Compare commits

..

2 Commits

Author SHA1 Message Date
Greg Johnston
61cd68314f cargo fmt 2023-07-02 17:23:00 -04:00
Martin
90470a6f2d Minor: Ran cargo clippy --fix. 2023-07-02 17:22:39 -04:00
1571 changed files with 48399 additions and 147110 deletions

View File

@@ -29,15 +29,11 @@ Steps to reproduce the behavior:
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Next Steps**
- [ ] I will make a PR
- [ ] I would like to make a PR, but need help getting started
- [ ] I want someone else to take the time to fix this
- [ ] This is a low priority for me and is just shared for your information
**Additional context**
Add any other context about the problem here.

View File

@@ -1,19 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
# Grouping all dependencies in one PR weekly
- package-ecosystem: cargo
directory: "/"
schedule:
interval: weekly
day: monday
open-pull-requests-limit: 1
allow:
- dependency-type: "all"
groups:
rust-dependencies:
patterns:
- "*"

View File

@@ -1,39 +0,0 @@
name: autofix.ci
on:
pull_request:
# Running this workflow on main branch pushes requires write permission to apply changes.
# Leave it alone for future uses.
# push:
# branches: ["main"]
permissions:
contents: read
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
CARGO_TERM_COLOR: always
RUST_BACKTRACE: 1
DEBIAN_FRONTEND: noninteractive
jobs:
autofix:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v6
- uses: actions-rust-lang/setup-rust-toolchain@v1
with: {toolchain: "nightly-2025-07-16", components: "rustfmt, clippy", target: "wasm32-unknown-unknown", rustflags: ""}
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- name: Install cargo-all-features
run: cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
- name: Install jq
run: sudo apt-get install jq
- name: Format the workspace
run: cargo fmt --all
- name: Clippy the workspace
run: cargo all-features clippy --allow-dirty --fix --lib --no-deps
- uses: autofix-ci/action@v1.3.2
if: ${{ always() }}
with:
fail-fast: false

46
.github/workflows/check-examples.yml vendored Normal file
View File

@@ -0,0 +1,46 @@
name: Check Examples
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
setup:
name: Get Examples
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install JQ Tool
uses: mbround18/install-jq@v1
- name: Set Matrix
id: set-matrix
run: |
examples=$(ls examples |
awk '{print "examples/" $0}' |
grep -v examples/README.md |
grep -v examples/Makefile.toml |
grep -v examples/cargo-make |
grep -v examples/gtk |
jq -R -s -c 'split("\n")[:-1]')
echo "Example Directories: $examples"
echo "matrix={\"directory\":$examples}" >> "$GITHUB_OUTPUT"
matrix-job:
name: Check
needs: [setup]
strategy:
matrix: ${{ fromJSON(needs.setup.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-example-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "check"

46
.github/workflows/check-stable.yml vendored Normal file
View File

@@ -0,0 +1,46 @@
name: Check stable
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
jobs:
test:
name: Check examples ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- stable
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all examples
run: cargo make --profile=github-actions check-stable

46
.github/workflows/check.yml vendored Normal file
View File

@@ -0,0 +1,46 @@
name: Check
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
jobs:
test:
name: Run `cargo check` ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all libraries
run: cargo make --profile=github-actions check

View File

@@ -1,68 +0,0 @@
name: CI
on:
push:
branches:
- main
- leptos_0.6
- leptos_0.8
pull_request:
branches:
- main
- leptos_0.6
- leptos_0.8
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
get-leptos-changed:
uses: ./.github/workflows/get-leptos-changed.yml
get-leptos-matrix:
uses: ./.github/workflows/get-leptos-matrix.yml
get-example-changed:
uses: ./.github/workflows/get-example-changed.yml
get-examples-matrix:
uses: ./.github/workflows/get-examples-matrix.yml
test-members:
name: CI (members)
needs: [get-leptos-changed, get-leptos-matrix]
if: needs.get-leptos-changed.outputs.leptos_changed == 'true'
strategy:
matrix: ${{ fromJSON(needs.get-leptos-matrix.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
test-examples:
name: CI (examples)
needs: [test-members, get-examples-matrix]
if: ${{ success() }}
strategy:
matrix: ${{ fromJSON(needs.get-examples-matrix.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
test-only-examples:
name: CI (examples)
needs: [get-leptos-changed, get-example-changed]
if: needs.get-leptos-changed.outputs.leptos_changed != 'true' && needs.get-example-changed.outputs.example_changed == 'true'
strategy:
matrix: ${{ fromJSON(needs.get-example-changed.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
semver-check:
name: SemVer check (stable)
needs: [get-leptos-changed, test-members, test-examples]
if: ${{ success() && needs.get-leptos-changed.outputs.leptos_changed == 'true' && !contains(github.event.pull_request.labels.*.name, 'breaking') }}
runs-on: ubuntu-latest
steps:
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- name: Checkout
uses: actions/checkout@v6
- name: Semver Checks
uses: obi1kenobi/cargo-semver-checks-action@v2

34
.github/workflows/fmt.yml vendored Normal file
View File

@@ -0,0 +1,34 @@
name: Format
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Run rustfmt
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Run Rustfmt
run: cargo fmt -- --check

