_swap_page, others)
->i_pages lock
->i_rwsem
->invalidate_lock (acquired by fs in truncate path)
->i_mmap_rwsem (truncate->unmap_mapping_range)
->mmap_lock
->i_mmap_rwsem
->page_table_lock or pte_lock (various, mainly in memory.c)
->i_pages lock (arch-dependent flush_dcache_mmap_lock)
->mmap_lock
->invalidate_lock (filemap_fault)
->lock_page (filemap_fault, access_process_vm)
->i_rwsem (generic_perform_write)
->mmap_lock (fault_in_readable->do_page_fault)
bdi->wb.list_lock
sb_lock (fs/fs-writeback.c)
->i_pages lock (__sync_single_inode)
->i_mmap_rwsem
->anon_vma.lock (vma_merge)
->anon_vma.lock
->page_table_lock or pte_lock (anon_vma_prepare and various)
->page_table_lock or pte_lock
->swap_lock (try_to_unmap_one)
->private_lock (try_to_unmap_one)
->i_pages lock (try_to_unmap_one)
->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
->private_lock (folio_remove_rmap_pte->set_page_dirty)
->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
bdi.wb->list_lock (zap_pte_range->set_page_dirty)
->inode->i_lock (zap_pte_range->set_page_dirty)
->private_lock (zap_pte_range->block_dirty_folio)
Please check the current state of these comments which may have changed since
the time of writing of this document.
------------------------------
Locking Implementation Details
------------------------------
.. warning:: Locking rules for PTE-level page tables are very different from
locking rules for page tables at other levels.
Page table locking details
--------------------------
In addition to the locks described in the terminology section above, we have
additional locks dedicated to page tables:
* **Higher level page table locks** - Higher level page tables, that is PGD, P4D
and PUD each make use of the process address space granularity
:c:member:`!mm->page_table_lock` lock when modified.
* **Fine-grained page table locks** - PMDs and PTEs each have fine-grained locks
either kept within the folios describing the page tables or allocated
separated and pointed at by the folios if :c:macro:`!ALLOC_SPLIT_PTLOCKS` is
set. The PMD spin lock is obtained via :c:func:`!pmd_lock`, however PTEs are
mapped into higher memory (if a 32-bit system) and carefully locked via
:c:func:`!pte_offset_map_lock`.
These locks represent the minimum required to interact with each page table
level, but there are further requirements.
Importantly, note that on a **traversal** of page tables, sometimes no such
locks are taken. However, at the PTE level, at least concurrent page table
deletion must be prevented (using RCU) and the page table must be mapped into
high memory, see below.
Whether care is taken on reading the page table entries depends on the
architecture, see the section on atomicity below.
Locking rules
^^^^^^^^^^^^^
We establish basic locking rules when interacting with page tables:
* When changing a page table entry the page table lock for that page table
**must** be held, except if you can safely assume nobody can access the page
tables concurrently (such as on invocation of :c:func:`!free_pgtables`).
* Reads from and writes to page table entries must be *appropriately*
atomic. See the section on atomicity below for details.
* Populating previously empty entries requires that the mmap or VMA locks are
held (read or write), doing so with only rmap locks would be dangerous (see
the warning below).
* As mentioned previously, zapping can be performed while simply keeping the VMA
stable, that is holding any one of the mmap, VMA or rmap locks.
.. warning:: Populating previously empty entries is dangerous as, when unmapping
VMAs, :c:func:`!vms_clear_ptes` has a window of time between
zapping (via :c:func:`!unmap_vmas`) and freeing page tables (via
:c:func:`!free_pgtables`), where the VMA is still visible in the
rmap tree. :c:func:`!free_pgtables` assumes that the zap has
already been performed and removes PTEs unconditionally (along with
all other page tables in the freed range), so installing new PTE
entries could leak memory and also cause other unexpected and
dangerous behaviour.
There are additional rules applicable when moving page tables, which we discuss
in the section on this topic below.
PTE-level page tables are different from page tables at other levels, and there
are extra requirements for accessing them:
* On 32-bit architectures, they may be in high memory (meaning they need to be
mapped into kernel memory to be accessible).
* When empty, they can be unlinked and RCU-freed while holding an mmap lock or
rmap lock for reading in combination with the PTE and PMD page table locks.
In particular, this happens in :c:func:`!retract_page_tables` when handling
:c:macro:`!MADV_COLLAPSE`.
So accessing PTE-level page tables requires at least holding an RCU read lock;
but that only suffices for readers that can tolerate racing with concurrent
page table updates such that an empty PTE is observed (in a page table that
has actually already been detached and marked for RCU freeing) while another
new page table has been installed in the same location and filled with
entries. Writers normally need to take the PTE lock and revalidate that the
PMD entry still refers to the same PTE-level page table.
To access PTE-level page tables, a helper like :c:func:`!pte_offset_map_lock` or
:c:func:`!pte_offset_map` can be used depending on stability requirements.
These map the page table into kernel memory if required, take the RCU lock, and
depending on variant, may also look up or acquire the PTE lock.
See the comment on :c:func:`!__pte_offset_map_lock`.
Atomicity
^^^^^^^^^
Regardless of page table locks, the MMU hardware concurrently updates accessed
and dirty bits (perhaps more, depending on architecture). Additionally, page
table traversal operations in parallel (though holding the VMA stable) and
functionality like GUP-fast locklessly traverses (that is reads) page tables,
without even keeping the VMA stable at all.
When performing a page table traversal and keeping the VMA stable, whether a
read must be performed once and only once or not depends on the architecture
(for instance x86-64 does not require any special precautions).
If a write is being performed, or if a read informs whether a write takes place
(on an installation of a page table entry say, for instance in
:c:func:`!__pud_install`), special care must always be taken. In these cases we
can never assume that page table locks give us entirely exclusive access, and
must retrieve page table entries once and only once.
If we are reading page table entries, then we need only ensure that the compiler
does not rearrange our loads. This is achieved via :c:func:`!pXXp_get`
functions - :c:func:`!pgdp_get`, :c:func:`!p4dp_get`, :c:func:`!pudp_get`,
:c:func:`!pmdp_get`, and :c:func:`!ptep_get`.
Each of these uses :c:func:`!READ_ONCE` to guarantee that the compiler reads
the page table entry only once.
However, if we wish to manipulate an existing page table entry and care about
the previously stored data, we must go further and use an hardware atomic
operation as, for example, in :c:func:`!ptep_get_and_clear`.
Equally, operations that do not rely on the VMA being held stable, such as
GUP-fast (see :c:func:`!gup_fast` and its various page table level handlers like
:c:func:`!gup_fast_pte_range`), must very carefully interact with page table
entries, using functions such as :c:func:`!ptep_get_lockless` and equivalent for
higher level page table levels.
Writes to page table entries must also be appropriately atomic, as established
by :c:func:`!set_pXX` functions - :c:func:`!set_pgd`, :c:func:`!set_p4d`,
:c:func:`!set_pud`, :c:func:`!set_pmd`, and :c:func:`!set_pte`.
Equally functions which clear page table entries must be appropriately atomic,
as in :c:func:`!pXX_clear` functions - :c:func:`!pgd_clear`,
:c:func:`!p4d_clear`, :c:func:`!pud_clear`, :c:func:`!pmd_clear`, and
:c:func:`!pte_clear`.
Page table installation
^^^^^^^^^^^^^^^^^^^^^^^
Page table installation is performed with the VMA held stable explicitly by an
mmap or VMA lock in read or write mode (see the warning in the locking rules
section for details as to why).
When allocating a P4D, PUD or PMD and setting the relevant entry in the above
PGD, P4D or PUD, the :c:member:`!mm->page_table_lock` must be held. This is
acquired in :c:func:`!__p4d_alloc`, :c:func:`!__pud_alloc` and
:c:func:`!__pmd_alloc` respectively.
.. note:: :c:func:`!__pmd_alloc` actually invokes :c:func:`!pud_lock` and
:c:func:`!pud_lockptr` in turn, however at the time of writing it ultimately
references the :c:member:`!mm->page_table_lock`.
Allocating a PTE will either use the :c:member:`!mm->page_table_lock` or, if
:c:macro:`!USE_SPLIT_PMD_PTLOCKS` is defined, a lock embedded in the PMD
physical page metadata in the form of a :c:struct:`!struct ptdesc`, acquired by
:c:func:`!pmd_ptdesc` called from :c:func:`!pmd_lock` and ultimately
:c:func:`!__pte_alloc`.
Finally, modifying the contents of the PTE requires special treatment, as the
PTE page table lock must be acquired whenever we want stable and exclusive
access to entries contained within a PTE, especially when we wish to modify
them.
This is performed via :c:func:`!pte_offset_map_lock` which carefully checks to
ensure that the PTE hasn't changed from under us, ultimately invoking
:c:func:`!pte_lockptr` to obtain a spin lock at PTE granularity contained within
the :c:struct:`!struct ptdesc` associated with the physical PTE page. The lock
must be released via :c:func:`!pte_unmap_unlock`.
.. note:: There are some variants on this, such as
:c:func:`!pte_offset_map_rw_nolock` when we know we hold the PTE stable but
for brevity we do not explore this. See the comment for
:c:func:`!__pte_offset_map_lock` for more details.
When modifying data in ranges we typically only wish to allocate higher page
tables as necessary, using these locks to avoid races or overwriting anything,
and set/clear data at the PTE level as required (for instance when page faulting
or zapping).
A typical pattern taken when traversing page table entries to install a new
mapping is to optimistically determine whether the page table entry in the table
above is empty, if so, only then acquiring the page table lock and checking
again to see if it was allocated underneath us.
This allows for a traversal with page table locks only being taken when
required. An example of this is :c:func:`!__pud_alloc`.
At the leaf page table, that is the PTE, we can't entirely rely on this pattern
as we have separate PMD and PTE locks and a THP collapse for instance might have
eliminated the PMD entry as well as the PTE from under us.
This is why :c:func:`!__pte_offset_map_lock` locklessly retrieves the PMD entry
for the PTE, carefully checking it is as expected, before acquiring the
PTE-specific lock, and then *again* checking that the PMD entry is as expected.
If a THP collapse (or similar) were to occur then the lock on both pages would
be acquired, so we can ensure this is prevented while the PTE lock is held.
Installing entries this way ensures mutual exclusion on write.
Page table freeing
^^^^^^^^^^^^^^^^^^
Tearing down page tables themselves is something that requires significant
care. There must be no way that page tables designated for removal can be
traversed or referenced by concurrent tasks.
It is insufficient to simply hold an mmap write lock and VMA lock (which will
prevent racing faults, and rmap operations), as a file-backed mapping can be
truncated under the :c:struct:`!struct address_space->i_mmap_rwsem` alone.
As a result, no VMA which can be accessed via the reverse mapping (either
through the :c:struct:`!struct anon_vma->rb_root` or the :c:member:`!struct
address_space->i_mmap` interval trees) can have its page tables torn down.
The operation is typically performed via :c:func:`!free_pgtables`, which assumes
either the mmap write lock has been taken (as specified by its
:c:member:`!mm_wr_locked` parameter), or that the VMA is already unreachable.
It carefully removes the VMA from all reverse mappings, however it's important
that no new ones overlap these or any route remain to permit access to addresses
within the range whose page tables are being torn down.
Additionally, it assumes that a zap has already been performed and steps have
been taken to ensure that no further page table entries can be installed between
the zap and the invocation of :c:func:`!free_pgtables`.
Since it is assumed that all such steps have been taken, page table entries are
cleared without page table locks (in the :c:func:`!pgd_clear`, :c:func:`!p4d_clear`,
:c:func:`!pud_clear`, and :c:func:`!pmd_clear` functions.
.. note:: It is possible for leaf page tables to be torn down independent of
the page tables above it as is done by
:c:func:`!retract_page_tables`, which is performed under the i_mmap
read lock, PMD, and PTE page table locks, without this level of care.
Page table moving
^^^^^^^^^^^^^^^^^
Some functions manipulate page table levels above PMD (that is PUD, P4D and PGD
page tables). Most notable of these is :c:func:`!mremap`, which is capable of
moving higher level page tables.
In these instances, it is required that **all** locks are taken, that is
the mmap lock, the VMA lock and the relevant rmap locks.
You can observe this in the :c:func:`!mremap` implementation in the functions
:c:func:`!take_rmap_locks` and :c:func:`!drop_rmap_locks` which perform the rmap
side of lock acquisition, invoked ultimately by :c:func:`!move_page_tables`.
VMA lock internals
------------------
Overview
^^^^^^^^
VMA read locking is entirely optimistic - if the lock is contended or a competing
write has started, then we do not obtain a read lock.
A VMA **read** lock is obtained by :c:func:`!lock_vma_under_rcu`, which first
calls :c:func:`!rcu_read_lock` to ensure that the VMA is looked up in an RCU
critical section, then attempts to VMA lock it via :c:func:`!vma_start_read`,
before releasing the RCU lock via :c:func:`!rcu_read_unlock`.
VMA read locks hold the read lock on the :c:member:`!vma->vm_lock` semaphore for
their duration and the caller of :c:func:`!lock_vma_under_rcu` must release it
via :c:func:`!vma_end_read`.
VMA **write** locks are acquired via :c:func:`!vma_start_write` in instances where a
VMA is about to be modified, unlike :c:func:`!vma_start_read` the lock is always
acquired. An mmap write lock **must** be held for the duration of the VMA write
lock, releasing or downgrading the mmap write lock also releases the VMA write
lock so there is no :c:func:`!vma_end_write` function.
Note that a semaphore write lock is not held across a VMA lock. Rather, a
sequence number is used for serialisation, and the write semaphore is only
acquired at the point of write lock to update this.
This ensures the semantics we require - VMA write locks provide exclusive write
access to the VMA.
Implementation details
^^^^^^^^^^^^^^^^^^^^^^
The VMA lock mechanism is designed to be a lightweight means of avoiding the use
of the heavily contended mmap lock. It is implemented using a combination of a
read/write semaphore and sequence numbers belonging to the containing
:c:struct:`!struct mm_struct` and the VMA.
Read locks are acquired via :c:func:`!vma_start_read`, which is an optimistic
operation, i.e. it tries to acquire a read lock but returns false if it is
unable to do so. At the end of the read operation, :c:func:`!vma_end_read` is
called to release the VMA read lock.
Invoking :c:func:`!vma_start_read` requires that :c:func:`!rcu_read_lock` has
been called first, establishing that we are in an RCU critical section upon VMA
read lock acquisition. Once acquired, the RCU lock can be released as it is only
required for lookup. This is abstracted by :c:func:`!lock_vma_under_rcu` which
is the interface a user should use.
Writing requires the mmap to be write-locked and the VMA lock to be acquired via
:c:func:`!vma_start_write`, however the write lock is released by the termination or
downgrade of the mmap write lock so no :c:func:`!vma_end_write` is required.
All this is achieved by the use of per-mm and per-VMA sequence counts, which are
used in order to reduce complexity, especially for operations which write-lock
multiple VMAs at once.
If the mm sequence count, :c:member:`!mm->mm_lock_seq` is equal to the VMA
sequence count :c:member:`!vma->vm_lock_seq` then the VMA is write-locked. If
they differ, then it is not.
Each time the mmap write lock is released in :c:func:`!mmap_write_unlock` or
:c:func:`!mmap_write_downgrade`, :c:func:`!vma_end_write_all` is invoked which
also increments :c:member:`!mm->mm_lock_seq` via
:c:func:`!mm_lock_seqcount_end`.
This way, we ensure that, regardless of the VMA's sequence number, a write lock
is never incorrectly indicated and that when we release an mmap write lock we
efficiently release **all** VMA write locks contained within the mmap at the
same time.
Since the mmap write lock is exclusive against others who hold it, the automatic
release of any VMA locks on its release makes sense, as you would never want to
keep VMAs locked across entirely separate write operations. It also maintains
correct lock ordering.
Each time a VMA read lock is acquired, we acquire a read lock on the
:c:member:`!vma->vm_lock` read/write semaphore and hold it, while checking that
the sequence count of the VMA does not match that of the mm.
If it does, the read lock fails. If it does not, we hold the lock, excluding
writers, but permitting other readers, who will also obtain this lock under RCU.
Importantly, maple tree operations performed in :c:func:`!lock_vma_under_rcu`
are also RCU safe, so the whole read lock operation is guaranteed to function
correctly.
On the write side, we acquire a write lock on the :c:member:`!vma->vm_lock`
read/write semaphore, before setting the VMA's sequence number under this lock,
also simultaneously holding the mmap write lock.
This way, if any read locks are in effect, :c:func:`!vma_start_write` will sleep
until these are finished and mutual exclusion is achieved.
After setting the VMA's sequence number, the lock is released, avoiding
complexity with a long-term held write lock.
This clever combination of a read/write semaphore and sequence count allows for
fast RCU-based per-VMA lock acquisition (especially on page fault, though
utilised elsewhere) with minimal complexity around lock ordering.
mmap write lock downgrading
---------------------------
When an mmap write lock is held one has exclusive access to resources within the
mmap (with the usual caveats about requiring VMA write locks to avoid races with
tasks holding VMA read locks).
It is then possible to **downgrade** from a write lock to a read lock via
:c:func:`!mmap_write_downgrade` which, similar to :c:func:`!mmap_write_unlock`,
implicitly terminates all VMA write locks via :c:func:`!vma_end_write_all`, but
importantly does not relinquish the mmap lock while downgrading, therefore
keeping the locked virtual address space stable.
An interesting consequence of this is that downgraded locks are exclusive
against any other task possessing a downgraded lock (since a racing task would
have to acquire a write lock first to downgrade it, and the downgraded lock
prevents a new write lock from being obtained until the original lock is
released).
For clarity, we map read (R)/downgraded write (D)/write (W) locks against one
another showing which locks exclude the others:
.. list-table:: Lock exclusivity
:widths: 5 5 5 5
:header-rows: 1
:stub-columns: 1
* -
- R
- D
- W
* - R
- N
- N
- Y
* - D
- N
- Y
- Y
* - W
- Y
- Y
- Y
Here a Y indicates the locks in the matching row/column are mutually exclusive,
and N indicates that they are not.
Stack expansion
---------------
Stack expansion throws up additional complexities in that we cannot permit there
to be racing page faults, as a result we invoke :c:func:`!vma_start_write` to
prevent this in :c:func:`!expand_downwards` or :c:func:`!expand_upwards`.

View File

@@ -22,65 +22,67 @@ definitions:
doc: unused event
-
name: created
doc:
token, family, saddr4 | saddr6, daddr4 | daddr6, sport, dport
doc: >-
A new MPTCP connection has been created. It is the good time to
allocate memory and send ADD_ADDR if needed. Depending on the
traffic-patterns it can take a long time until the
MPTCP_EVENT_ESTABLISHED is sent.
Attributes: token, family, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, server-side.
-
name: established
doc:
token, family, saddr4 | saddr6, daddr4 | daddr6, sport, dport
doc: >-
A MPTCP connection is established (can start new subflows).
Attributes: token, family, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, server-side.
-
name: closed
doc:
token
doc: >-
A MPTCP connection has stopped.
Attribute: token.
-
name: announced
value: 6
doc:
token, rem_id, family, daddr4 | daddr6 [, dport]
doc: >-
A new address has been announced by the peer.
Attributes: token, rem_id, family, daddr4 | daddr6 [, dport].
-
name: removed
doc:
token, rem_id
doc: >-
An address has been lost by the peer.
Attributes: token, rem_id.
-
name: sub-established
value: 10
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
A new subflow has been established. 'error' should not be set.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: sub-closed
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
A subflow has been closed. An error (copy of sk_err) could be set if an
error has been detected for this subflow.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: sub-priority
value: 13
doc:
token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 | daddr6, sport,
dport, backup, if_idx [, error]
doc: >-
The priority of a subflow has changed. 'error' should not be set.
Attributes: token, family, loc_id, rem_id, saddr4 | saddr6, daddr4 |
daddr6, sport, dport, backup, if_idx [, error].
-
name: listener-created
value: 15
doc:
family, sport, saddr4 | saddr6
doc: >-
A new PM listener is created.
Attributes: family, sport, saddr4 | saddr6.
-
name: listener-closed
doc:
family, sport, saddr4 | saddr6
doc: >-
A PM listener is closed.
Attributes: family, sport, saddr4 | saddr6.
attribute-sets:
-
@@ -306,8 +308,8 @@ operations:
attributes:
- addr
-
name: flush-addrs
doc: flush addresses
name: flush-addrs
doc: Flush addresses
attribute-set: endpoint
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@@ -351,7 +353,7 @@ operations:
- addr-remote
-
name: announce
doc: announce new sf
doc: Announce new address
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@@ -362,7 +364,7 @@ operations:
- token
-
name: remove
doc: announce removal
doc: Announce removal
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@@ -373,7 +375,7 @@ operations:
- loc-id
-
name: subflow-create
doc: todo
doc: Create subflow
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]
@@ -385,7 +387,7 @@ operations:
- addr-remote
-
name: subflow-destroy
doc: todo
doc: Destroy subflow
attribute-set: attr
dont-validate: [ strict ]
flags: [ uns-admin-perm ]

View File

@@ -6,16 +6,17 @@ Bare UDP Tunnelling Module Documentation
There are various L3 encapsulation standards using UDP being discussed to
leverage the UDP based load balancing capability of different networks.
MPLSoUDP (__ https://tools.ietf.org/html/rfc7510) is one among them.
MPLSoUDP (https://tools.ietf.org/html/rfc7510) is one among them.
The Bareudp tunnel module provides a generic L3 encapsulation support for
tunnelling different L3 protocols like MPLS, IP, NSH etc. inside a UDP tunnel.
Special Handling
----------------
The bareudp device supports special handling for MPLS & IP as they can have
multiple ethertypes.
MPLS procotcol can have ethertypes ETH_P_MPLS_UC (unicast) & ETH_P_MPLS_MC (multicast).
The MPLS protocol can have ethertypes ETH_P_MPLS_UC (unicast) & ETH_P_MPLS_MC (multicast).
IP protocol can have ethertypes ETH_P_IP (v4) & ETH_P_IPV6 (v6).
This special handling can be enabled only for ethertypes ETH_P_IP & ETH_P_MPLS_UC
with a flag called multiproto mode.
@@ -52,7 +53,7 @@ be enabled explicitly with the "multiproto" flag.
3) Device Usage
The bareudp device could be used along with OVS or flower filter in TC.
The OVS or TC flower layer must set the tunnel information in SKB dst field before
sending packet buffer to the bareudp device for transmission. On reception the
bareudp device extracts and stores the tunnel information in SKB dst field before
The OVS or TC flower layer must set the tunnel information in the SKB dst field before
sending the packet buffer to the bareudp device for transmission. On reception, the
bareUDP device extracts and stores the tunnel information in the SKB dst field before
passing the packet buffer to the network stack.

View File

@@ -2170,6 +2170,12 @@ nexthop_compat_mode - BOOLEAN
understands the new API, this sysctl can be disabled to achieve full
performance benefits of the new API by disabling the nexthop expansion
and extraneous notifications.
Note that as a backward-compatible mode, dumping of modern features
might be incomplete or wrong. For example, resilient groups will not be
shown as such, but rather as just a list of next hops. Also weights that
do not fit into 8 bits will show incorrectly.
Default: true (backward compat mode)
fib_notify_on_flag_change - INTEGER

View File

@@ -347,7 +347,9 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
`int pm_runtime_resume_and_get(struct device *dev);`
- run pm_runtime_resume(dev) and if successful, increment the device's
usage counter; return the result of pm_runtime_resume
usage counter; returns 0 on success (whether or not the device's
runtime PM status was already 'active') or the error code from
pm_runtime_resume() on failure.
`int pm_request_idle(struct device *dev);`
- submit a request to execute the subsystem-level idle callback for the

View File

@@ -43,7 +43,7 @@ Tenete presente che per via dell'espansione delle macro questo argomento deve
essere un simbolo di preprocessore. Per esempio per esportare il
simbolo ``usb_stor_suspend`` nello spazio dei nomi ``USB_STORAGE`` usate::
EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);
EXPORT_SYMBOL_NS(usb_stor_suspend, "USB_STORAGE");
Di conseguenza, nella tabella dei simboli del kernel ci sarà una voce
rappresentata dalla struttura ``kernel_symbol`` che avrà il campo
@@ -69,7 +69,7 @@ Per esempio per esportare tutti i simboli definiti in usb-common nello spazio
dei nomi USB_COMMON, si può aggiungere la seguente linea in
drivers/usb/common/Makefile::
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE=USB_COMMON
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE='"USB_COMMON"'
Questo cambierà tutte le macro EXPORT_SYMBOL() ed EXPORT_SYMBOL_GPL(). Invece,
un simbolo esportato con EXPORT_SYMBOL_NS() non verrà cambiato e il simbolo
@@ -79,7 +79,7 @@ Una seconda possibilità è quella di definire il simbolo di preprocessore
direttamente nei file da compilare. L'esempio precedente diventerebbe::
#undef DEFAULT_SYMBOL_NAMESPACE
#define DEFAULT_SYMBOL_NAMESPACE USB_COMMON
#define DEFAULT_SYMBOL_NAMESPACE "USB_COMMON"
Questo va messo prima di un qualsiasi uso di EXPORT_SYMBOL.
@@ -94,7 +94,7 @@ dei nomi che contiene i simboli desiderati. Per esempio un modulo che
usa il simbolo usb_stor_suspend deve importare lo spazio dei nomi
USB_STORAGE usando la seguente dichiarazione::
MODULE_IMPORT_NS(USB_STORAGE);
MODULE_IMPORT_NS("USB_STORAGE");
Questo creerà un'etichetta ``modinfo`` per ogni spazio dei nomi
importato. Un risvolto di questo fatto è che gli spazi dei

View File

@@ -48,7 +48,7 @@
要是一个预处理器符号。例如,要把符号 ``usb_stor_suspend`` 导出到命名空间 ``USB_STORAGE``
请使用::
EXPORT_SYMBOL_NS(usb_stor_suspend, USB_STORAGE);
EXPORT_SYMBOL_NS(usb_stor_suspend, "USB_STORAGE");
相应的 ksymtab 条目结构体 ``kernel_symbol`` 将有相应的成员 ``命名空间`` 集。
导出时未指明命名空间的符号将指向 ``NULL`` 。如果没有定义命名空间,则默认没有。
@@ -66,7 +66,7 @@
子系统的 ``Makefile`` 中定义默认命名空间。例如如果要将usb-common中定义的所有符号导
出到USB_COMMON命名空间可以在drivers/usb/common/Makefile中添加这样一行::
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE=USB_COMMON
ccflags-y += -DDEFAULT_SYMBOL_NAMESPACE='"USB_COMMON"'
这将影响所有 EXPORT_SYMBOL() 和 EXPORT_SYMBOL_GPL() 语句。当这个定义存在时,
用EXPORT_SYMBOL_NS()导出的符号仍然会被导出到作为命名空间参数传递的命名空间中,
@@ -76,7 +76,7 @@
::
#undef DEFAULT_SYMBOL_NAMESPACE
#define DEFAULT_SYMBOL_NAMESPACE USB_COMMON
#define DEFAULT_SYMBOL_NAMESPACE "USB_COMMON"
应置于相关编译单元中任何 EXPORT_SYMBOL 宏之前
@@ -88,7 +88,7 @@
表示它所使用的命名空间的符号。例如一个使用usb_stor_suspend符号的
模块需要使用如下语句导入命名空间USB_STORAGE::
MODULE_IMPORT_NS(USB_STORAGE);
MODULE_IMPORT_NS("USB_STORAGE");
这将在模块中为每个导入的命名空间创建一个 ``modinfo`` 标签。这也顺带
使得可以用modinfo检查模块已导入的命名空间::

View File

@@ -120,16 +120,6 @@ coh901327_wdt:
-------------------------------------------------
cpu5wdt:
port:
base address of watchdog card, default is 0x91
verbose:
be verbose, default is 0 (no)
ticks:
count down ticks, default is 10000
-------------------------------------------------
cpwd:
wd0_timeout:
Default watchdog0 timeout in 1/10secs

View File

@@ -1797,7 +1797,6 @@ F: include/uapi/linux/if_arcnet.h
ARM AND ARM64 SoC SUB-ARCHITECTURES (COMMON PARTS)
M: Arnd Bergmann <arnd@arndb.de>
M: Olof Johansson <olof@lixom.net>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: soc@lists.linux.dev
S: Maintained
@@ -3376,6 +3375,8 @@ S: Maintained
T: git git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux.git
F: Documentation/arch/arm64/
F: arch/arm64/
F: drivers/virt/coco/arm-cca-guest/
F: drivers/virt/coco/pkvm-guest/
F: tools/testing/selftests/arm64/
X: arch/arm64/boot/dts/
@@ -3606,6 +3607,7 @@ F: drivers/phy/qualcomm/phy-ath79-usb.c
ATHEROS ATH GENERIC UTILITIES
M: Kalle Valo <kvalo@kernel.org>
M: Jeff Johnson <jjohnson@kernel.org>
L: linux-wireless@vger.kernel.org
S: Supported
F: drivers/net/wireless/ath/*
@@ -3891,7 +3893,7 @@ W: http://www.baycom.org/~tom/ham/ham.html
F: drivers/net/hamradio/baycom*
BCACHE (BLOCK LAYER CACHE)
M: Coly Li <colyli@suse.de>
M: Coly Li <colyli@kernel.org>
M: Kent Overstreet <kent.overstreet@linux.dev>
L: linux-bcache@vger.kernel.org
S: Maintained
@@ -7345,7 +7347,7 @@ F: drivers/gpu/drm/panel/panel-novatek-nt36672a.c
DRM DRIVER FOR NVIDIA GEFORCE/QUADRO GPUS
M: Karol Herbst <kherbst@redhat.com>
M: Lyude Paul <lyude@redhat.com>
M: Danilo Krummrich <dakr@redhat.com>
M: Danilo Krummrich <dakr@kernel.org>
L: dri-devel@lists.freedesktop.org
L: nouveau@lists.freedesktop.org
S: Supported
@@ -8451,7 +8453,7 @@ F: include/video/s1d13xxxfb.h
EROFS FILE SYSTEM
M: Gao Xiang <xiang@kernel.org>
M: Chao Yu <chao@kernel.org>
R: Yue Hu <huyue2@coolpad.com>
R: Yue Hu <zbestahu@gmail.com>
R: Jeffle Xu <jefflexu@linux.alibaba.com>
R: Sandeep Dhavale <dhavale@google.com>
L: linux-erofs@lists.ozlabs.org
@@ -8922,7 +8924,7 @@ F: include/linux/arm_ffa.h
FIRMWARE LOADER (request_firmware)
M: Luis Chamberlain <mcgrof@kernel.org>
M: Russ Weight <russ.weight@linux.dev>
M: Danilo Krummrich <dakr@redhat.com>
M: Danilo Krummrich <dakr@kernel.org>
L: linux-kernel@vger.kernel.org
S: Maintained
F: Documentation/firmware_class/
@@ -14754,7 +14756,7 @@ F: drivers/memory/mtk-smi.c
F: include/soc/mediatek/smi.h
MEDIATEK SWITCH DRIVER
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Daniel Golle <daniel@makrotopia.org>
M: DENG Qingfang <dqfext@gmail.com>
M: Sean Wang <sean.wang@mediatek.com>
@@ -15343,7 +15345,7 @@ M: Daniel Machon <daniel.machon@microchip.com>
M: UNGLinuxDriver@microchip.com
L: netdev@vger.kernel.org
S: Maintained
F: drivers/net/ethernet/microchip/lan969x/*
F: drivers/net/ethernet/microchip/sparx5/lan969x/*
MICROCHIP LCDFB DRIVER
M: Nicolas Ferre <nicolas.ferre@microchip.com>
@@ -16267,6 +16269,7 @@ F: Documentation/devicetree/bindings/net/
F: Documentation/networking/net_cachelines/net_device.rst
F: drivers/connector/
F: drivers/net/
F: drivers/ptp/
F: include/dt-bindings/net/
F: include/linux/cn_proc.h
F: include/linux/etherdevice.h
@@ -16334,6 +16337,7 @@ F: Documentation/networking/
F: Documentation/networking/net_cachelines/
F: Documentation/process/maintainer-netdev.rst
F: Documentation/userspace-api/netlink/
F: include/linux/ethtool.h
F: include/linux/framer/framer-provider.h
F: include/linux/framer/framer.h
F: include/linux/in.h
@@ -16348,6 +16352,7 @@ F: include/linux/rtnetlink.h
F: include/linux/seq_file_net.h
F: include/linux/skbuff*
F: include/net/
F: include/uapi/linux/ethtool.h
F: include/uapi/linux/genetlink.h
F: include/uapi/linux/hsr_netlink.h
F: include/uapi/linux/in.h
@@ -18455,7 +18460,7 @@ F: Documentation/devicetree/bindings/pinctrl/mediatek,mt8183-pinctrl.yaml
F: drivers/pinctrl/mediatek/
PIN CONTROLLER - MEDIATEK MIPS
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Sergio Paracuellos <sergio.paracuellos@gmail.com>
L: linux-mediatek@lists.infradead.org (moderated for non-subscribers)
L: linux-mips@vger.kernel.org
@@ -19499,7 +19504,7 @@ S: Maintained
F: arch/mips/ralink
RALINK MT7621 MIPS ARCHITECTURE
M: Arınç ÜNAL <arinc.unal@arinc9.com>
M: Chester A. Unal <chester.a.unal@arinc9.com>
M: Sergio Paracuellos <sergio.paracuellos@gmail.com>
L: linux-mips@vger.kernel.org
S: Maintained
@@ -20902,6 +20907,8 @@ F: kernel/sched/
SCHEDULER - SCHED_EXT
R: Tejun Heo <tj@kernel.org>
R: David Vernet <void@manifault.com>
R: Andrea Righi <arighi@nvidia.com>
R: Changwoo Min <changwoo@igalia.com>
L: linux-kernel@vger.kernel.org
S: Maintained
W: https://github.com/sched-ext/scx
@@ -22407,7 +22414,7 @@ F: drivers/char/hw_random/jh7110-trng.c
STARFIVE WATCHDOG DRIVER
M: Xingyu Wu <xingyu.wu@starfivetech.com>
M: Samin Guo <samin.guo@starfivetech.com>
M: Ziv Xu <ziv.xu@starfivetech.com>
S: Supported
F: Documentation/devicetree/bindings/watchdog/starfive*
F: drivers/watchdog/starfive-wdt.c

View File

@@ -2,7 +2,7 @@
VERSION = 6
PATCHLEVEL = 13
SUBLEVEL = 0
EXTRAVERSION = -rc1
EXTRAVERSION = -rc6
NAME = Baby Opossum Posse
# *DOCUMENTATION*

View File

@@ -6,6 +6,7 @@
config ARC
def_bool y
select ARC_TIMERS
select ARCH_HAS_CPU_CACHE_ALIASING
select ARCH_HAS_CACHE_LINE_SIZE
select ARCH_HAS_DEBUG_VM_PGTABLE
select ARCH_HAS_DMA_PREP_COHERENT
@@ -297,7 +298,6 @@ config ARC_PAGE_SIZE_16K
config ARC_PAGE_SIZE_4K
bool "4KB"
select HAVE_PAGE_SIZE_4KB
depends on ARC_MMU_V3 || ARC_MMU_V4
endchoice
@@ -474,7 +474,8 @@ config HIGHMEM
config ARC_HAS_PAE40
bool "Support for the 40-bit Physical Address Extension"
depends on ISA_ARCV2
depends on ARC_MMU_V4
depends on !ARC_PAGE_SIZE_4K
select HIGHMEM
select PHYS_ADDR_T_64BIT
help

View File

@@ -6,7 +6,7 @@
KBUILD_DEFCONFIG := haps_hs_smp_defconfig
ifeq ($(CROSS_COMPILE),)
CROSS_COMPILE := $(call cc-cross-prefix, arc-linux- arceb-linux-)
CROSS_COMPILE := $(call cc-cross-prefix, arc-linux- arceb-linux- arc-linux-gnu-)
endif
cflags-y += -fno-common -pipe -fno-builtin -mmedium-calls -D__linux__

View File

@@ -54,7 +54,7 @@ ictl_intc: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <30>;
ngpios = <30>;
reg = <0>;
interrupt-controller;
#interrupt-cells = <2>;

View File

@@ -62,7 +62,7 @@ ictl_intc: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <30>;
ngpios = <30>;
reg = <0>;
interrupt-controller;
#interrupt-cells = <2>;

View File

@@ -69,7 +69,7 @@ ictl_intc: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <30>;
ngpios = <30>;
reg = <0>;
interrupt-controller;
#interrupt-cells = <2>;

View File

@@ -250,7 +250,7 @@ gpio0_banka: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <32>;
ngpios = <32>;
reg = <0>;
};
@@ -258,7 +258,7 @@ gpio0_bankb: gpio-controller@1 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <8>;
ngpios = <8>;
reg = <1>;
};
@@ -266,7 +266,7 @@ gpio0_bankc: gpio-controller@2 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <8>;
ngpios = <8>;
reg = <2>;
};
};
@@ -281,7 +281,7 @@ gpio1_banka: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <30>;
ngpios = <30>;
reg = <0>;
};
@@ -289,7 +289,7 @@ gpio1_bankb: gpio-controller@1 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <10>;
ngpios = <10>;
reg = <1>;
};
@@ -297,7 +297,7 @@ gpio1_bankc: gpio-controller@2 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <8>;
ngpios = <8>;
reg = <2>;
};
};

View File

@@ -308,7 +308,7 @@ gpio_port_a: gpio-controller@0 {
compatible = "snps,dw-apb-gpio-port";
gpio-controller;
#gpio-cells = <2>;
snps,nr-gpios = <24>;
ngpios = <24>;
reg = <0>;
};
};

View File

@@ -146,7 +146,7 @@
#ifndef __ASSEMBLY__
#include <soc/arc/aux.h>
#include <soc/arc/arc_aux.h>
/* Helpers */
#define TO_KB(bytes) ((bytes) >> 10)

View File

@@ -0,0 +1,8 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ASM_ARC_CACHETYPE_H
#define __ASM_ARC_CACHETYPE_H
#define cpu_dcache_is_aliasing() false
#define cpu_icache_is_aliasing() true
#endif

View File

@@ -48,7 +48,7 @@
\
switch(sizeof((_p_))) { \
case 1: \
_prev_ = (__typeof__(*(ptr)))cmpxchg_emu_u8((volatile u8 *)_p_, (uintptr_t)_o_, (uintptr_t)_n_); \
_prev_ = (__typeof__(*(ptr)))cmpxchg_emu_u8((volatile u8 *__force)_p_, (uintptr_t)_o_, (uintptr_t)_n_); \
break; \
case 4: \
_prev_ = __cmpxchg(_p_, _o_, _n_); \

View File

@@ -9,7 +9,7 @@
#ifndef _ASM_ARC_MMU_ARCV2_H
#define _ASM_ARC_MMU_ARCV2_H
#include <soc/arc/aux.h>
#include <soc/arc/arc_aux.h>
/*
* TLB Management regs

View File

@@ -2916,7 +2916,7 @@ bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
disp = get_displacement(curr_off + addendum, targ_off);
if (ARC_CC_AL)
if (cond == ARC_CC_AL)
return is_valid_far_disp(disp);
else
return is_valid_near_disp(disp);

View File

@@ -516,7 +516,7 @@ static void locomo_remove(struct platform_device *dev)
*/
static struct platform_driver locomo_device_driver = {
.probe = locomo_probe,
.remove_new = locomo_remove,
.remove = locomo_remove,
#ifdef CONFIG_PM
.suspend = locomo_suspend,
.resume = locomo_resume,

View File

@@ -1154,7 +1154,7 @@ static struct dev_pm_ops sa1111_pm_ops = {
*/
static struct platform_driver sa1111_device_driver = {
.probe = sa1111_probe,
.remove_new = sa1111_remove,
.remove = sa1111_remove,
.driver = {
.name = "sa1111",
.pm = &sa1111_pm_ops,

View File

@@ -250,7 +250,7 @@ static void scoop_remove(struct platform_device *pdev)
static struct platform_driver scoop_driver = {
.probe = scoop_probe,
.remove_new = scoop_remove,
.remove = scoop_remove,
.suspend = scoop_suspend,
.resume = scoop_resume,
.driver = {

View File

@@ -6,6 +6,7 @@ menuconfig ARCH_MXC
select CLKSRC_IMX_GPT
select GENERIC_IRQ_CHIP
select GPIOLIB
select PINCTRL
select PM_OPP if PM
select SOC_BUS
select SRAM

View File

@@ -596,7 +596,7 @@ static struct platform_driver imx_mmdc_driver = {
.of_match_table = imx_mmdc_dt_ids,
},
.probe = imx_mmdc_probe,
.remove_new = imx_mmdc_remove,
.remove = imx_mmdc_remove,
};
static int __init imx_mmdc_init(void)

View File

@@ -832,7 +832,7 @@ static void omap_system_dma_remove(struct platform_device *pdev)
static struct platform_driver omap_system_dma_driver = {
.probe = omap_system_dma_probe,
.remove_new = omap_system_dma_remove,
.remove = omap_system_dma_remove,
.driver = {
.name = "omap_dma_system"
},

View File

@@ -919,7 +919,7 @@ static void sharpsl_pm_remove(struct platform_device *pdev)
static struct platform_driver sharpsl_pm_driver = {
.probe = sharpsl_pm_probe,
.remove_new = sharpsl_pm_remove,
.remove = sharpsl_pm_remove,
.suspend = sharpsl_pm_suspend,
.resume = sharpsl_pm_resume,
.driver = {

View File

@@ -188,7 +188,7 @@ static void jornada_ssp_remove(struct platform_device *dev)
struct platform_driver jornadassp_driver = {
.probe = jornada_ssp_probe,
.remove_new = jornada_ssp_remove,
.remove = jornada_ssp_remove,
.driver = {
.name = "jornada_ssp",
},

View File

@@ -423,7 +423,7 @@ static const struct dev_pm_ops neponset_pm_ops = {
static struct platform_driver neponset_device_driver = {
.probe = neponset_probe,
.remove_new = neponset_remove,
.remove = neponset_remove,
.driver = {
.name = "neponset",
.pm = PM_OPS,

View File

@@ -233,7 +233,7 @@ pci: pci@40000000 {
#interrupt-cells = <0x1>;
compatible = "pci-host-ecam-generic";
device_type = "pci";
bus-range = <0x0 0x1>;
bus-range = <0x0 0xff>;
reg = <0x0 0x40000000 0x0 0x10000000>;
ranges = <0x2000000 0x0 0x50000000 0x0 0x50000000 0x0 0x10000000>;
interrupt-map = <0 0 0 1 &gic 0 0 GIC_SPI 168 IRQ_TYPE_LEVEL_HIGH>,

View File

@@ -67,7 +67,7 @@ cpu0: cpu@0 {
l2_cache_l0: l2-cache-l0 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@@ -91,7 +91,7 @@ cpu1: cpu@1 {
l2_cache_l1: l2-cache-l1 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@@ -115,7 +115,7 @@ cpu2: cpu@2 {
l2_cache_l2: l2-cache-l2 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;
@@ -139,7 +139,7 @@ cpu3: cpu@3 {
l2_cache_l3: l2-cache-l3 {
compatible = "cache";
cache-size = <0x80000>;
cache-line-size = <128>;
cache-line-size = <64>;
cache-sets = <1024>; //512KiB(size)/64(line-size)=8192ways/8-way set
cache-level = <2>;
cache-unified;

View File

@@ -18,7 +18,7 @@
#include "aes-ce-setkey.h"
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
MODULE_IMPORT_NS("CRYPTO_INTERNAL");
static int num_rounds(struct crypto_aes_ctx *ctx)
{

View File

@@ -1048,7 +1048,7 @@ static int __init aes_init(void)
#ifdef USE_V8_CRYPTO_EXTENSIONS
module_cpu_feature_match(AES, aes_init);
EXPORT_SYMBOL_NS(ce_aes_mac_update, CRYPTO_INTERNAL);
EXPORT_SYMBOL_NS(ce_aes_mac_update, "CRYPTO_INTERNAL");
#else
module_init(aes_init);
EXPORT_SYMBOL(neon_aes_ecb_encrypt);

View File

@@ -44,6 +44,8 @@ cpucap_is_possible(const unsigned int cap)
return IS_ENABLED(CONFIG_ARM64_TLB_RANGE);
case ARM64_HAS_S1POE:
return IS_ENABLED(CONFIG_ARM64_POE);
case ARM64_HAS_GCS:
return IS_ENABLED(CONFIG_ARM64_GCS);
case ARM64_UNMAP_KERNEL_AT_EL0:
return IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0);
case ARM64_WORKAROUND_843419:

View File

@@ -847,8 +847,7 @@ static inline bool system_supports_poe(void)
static inline bool system_supports_gcs(void)
{
return IS_ENABLED(CONFIG_ARM64_GCS) &&
alternative_has_cap_unlikely(ARM64_HAS_GCS);
return alternative_has_cap_unlikely(ARM64_HAS_GCS);
}
static inline bool system_supports_haft(void)

View File

@@ -87,7 +87,7 @@
1 << PMSCR_EL2_PA_SHIFT)
msr_s SYS_PMSCR_EL2, x0 // addresses and physical counter
.Lskip_spe_el2_\@:
mov x0, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
mov x0, #MDCR_EL2_E2PB_MASK
orr x2, x2, x0 // If we don't have VHE, then
// use EL1&0 translation.
@@ -100,7 +100,7 @@
and x0, x0, TRBIDR_EL1_P
cbnz x0, .Lskip_trace_\@ // If TRBE is available at EL2
mov x0, #(MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT)
mov x0, #MDCR_EL2_E2TB_MASK
orr x2, x2, x0 // allow the EL1&0 translation
// to own it.

View File

@@ -7,6 +7,7 @@
#ifndef BUILD_VDSO
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <linux/types.h>
@@ -44,7 +45,7 @@ static inline unsigned long arch_calc_vm_flag_bits(struct file *file,
if (system_supports_mte()) {
if (flags & (MAP_ANONYMOUS | MAP_HUGETLB))
return VM_MTE_ALLOWED;
if (shmem_file(file))
if (shmem_file(file) || is_file_hugepages(file))
return VM_MTE_ALLOWED;
}

View File

@@ -114,8 +114,8 @@ SYM_CODE_START_LOCAL(__finalise_el2)
// Use EL2 translations for SPE & TRBE and disable access from EL1
mrs x0, mdcr_el2
bic x0, x0, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
bic x0, x0, #(MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT)
bic x0, x0, #MDCR_EL2_E2PB_MASK
bic x0, x0, #MDCR_EL2_E2TB_MASK
msr mdcr_el2, x0
// Transfer the MM state from EL1 to EL2

View File

@@ -30,20 +30,17 @@ static bool is_image_text(unsigned long addr)
static void __kprobes *patch_map(void *addr, int fixmap)
{
unsigned long uintaddr = (uintptr_t) addr;
bool image = is_image_text(uintaddr);
struct page *page;
phys_addr_t phys;
if (image)
page = phys_to_page(__pa_symbol(addr));
else if (IS_ENABLED(CONFIG_EXECMEM))
page = vmalloc_to_page(addr);
else
return addr;
if (is_image_text((unsigned long)addr)) {
phys = __pa_symbol(addr);
} else {
struct page *page = vmalloc_to_page(addr);
BUG_ON(!page);
phys = page_to_phys(page) + offset_in_page(addr);
}
BUG_ON(!page);
return (void *)set_fixmap_offset(fixmap, page_to_phys(page) +
(uintaddr & ~PAGE_MASK));
return (void *)set_fixmap_offset(fixmap, phys);
}
static void __kprobes patch_unmap(int fixmap)

View File

@@ -720,6 +720,8 @@ static int fpmr_set(struct task_struct *target, const struct user_regset *regset
if (!system_supports_fpmr())
return -EINVAL;
fpmr = target->thread.uw.fpmr;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpmr, 0, count);
if (ret)
return ret;
@@ -1427,7 +1429,7 @@ static int tagged_addr_ctrl_get(struct task_struct *target,
{
long ctrl = get_tagged_addr_ctrl(target);
if (IS_ERR_VALUE(ctrl))
if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
return ctrl;
return membuf_write(&to, &ctrl, sizeof(ctrl));
@@ -1441,6 +1443,10 @@ static int tagged_addr_ctrl_set(struct task_struct *target, const struct
int ret;
long ctrl;
ctrl = get_tagged_addr_ctrl(target);
if (WARN_ON_ONCE(IS_ERR_VALUE(ctrl)))
return ctrl;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
if (ret)
return ret;
@@ -1472,6 +1478,8 @@ static int poe_set(struct task_struct *target, const struct
if (!system_supports_poe())
return -EINVAL;
ctrl = target->thread.por_el0;
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
if (ret)
return ret;
@@ -1483,6 +1491,22 @@ static int poe_set(struct task_struct *target, const struct
#endif
#ifdef CONFIG_ARM64_GCS
static void task_gcs_to_user(struct user_gcs *user_gcs,
const struct task_struct *target)
{
user_gcs->features_enabled = target->thread.gcs_el0_mode;
user_gcs->features_locked = target->thread.gcs_el0_locked;
user_gcs->gcspr_el0 = target->thread.gcspr_el0;
}
static void task_gcs_from_user(struct task_struct *target,
const struct user_gcs *user_gcs)
{
target->thread.gcs_el0_mode = user_gcs->features_enabled;
target->thread.gcs_el0_locked = user_gcs->features_locked;
target->thread.gcspr_el0 = user_gcs->gcspr_el0;
}
static int gcs_get(struct task_struct *target,
const struct user_regset *regset,
struct membuf to)
@@ -1495,9 +1519,7 @@ static int gcs_get(struct task_struct *target,
if (target == current)
gcs_preserve_current_state();
user_gcs.features_enabled = target->thread.gcs_el0_mode;
user_gcs.features_locked = target->thread.gcs_el0_locked;
user_gcs.gcspr_el0 = target->thread.gcspr_el0;
task_gcs_to_user(&user_gcs, target);
return membuf_write(&to, &user_gcs, sizeof(user_gcs));
}
@@ -1513,6 +1535,8 @@ static int gcs_set(struct task_struct *target, const struct
if (!system_supports_gcs())
return -EINVAL;
task_gcs_to_user(&user_gcs, target);
ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &user_gcs, 0, -1);
if (ret)
return ret;
@@ -1520,9 +1544,7 @@ static int gcs_set(struct task_struct *target, const struct
if (user_gcs.features_enabled & ~PR_SHADOW_STACK_SUPPORTED_STATUS_MASK)
return -EINVAL;
target->thread.gcs_el0_mode = user_gcs.features_enabled;
target->thread.gcs_el0_locked = user_gcs.features_locked;
target->thread.gcspr_el0 = user_gcs.gcspr_el0;
task_gcs_from_user(target, &user_gcs);
return 0;
}

View File

@@ -36,15 +36,8 @@
#include <asm/traps.h>
#include <asm/vdso.h>
#ifdef CONFIG_ARM64_GCS
#define GCS_SIGNAL_CAP(addr) (((unsigned long)addr) & GCS_CAP_ADDR_MASK)
static bool gcs_signal_cap_valid(u64 addr, u64 val)
{
return val == GCS_SIGNAL_CAP(addr);
}
#endif
/*
* Do a signal return; undo the signal stack. These are aligned to 128-bit.
*/
@@ -1062,8 +1055,7 @@ static int restore_sigframe(struct pt_regs *regs,
#ifdef CONFIG_ARM64_GCS
static int gcs_restore_signal(void)
{
unsigned long __user *gcspr_el0;
u64 cap;
u64 gcspr_el0, cap;
int ret;
if (!system_supports_gcs())
@@ -1072,7 +1064,7 @@ static int gcs_restore_signal(void)
if (!(current->thread.gcs_el0_mode & PR_SHADOW_STACK_ENABLE))
return 0;
gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
/*
* Ensure that any changes to the GCS done via GCS operations
@@ -1087,22 +1079,23 @@ static int gcs_restore_signal(void)
* then faults will be generated on GCS operations - the main
* concern is to protect GCS pages.
*/
ret = copy_from_user(&cap, gcspr_el0, sizeof(cap));
ret = copy_from_user(&cap, (unsigned long __user *)gcspr_el0,
sizeof(cap));
if (ret)
return -EFAULT;
/*
* Check that the cap is the actual GCS before replacing it.
*/
if (!gcs_signal_cap_valid((u64)gcspr_el0, cap))
if (cap != GCS_SIGNAL_CAP(gcspr_el0))
return -EINVAL;
/* Invalidate the token to prevent reuse */
put_user_gcs(0, (__user void*)gcspr_el0, &ret);
put_user_gcs(0, (unsigned long __user *)gcspr_el0, &ret);
if (ret != 0)
return -EFAULT;
write_sysreg_s(gcspr_el0 + 1, SYS_GCSPR_EL0);
write_sysreg_s(gcspr_el0 + 8, SYS_GCSPR_EL0);
return 0;
}
@@ -1421,7 +1414,7 @@ static int get_sigframe(struct rt_sigframe_user_layout *user,
static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
{
unsigned long __user *gcspr_el0;
u64 gcspr_el0;
int ret = 0;
if (!system_supports_gcs())
@@ -1434,18 +1427,20 @@ static int gcs_signal_entry(__sigrestore_t sigtramp, struct ksignal *ksig)
* We are entering a signal handler, current register state is
* active.
*/
gcspr_el0 = (unsigned long __user *)read_sysreg_s(SYS_GCSPR_EL0);
gcspr_el0 = read_sysreg_s(SYS_GCSPR_EL0);
/*
* Push a cap and the GCS entry for the trampoline onto the GCS.
*/
put_user_gcs((unsigned long)sigtramp, gcspr_el0 - 2, &ret);
put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 1), gcspr_el0 - 1, &ret);
put_user_gcs((unsigned long)sigtramp,
(unsigned long __user *)(gcspr_el0 - 16), &ret);
put_user_gcs(GCS_SIGNAL_CAP(gcspr_el0 - 8),
(unsigned long __user *)(gcspr_el0 - 8), &ret);
if (ret != 0)
return ret;
gcspr_el0 -= 2;
write_sysreg_s((unsigned long)gcspr_el0, SYS_GCSPR_EL0);
gcspr_el0 -= 16;
write_sysreg_s(gcspr_el0, SYS_GCSPR_EL0);
return 0;
}
@@ -1462,10 +1457,33 @@ static int setup_return(struct pt_regs *regs, struct ksignal *ksig,
struct rt_sigframe_user_layout *user, int usig)
{
__sigrestore_t sigtramp;
int err;
if (ksig->ka.sa.sa_flags & SA_RESTORER)
sigtramp = ksig->ka.sa.sa_restorer;
else
sigtramp = VDSO_SYMBOL(current->mm->context.vdso, sigtramp);
err = gcs_signal_entry(sigtramp, ksig);
if (err)
return err;
/*
* We must not fail from this point onwards. We are going to update
* registers, including SP, in order to invoke the signal handler. If
* we failed and attempted to deliver a nested SIGSEGV to a handler
* after that point, the subsequent sigreturn would end up restoring
* the (partial) state for the original signal handler.
*/
regs->regs[0] = usig;
if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
regs->regs[1] = (unsigned long)&user->sigframe->info;
regs->regs[2] = (unsigned long)&user->sigframe->uc;
}
regs->sp = (unsigned long)user->sigframe;
regs->regs[29] = (unsigned long)&user->next_frame->fp;
regs->regs[30] = (unsigned long)sigtramp;
regs->pc = (unsigned long)ksig->ka.sa.sa_handler;
/*
@@ -1506,14 +1524,7 @@ static int setup_return(struct pt_regs *regs, struct ksignal *ksig,
sme_smstop();
}
if (ksig->ka.sa.sa_flags & SA_RESTORER)
sigtramp = ksig->ka.sa.sa_restorer;
else
sigtramp = VDSO_SYMBOL(current->mm->context.vdso, sigtramp);
regs->regs[30] = (unsigned long)sigtramp;
return gcs_signal_entry(sigtramp, ksig);
return 0;
}
static int setup_rt_frame(int usig, struct ksignal *ksig, sigset_t *set,
@@ -1537,14 +1548,16 @@ static int setup_rt_frame(int usig, struct ksignal *ksig, sigset_t *set,
err |= __save_altstack(&frame->uc.uc_stack, regs->sp);
err |= setup_sigframe(&user, regs, set, &ua_state);
if (err == 0) {
if (ksig->ka.sa.sa_flags & SA_SIGINFO)
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
if (err == 0)
err = setup_return(regs, ksig, &user, usig);
if (ksig->ka.sa.sa_flags & SA_SIGINFO) {
err |= copy_siginfo_to_user(&frame->info, &ksig->info);
regs->regs[1] = (unsigned long)&frame->info;
regs->regs[2] = (unsigned long)&frame->uc;
}
}
/*
* We must not fail if setup_return() succeeded - see comment at the
* beginning of setup_return().
*/
if (err == 0)
set_handler_user_access_state();

View File

@@ -26,7 +26,6 @@ enum kunwind_source {
KUNWIND_SOURCE_CALLER,
KUNWIND_SOURCE_TASK,
KUNWIND_SOURCE_REGS_PC,
KUNWIND_SOURCE_REGS_LR,
};
union unwind_flags {
@@ -138,8 +137,10 @@ kunwind_recover_return_address(struct kunwind_state *state)
orig_pc = ftrace_graph_ret_addr(state->task, &state->graph_idx,
state->common.pc,
(void *)state->common.fp);
if (WARN_ON_ONCE(state->common.pc == orig_pc))
if (state->common.pc == orig_pc) {
WARN_ON_ONCE(state->task == current);
return -EINVAL;
}
state->common.pc = orig_pc;
state->flags.fgraph = 1;
}
@@ -178,23 +179,8 @@ int kunwind_next_regs_pc(struct kunwind_state *state)
state->regs = regs;
state->common.pc = regs->pc;
state->common.fp = regs->regs[29];
state->source = KUNWIND_SOURCE_REGS_PC;
return 0;
}
static __always_inline int
kunwind_next_regs_lr(struct kunwind_state *state)
{
/*
* The stack for the regs was consumed by kunwind_next_regs_pc(), so we
* cannot consume that again here, but we know the regs are safe to
* access.
*/
state->common.pc = state->regs->regs[30];
state->common.fp = state->regs->regs[29];
state->regs = NULL;
state->source = KUNWIND_SOURCE_REGS_LR;
state->source = KUNWIND_SOURCE_REGS_PC;
return 0;
}
@@ -215,12 +201,12 @@ kunwind_next_frame_record_meta(struct kunwind_state *state)
case FRAME_META_TYPE_FINAL:
if (meta == &task_pt_regs(tsk)->stackframe)
return -ENOENT;
WARN_ON_ONCE(1);
WARN_ON_ONCE(tsk == current);
return -EINVAL;
case FRAME_META_TYPE_PT_REGS:
return kunwind_next_regs_pc(state);
default:
WARN_ON_ONCE(1);
WARN_ON_ONCE(tsk == current);
return -EINVAL;
}
}
@@ -274,11 +260,8 @@ kunwind_next(struct kunwind_state *state)
case KUNWIND_SOURCE_FRAME:
case KUNWIND_SOURCE_CALLER:
case KUNWIND_SOURCE_TASK:
case KUNWIND_SOURCE_REGS_LR:
err = kunwind_next_frame_record(state);
break;
case KUNWIND_SOURCE_REGS_PC:
err = kunwind_next_regs_lr(state);
err = kunwind_next_frame_record(state);
break;
default:
err = -EINVAL;
@@ -436,7 +419,6 @@ static const char *state_source_string(const struct kunwind_state *state)
case KUNWIND_SOURCE_CALLER: return "C";
case KUNWIND_SOURCE_TASK: return "T";
case KUNWIND_SOURCE_REGS_PC: return "P";
case KUNWIND_SOURCE_REGS_LR: return "L";
default: return "U";
}
}

View File

@@ -739,8 +739,15 @@ static u64 compute_par_s12(struct kvm_vcpu *vcpu, u64 s1_par,
final_attr = s1_parattr;
break;
default:
/* MemAttr[2]=0, Device from S2 */
final_attr = s2_memattr & GENMASK(1,0) << 2;
/*
* MemAttr[2]=0, Device from S2.
*
* FWB does not influence the way that stage 1
* memory types and attributes are combined
* with stage 2 Device type and attributes.
*/
final_attr = min(s2_memattr_to_attr(s2_memattr),
s1_parattr);
}
} else {
/* Combination of R_HMNDG, R_TNHFM and R_GQFSF */

View File

@@ -126,7 +126,7 @@ static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
/* Trap SPE */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer), feature_ids)) {
mdcr_set |= MDCR_EL2_TPMS;
mdcr_clear |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
mdcr_clear |= MDCR_EL2_E2PB_MASK;
}
/* Trap Trace Filter */
@@ -143,7 +143,7 @@ static void pvm_init_traps_aa64dfr0(struct kvm_vcpu *vcpu)
/* Trap External Trace */
if (!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_ExtTrcBuff), feature_ids))
mdcr_clear |= MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT;
mdcr_clear |= MDCR_EL2_E2TB_MASK;
vcpu->arch.mdcr_el2 |= mdcr_set;
vcpu->arch.mdcr_el2 &= ~mdcr_clear;

View File

@@ -2618,7 +2618,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
ID_AA64MMFR0_EL1_TGRAN4_2 |
ID_AA64MMFR0_EL1_TGRAN64_2 |
ID_AA64MMFR0_EL1_TGRAN16_2)),
ID_AA64MMFR0_EL1_TGRAN16_2 |
ID_AA64MMFR0_EL1_ASIDBITS)),
ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
ID_AA64MMFR1_EL1_HCX |
ID_AA64MMFR1_EL1_TWED |

View File

@@ -608,12 +608,22 @@ static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
lockdep_assert_held(&its->its_lock);
vgic_get_irq_kref(irq);
old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
/*
* Put the reference taken on @irq if the store fails. Intentionally do
* not return the error as the translation cache is best effort.
*/
if (xa_is_err(old)) {
vgic_put_irq(kvm, irq);
return;
}
/*
* We could have raced with another CPU caching the same
* translation behind our back, ensure we don't leak a
* reference if that is the case.
*/
old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
if (old)
vgic_put_irq(kvm, old);
}

View File

@@ -32,9 +32,9 @@ static unsigned long nr_pinned_asids;
static unsigned long *pinned_asid_map;
#define ASID_MASK (~GENMASK(asid_bits - 1, 0))
#define ASID_FIRST_VERSION (1UL << asid_bits)
#define ASID_FIRST_VERSION (1UL << 16)
#define NUM_USER_ASIDS ASID_FIRST_VERSION
#define NUM_USER_ASIDS (1UL << asid_bits)
#define ctxid2asid(asid) ((asid) & ~ASID_MASK)
#define asid2ctxid(asid, genid) ((asid) | (genid))

View File

@@ -30,11 +30,13 @@ void copy_highpage(struct page *to, struct page *from)
if (!system_supports_mte())
return;
if (folio_test_hugetlb(src) &&
folio_test_hugetlb_mte_tagged(src)) {
if (!folio_try_hugetlb_mte_tagging(dst))
if (folio_test_hugetlb(src)) {
if (!folio_test_hugetlb_mte_tagged(src) ||
from != folio_page(src, 0))
return;
WARN_ON_ONCE(!folio_try_hugetlb_mte_tagging(dst));
/*
* Populate tags for all subpages.
*

View File

@@ -117,15 +117,6 @@ static void __init arch_reserve_crashkernel(void)
static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
{
/**
* Information we get from firmware (e.g. DT dma-ranges) describe DMA
* bus constraints. Devices using DMA might have their own limitations.
* Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
* DMA zone on platforms that have RAM there.
*/
if (memblock_start_of_DRAM() < U32_MAX)
zone_limit = min(zone_limit, U32_MAX);
return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
}
@@ -141,6 +132,14 @@ static void __init zone_sizes_init(void)
acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
/*
* Information we get from firmware (e.g. DT dma-ranges) describe DMA
* bus constraints. Devices using DMA might have their own limitations.
* Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
* DMA zone on platforms that have RAM there.
*/
if (memblock_start_of_DRAM() < U32_MAX)
zone_dma_limit = min(zone_dma_limit, U32_MAX);
arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
#endif

View File

@@ -32,3 +32,9 @@ KBUILD_LDFLAGS += $(ldflags-y)
TIR_NAME := r19
KBUILD_CFLAGS += -ffixed-$(TIR_NAME) -DTHREADINFO_REG=$(TIR_NAME) -D__linux__
KBUILD_AFLAGS += -DTHREADINFO_REG=$(TIR_NAME)
# Disable HexagonConstExtenders pass for LLVM versions prior to 19.1.0
# https://github.com/llvm/llvm-project/issues/99714
ifneq ($(call clang-min-version, 190100),y)
KBUILD_CFLAGS += -mllvm -hexagon-cext=false
endif

View File

@@ -24,6 +24,16 @@ static inline int prepare_hugepage_range(struct file *file,
return 0;
}
#define __HAVE_ARCH_HUGE_PTE_CLEAR
static inline void huge_pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long sz)
{
pte_t clear;
pte_val(clear) = (unsigned long)invalid_pte_table;
set_pte_at(mm, addr, ptep, clear);
}
#define __HAVE_ARCH_HUGE_PTEP_GET_AND_CLEAR
static inline pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)

View File

@@ -683,7 +683,17 @@ DEF_EMIT_REG2I16_FORMAT(blt, blt_op)
DEF_EMIT_REG2I16_FORMAT(bge, bge_op)
DEF_EMIT_REG2I16_FORMAT(bltu, bltu_op)
DEF_EMIT_REG2I16_FORMAT(bgeu, bgeu_op)
DEF_EMIT_REG2I16_FORMAT(jirl, jirl_op)
static inline void emit_jirl(union loongarch_instruction *insn,
enum loongarch_gpr rd,
enum loongarch_gpr rj,
int offset)
{
insn->reg2i16_format.opcode = jirl_op;
insn->reg2i16_format.immediate = offset;
insn->reg2i16_format.rd = rd;
insn->reg2i16_format.rj = rj;
}
#define DEF_EMIT_REG2BSTRD_FORMAT(NAME, OP) \
static inline void emit_##NAME(union loongarch_instruction *insn, \

View File

@@ -95,7 +95,7 @@ static void __init init_screen_info(void)
memset(si, 0, sizeof(*si));
early_memunmap(si, sizeof(*si));
memblock_reserve(screen_info.lfb_base, screen_info.lfb_size);
memblock_reserve(__screen_info_lfb_base(&screen_info), screen_info.lfb_size);
}
void __init efi_init(void)

View File

@@ -332,7 +332,7 @@ u32 larch_insn_gen_jirl(enum loongarch_gpr rd, enum loongarch_gpr rj, int imm)
return INSN_BREAK;
}
emit_jirl(&insn, rj, rd, imm >> 2);
emit_jirl(&insn, rd, rj, imm >> 2);
return insn.word;
}

View File

@@ -82,7 +82,7 @@ void show_ipi_list(struct seq_file *p, int prec)
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
for_each_online_cpu(cpu)
seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
seq_put_decimal_ull_width(p, " ", per_cpu(irq_stat, cpu).ipi_irqs[i], 10);
seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]);
}
}

View File

@@ -156,7 +156,7 @@ static int kvm_handle_csr(struct kvm_vcpu *vcpu, larch_inst inst)
int kvm_emu_iocsr(larch_inst inst, struct kvm_run *run, struct kvm_vcpu *vcpu)
{
int ret;
int idx, ret;
unsigned long *val;
u32 addr, rd, rj, opcode;
@@ -167,7 +167,6 @@ int kvm_emu_iocsr(larch_inst inst, struct kvm_run *run, struct kvm_vcpu *vcpu)
rj = inst.reg2_format.rj;
opcode = inst.reg2_format.opcode;
addr = vcpu->arch.gprs[rj];
ret = EMULATE_DO_IOCSR;
run->iocsr_io.phys_addr = addr;
run->iocsr_io.is_write = 0;
val = &vcpu->arch.gprs[rd];
@@ -207,20 +206,28 @@ int kvm_emu_iocsr(larch_inst inst, struct kvm_run *run, struct kvm_vcpu *vcpu)
}
if (run->iocsr_io.is_write) {
if (!kvm_io_bus_write(vcpu, KVM_IOCSR_BUS, addr, run->iocsr_io.len, val))
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_IOCSR_BUS, addr, run->iocsr_io.len, val);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (ret == 0)
ret = EMULATE_DONE;
else
else {
ret = EMULATE_DO_IOCSR;
/* Save data and let user space to write it */
memcpy(run->iocsr_io.data, val, run->iocsr_io.len);
}
trace_kvm_iocsr(KVM_TRACE_IOCSR_WRITE, run->iocsr_io.len, addr, val);
} else {
if (!kvm_io_bus_read(vcpu, KVM_IOCSR_BUS, addr, run->iocsr_io.len, val))
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_IOCSR_BUS, addr, run->iocsr_io.len, val);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (ret == 0)
ret = EMULATE_DONE;
else
else {
ret = EMULATE_DO_IOCSR;
/* Save register id for iocsr read completion */
vcpu->arch.io_gpr = rd;
}
trace_kvm_iocsr(KVM_TRACE_IOCSR_READ, run->iocsr_io.len, addr, NULL);
}
@@ -359,7 +366,7 @@ static int kvm_handle_gspr(struct kvm_vcpu *vcpu)
int kvm_emu_mmio_read(struct kvm_vcpu *vcpu, larch_inst inst)
{
int ret;
int idx, ret;
unsigned int op8, opcode, rd;
struct kvm_run *run = vcpu->run;
@@ -464,8 +471,10 @@ int kvm_emu_mmio_read(struct kvm_vcpu *vcpu, larch_inst inst)
* it need not return to user space to handle the mmio
* exception.
*/
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, vcpu->arch.badv,
run->mmio.len, &vcpu->arch.gprs[rd]);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret) {
update_pc(&vcpu->arch);
vcpu->mmio_needed = 0;
@@ -531,7 +540,7 @@ int kvm_complete_mmio_read(struct kvm_vcpu *vcpu, struct kvm_run *run)
int kvm_emu_mmio_write(struct kvm_vcpu *vcpu, larch_inst inst)
{
int ret;
int idx, ret;
unsigned int rd, op8, opcode;
unsigned long curr_pc, rd_val = 0;
struct kvm_run *run = vcpu->run;
@@ -631,7 +640,9 @@ int kvm_emu_mmio_write(struct kvm_vcpu *vcpu, larch_inst inst)
* it need not return to user space to handle the mmio
* exception.
*/
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, vcpu->arch.badv, run->mmio.len, data);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (!ret)
return EMULATE_DONE;

View File

@@ -98,7 +98,7 @@ static void write_mailbox(struct kvm_vcpu *vcpu, int offset, uint64_t data, int
static int send_ipi_data(struct kvm_vcpu *vcpu, gpa_t addr, uint64_t data)
{
int i, ret;
int i, idx, ret;
uint32_t val = 0, mask = 0;
/*
@@ -107,7 +107,9 @@ static int send_ipi_data(struct kvm_vcpu *vcpu, gpa_t addr, uint64_t data)
*/
if ((data >> 27) & 0xf) {
/* Read the old val */
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_read(vcpu, KVM_IOCSR_BUS, addr, sizeof(val), &val);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (unlikely(ret)) {
kvm_err("%s: : read date from addr %llx failed\n", __func__, addr);
return ret;
@@ -121,7 +123,9 @@ static int send_ipi_data(struct kvm_vcpu *vcpu, gpa_t addr, uint64_t data)
val &= mask;
}
val |= ((uint32_t)(data >> 32) & ~mask);
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_io_bus_write(vcpu, KVM_IOCSR_BUS, addr, sizeof(val), &val);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (unlikely(ret))
kvm_err("%s: : write date to addr %llx failed\n", __func__, addr);

View File

@@ -240,7 +240,7 @@ static void kvm_late_check_requests(struct kvm_vcpu *vcpu)
*/
static int kvm_enter_guest_check(struct kvm_vcpu *vcpu)
{
int ret;
int idx, ret;
/*
* Check conditions before entering the guest
@@ -249,7 +249,9 @@ static int kvm_enter_guest_check(struct kvm_vcpu *vcpu)
if (ret < 0)
return ret;
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = kvm_check_requests(vcpu);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
return ret;
}

View File

@@ -181,13 +181,13 @@ static void __build_epilogue(struct jit_ctx *ctx, bool is_tail_call)
/* Set return value */
emit_insn(ctx, addiw, LOONGARCH_GPR_A0, regmap[BPF_REG_0], 0);
/* Return to the caller */
emit_insn(ctx, jirl, LOONGARCH_GPR_RA, LOONGARCH_GPR_ZERO, 0);
emit_insn(ctx, jirl, LOONGARCH_GPR_ZERO, LOONGARCH_GPR_RA, 0);
} else {
/*
* Call the next bpf prog and skip the first instruction
* of TCC initialization.
*/
emit_insn(ctx, jirl, LOONGARCH_GPR_T3, LOONGARCH_GPR_ZERO, 1);
emit_insn(ctx, jirl, LOONGARCH_GPR_ZERO, LOONGARCH_GPR_T3, 1);
}
}
@@ -904,7 +904,7 @@ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, bool ext
return ret;
move_addr(ctx, t1, func_addr);
emit_insn(ctx, jirl, t1, LOONGARCH_GPR_RA, 0);
emit_insn(ctx, jirl, LOONGARCH_GPR_RA, t1, 0);
move_reg(ctx, regmap[BPF_REG_0], LOONGARCH_GPR_A0);
break;

View File

@@ -749,7 +749,7 @@ static void bridge_remove(struct platform_device *pdev)
static struct platform_driver bridge_driver = {
.probe = bridge_probe,
.remove_new = bridge_remove,
.remove = bridge_remove,
.driver = {
.name = "xtalk-bridge",
}

View File

@@ -143,11 +143,11 @@ static int show_cpuinfo(struct seq_file *m, void *v)
" DIV:\t\t%s\n"
" BMX:\t\t%s\n"
" CDX:\t\t%s\n",
cpuinfo.has_mul ? "yes" : "no",
cpuinfo.has_mulx ? "yes" : "no",
cpuinfo.has_div ? "yes" : "no",
cpuinfo.has_bmx ? "yes" : "no",
cpuinfo.has_cdx ? "yes" : "no");
str_yes_no(cpuinfo.has_mul),
str_yes_no(cpuinfo.has_mulx),
str_yes_no(cpuinfo.has_div),
str_yes_no(cpuinfo.has_bmx),
str_yes_no(cpuinfo.has_cdx));
seq_printf(m,
"Icache:\t\t%ukB, line length: %u\n",

View File

@@ -239,6 +239,8 @@ handler: ;\
/* =====================================================[ exceptions] === */
__REF
/* ---[ 0x100: RESET exception ]----------------------------------------- */
EXCEPTION_ENTRY(_tng_kernel_start)

View File

@@ -26,15 +26,15 @@
#include <asm/asm-offsets.h>
#include <linux/of_fdt.h>
#define tophys(rd,rs) \
l.movhi rd,hi(-KERNELBASE) ;\
#define tophys(rd,rs) \
l.movhi rd,hi(-KERNELBASE) ;\
l.add rd,rd,rs
#define CLEAR_GPR(gpr) \
#define CLEAR_GPR(gpr) \
l.movhi gpr,0x0
#define LOAD_SYMBOL_2_GPR(gpr,symbol) \
l.movhi gpr,hi(symbol) ;\
#define LOAD_SYMBOL_2_GPR(gpr,symbol) \
l.movhi gpr,hi(symbol) ;\
l.ori gpr,gpr,lo(symbol)
@@ -326,21 +326,21 @@
l.addi r1,r1,-(INT_FRAME_SIZE) ;\
/* r1 is KSP, r30 is __pa(KSP) */ ;\
tophys (r30,r1) ;\
l.sw PT_GPR12(r30),r12 ;\
l.sw PT_GPR12(r30),r12 ;\
l.mfspr r12,r0,SPR_EPCR_BASE ;\
l.sw PT_PC(r30),r12 ;\
l.mfspr r12,r0,SPR_ESR_BASE ;\
l.sw PT_SR(r30),r12 ;\
/* save r31 */ ;\
EXCEPTION_T_LOAD_GPR30(r12) ;\
l.sw PT_GPR30(r30),r12 ;\
l.sw PT_GPR30(r30),r12 ;\
/* save r10 as was prior to exception */ ;\
EXCEPTION_T_LOAD_GPR10(r12) ;\
l.sw PT_GPR10(r30),r12 ;\
/* save PT_SP as was prior to exception */ ;\
l.sw PT_GPR10(r30),r12 ;\
/* save PT_SP as was prior to exception */ ;\
EXCEPTION_T_LOAD_SP(r12) ;\
l.sw PT_SP(r30),r12 ;\
l.sw PT_GPR13(r30),r13 ;\
l.sw PT_GPR13(r30),r13 ;\
/* --> */ ;\
/* save exception r4, set r4 = EA */ ;\
l.sw PT_GPR4(r30),r4 ;\
@@ -357,6 +357,8 @@
/* =====================================================[ exceptions] === */
__HEAD
/* ---[ 0x100: RESET exception ]----------------------------------------- */
.org 0x100
/* Jump to .init code at _start which lives in the .head section
@@ -394,7 +396,7 @@ _dispatch_do_ipage_fault:
.org 0x500
EXCEPTION_HANDLE(_timer_handler)
/* ---[ 0x600: Alignment exception ]-------------------------------------- */
/* ---[ 0x600: Alignment exception ]------------------------------------- */
.org 0x600
EXCEPTION_HANDLE(_alignment_handler)
@@ -424,7 +426,7 @@ _dispatch_do_ipage_fault:
.org 0xc00
EXCEPTION_HANDLE(_sys_call_handler)
/* ---[ 0xd00: Floating point exception ]--------------------------------- */
/* ---[ 0xd00: Floating point exception ]-------------------------------- */
.org 0xd00
EXCEPTION_HANDLE(_fpe_trap_handler)
@@ -506,10 +508,10 @@ _dispatch_do_ipage_fault:
/* .text*/
/* This early stuff belongs in HEAD, but some of the functions below definitely
/* This early stuff belongs in the .init.text section, but some of the functions below definitely
* don't... */
__HEAD
__INIT
.global _start
_start:
/* Init r0 to zero as per spec */
@@ -816,7 +818,7 @@ secondary_start:
#endif
/* ========================================[ cache ]=== */
/* ==========================================================[ cache ]=== */
/* alignment here so we don't change memory offsets with
* memory controller defined

View File

@@ -50,6 +50,7 @@ SECTIONS
.text : AT(ADDR(.text) - LOAD_OFFSET)
{
_stext = .;
HEAD_TEXT
TEXT_TEXT
SCHED_TEXT
LOCK_TEXT
@@ -83,8 +84,6 @@ SECTIONS
. = ALIGN(PAGE_SIZE);
__init_begin = .;
HEAD_TEXT_SECTION
/* Page aligned */
INIT_TEXT_SECTION(PAGE_SIZE)

View File

@@ -208,6 +208,7 @@ CONFIG_FB_ATY=y
CONFIG_FB_ATY_CT=y
CONFIG_FB_ATY_GX=y
CONFIG_FB_3DFX=y
CONFIG_BACKLIGHT_CLASS_DEVICE=y
# CONFIG_VGA_CONSOLE is not set
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_LOGO=y

View File

@@ -716,6 +716,7 @@ CONFIG_FB_TRIDENT=m
CONFIG_FB_SM501=m
CONFIG_FB_IBM_GXT4500=y
CONFIG_LCD_PLATFORM=m
CONFIG_BACKLIGHT_CLASS_DEVICE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE_ROTATION=y
CONFIG_LOGO=y

View File

@@ -74,4 +74,4 @@ MODULE_DESCRIPTION("IBM VMX cryptographic acceleration instructions "
"support on Power 8");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0.0");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
MODULE_IMPORT_NS("CRYPTO_INTERNAL");

View File

@@ -464,7 +464,43 @@ static vm_fault_t vas_mmap_fault(struct vm_fault *vmf)
return VM_FAULT_SIGBUS;
}
/*
* During mmap() paste address, mapping VMA is saved in VAS window
* struct which is used to unmap during migration if the window is
* still open. But the user space can remove this mapping with
* munmap() before closing the window and the VMA address will
* be invalid. Set VAS window VMA to NULL in this function which
* is called before VMA free.
*/
static void vas_mmap_close(struct vm_area_struct *vma)
{
struct file *fp = vma->vm_file;
struct coproc_instance *cp_inst = fp->private_data;
struct vas_window *txwin;
/* Should not happen */
if (!cp_inst || !cp_inst->txwin) {
pr_err("No attached VAS window for the paste address mmap\n");
return;
}
txwin = cp_inst->txwin;
/*
* task_ref.vma is set in coproc_mmap() during mmap paste
* address. So it has to be the same VMA that is getting freed.
*/
if (WARN_ON(txwin->task_ref.vma != vma)) {
pr_err("Invalid paste address mmaping\n");
return;
}
mutex_lock(&txwin->task_ref.mmap_mutex);
txwin->task_ref.vma = NULL;
mutex_unlock(&txwin->task_ref.mmap_mutex);
}
static const struct vm_operations_struct vas_vm_ops = {
.close = vas_mmap_close,
.fault = vas_mmap_fault,
};

View File

@@ -22,7 +22,9 @@ static inline bool kfence_protect_page(unsigned long addr, bool protect)
else
set_pte(pte, __pte(pte_val(ptep_get(pte)) | _PAGE_PRESENT));
flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
preempt_disable();
local_flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
preempt_enable();
return true;
}

View File

@@ -36,9 +36,15 @@ bool arch_jump_label_transform_queue(struct jump_entry *entry,
insn = RISCV_INSN_NOP;
}
mutex_lock(&text_mutex);
patch_insn_write(addr, &insn, sizeof(insn));
mutex_unlock(&text_mutex);
if (early_boot_irqs_disabled) {
riscv_patch_in_stop_machine = 1;
patch_insn_write(addr, &insn, sizeof(insn));
riscv_patch_in_stop_machine = 0;
} else {
mutex_lock(&text_mutex);
patch_insn_write(addr, &insn, sizeof(insn));
mutex_unlock(&text_mutex);
}
return true;
}

View File

@@ -227,7 +227,7 @@ static void __init init_resources(void)
static void __init parse_dtb(void)
{
/* Early scan of device tree from init memory */
if (early_init_dt_scan(dtb_early_va, __pa(dtb_early_va))) {
if (early_init_dt_scan(dtb_early_va, dtb_early_pa)) {
const char *name = of_flat_dt_get_machine_name();
if (name) {

View File

@@ -590,7 +590,7 @@ void kvm_riscv_aia_enable(void)
csr_set(CSR_HIE, BIT(IRQ_S_GEXT));
/* Enable IRQ filtering for overflow interrupt only if sscofpmf is present */
if (__riscv_isa_extension_available(NULL, RISCV_ISA_EXT_SSCOFPMF))
csr_write(CSR_HVIEN, BIT(IRQ_PMU_OVF));
csr_set(CSR_HVIEN, BIT(IRQ_PMU_OVF));
}
void kvm_riscv_aia_disable(void)

View File

@@ -1566,7 +1566,7 @@ static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
pmd_clear(pmd);
}
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap)
{
struct page *page = pud_page(*pud);
struct ptdesc *ptdesc = page_ptdesc(page);
@@ -1579,7 +1579,8 @@ static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
return;
}
pagetable_pmd_dtor(ptdesc);
if (!is_vmemmap)
pagetable_pmd_dtor(ptdesc);
if (PageReserved(page))
free_reserved_page(page);
else
@@ -1703,7 +1704,7 @@ static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, un
remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
if (pgtable_l4_enabled)
free_pmd_table(pmd_base, pudp);
free_pmd_table(pmd_base, pudp, is_vmemmap);
}
}

View File

@@ -234,6 +234,8 @@ static unsigned long get_vmem_size(unsigned long identity_size,
vsize = round_up(SZ_2G + max_mappable, rte_size) +
round_up(vmemmap_size, rte_size) +
FIXMAP_SIZE + MODULES_LEN + KASLR_LEN;
if (IS_ENABLED(CONFIG_KMSAN))
vsize += MODULES_LEN * 2;
return size_add(vsize, vmalloc_size);
}

View File

@@ -306,7 +306,7 @@ static void pgtable_pte_populate(pmd_t *pmd, unsigned long addr, unsigned long e
pages++;
}
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_4K, pages);
}
@@ -339,7 +339,7 @@ static void pgtable_pmd_populate(pud_t *pud, unsigned long addr, unsigned long e
}
pgtable_pte_populate(pmd, addr, next, mode);
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_1M, pages);
}
@@ -372,7 +372,7 @@ static void pgtable_pud_populate(p4d_t *p4d, unsigned long addr, unsigned long e
}
pgtable_pmd_populate(pud, addr, next, mode);
}
if (mode == POPULATE_DIRECT)
if (mode == POPULATE_IDENTITY)
update_page_count(PG_DIRECT_MAP_2G, pages);
}

View File

@@ -1168,4 +1168,4 @@ MODULE_ALIAS_CRYPTO("aes-all");
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
MODULE_IMPORT_NS("CRYPTO_INTERNAL");

View File

@@ -270,7 +270,7 @@ static ssize_t sys_##_prefix##_##_name##_store(struct kobject *kobj, \
if (len >= sizeof(_value)) \
return -E2BIG; \
len = strscpy(_value, buf, sizeof(_value)); \
if (len < 0) \
if ((ssize_t)len < 0) \
return len; \
strim(_value); \
return len; \

View File

@@ -110,7 +110,7 @@ static void switch_drv_remove(struct platform_device *pdev)
static struct platform_driver switch_driver = {
.probe = switch_drv_probe,
.remove_new = switch_drv_remove,
.remove = switch_drv_remove,
.driver = {
.name = DRV_NAME,
},

Some files were not shown because too many files have changed in this diff Show More