View File

@@ -1,43 +0,0 @@
name: Examples Changed Call
on:
workflow_call:
outputs:
example_changed:
description: "Example Changed"
value: ${{ jobs.get-example-changed.outputs.example_changed }}
# This is for test-only-examples workflow in ci.yml
matrix:
description: "Example Changed Directories"
value: ${{ jobs.get-example-changed.outputs.matrix }}
jobs:
get-example-changed:
name: Get Example Changed
runs-on: ubuntu-latest
outputs:
example_changed: ${{ steps.set-example-changed.outputs.example_changed }}
# This is for test-only-examples workflow in ci.yml
matrix: ${{ steps.set-example-changed.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Get example files that changed
id: changed-files
uses: tj-actions/changed-files@v47
with:
files: |
examples/**
!examples/cargo-make/**
!examples/Makefile.toml
!examples/*.md
- name: List example files that changed
run: echo '${{ steps.changed-files.outputs.all_changed_files }}'
- name: Install jq
run: sudo apt-get install jq
- name: Set example_changed
id: set-example-changed
run: |
echo "example_changed=${{ steps.changed-files.outputs.any_changed }}" >> "$GITHUB_OUTPUT"
# This is for test-only-examples workflow in ci.yml
echo "matrix={\"directory\": $(echo '${{ steps.changed-files.outputs.all_changed_files }}' | tr ' ' '\n' | awk -F'/' '{print $1 "/" $2}'| sort -u | jq -R -s -c 'split("\n") | .[:-1]')}" >> "$GITHUB_OUTPUT"

View File

@@ -1,36 +0,0 @@
name: Get Examples Matrix Call
on:
workflow_call:
outputs:
matrix:
description: "Matrix"
value: ${{ jobs.create.outputs.matrix }}
jobs:
create:
name: Create Examples Matrix
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
env:
# separate examples using "|" (vertical bar) char like "a|b|c".
# cargo-make should be excluded by default.
EXCLUDED_EXAMPLES: cargo-make
steps:
- name: Checkout
uses: actions/checkout@v6
- name: Install jq
run: sudo apt-get install jq
- name: Set Matrix
id: set-matrix
run: |
examples=$(ls -1d examples/*/ |
grep -vE "($EXCLUDED_EXAMPLES)" |
sed 's/\/$//' |
jq -R -s -c 'split("\n")[:-1]')
echo "Example Directories: $examples"
echo "matrix={\"directory\":$examples}" >> "$GITHUB_OUTPUT"
- name: Print Location Info
run: |
echo "Workspace: ${{ github.workspace }}"
pwd
ls | sort -u

View File

@@ -1,35 +0,0 @@
name: Get Leptos Changed Call
on:
workflow_call:
outputs:
leptos_changed:
description: "Leptos Changed"
value: ${{ jobs.create.outputs.leptos_changed }}
jobs:
create:
name: Detect Source Change
runs-on: ubuntu-latest
outputs:
leptos_changed: ${{ steps.set-source-changed.outputs.leptos_changed }}
steps:
- name: Checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Get source files that changed
id: changed-source
uses: tj-actions/changed-files@v47
with:
files_ignore: |
.*/**/*
cargo-make/**/*
examples/**/*
projects/**/*
benchmarks/**/*
docs/**/*
- name: List source files that changed
run: echo '${{ steps.changed-source.outputs.all_changed_files }}'
- name: Set leptos_changed
id: set-source-changed
run: |
echo "leptos_changed=${{ steps.changed-source.outputs.any_changed }}" >> "$GITHUB_OUTPUT"

View File

@@ -1,32 +0,0 @@
name: Get Leptos Matrix Call
on:
workflow_call:
outputs:
matrix:
description: "Matrix"
value: ${{ jobs.create.outputs.matrix }}
jobs:
create:
name: Create Leptos Matrix
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v6
- name: Install jq
run: sudo apt-get install jq
- name: Set Matrix
id: set-matrix
run: |
crates=$(cargo metadata --no-deps --quiet --format-version 1 |
jq -r '.packages[] | select(.name != "workspace") | .manifest_path| rtrimstr("/Cargo.toml")' |
sed "s|$(pwd)/||" |
jq -R -s -c 'split("\n")[:-1]')
echo "Leptos Directories: $crates"
echo "matrix={\"directory\":$crates}" >> "$GITHUB_OUTPUT"
- name: Print Location Info
run: |
echo "Workspace: ${{ github.workspace }}"
pwd
ls | sort -u

View File

@@ -1,7 +1,7 @@
name: Deploy book
on:
push:
paths: ["docs/book/**"]
paths: ['docs/book/**']
branches:
- main
@@ -9,29 +9,29 @@ jobs:
deploy:
runs-on: ubuntu-latest
permissions:
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
steps:
- uses: actions/checkout@v6
with:
fetch-depth: 0
- name: Install mdbook
run: |
mkdir mdbook
curl -sSL https://github.com/rust-lang/mdBook/releases/download/v0.4.27/mdbook-v0.4.27-x86_64-unknown-linux-gnu.tar.gz | tar -xz --directory=./mdbook
echo `pwd`/mdbook >> $GITHUB_PATH
- name: Deploy GitHub Pages
run: |
cd docs/book
mdbook build
git worktree add gh-pages
git config user.name "Deploy book from CI"
git config user.email ""
cd gh-pages
# Delete the ref to avoid keeping history.
git update-ref -d refs/heads/gh-pages
rm -rf *
mv ../book/* .
git add .
git commit -m "Deploy book $GITHUB_SHA to gh-pages"
git push --force --set-upstream origin gh-pages
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Install mdbook
run: |
mkdir mdbook
curl -sSL https://github.com/rust-lang/mdBook/releases/download/v0.4.27/mdbook-v0.4.27-x86_64-unknown-linux-gnu.tar.gz | tar -xz --directory=./mdbook
echo `pwd`/mdbook >> $GITHUB_PATH
- name: Deploy GitHub Pages
run: |
cd docs/book
mdbook build
git worktree add gh-pages
git config user.name "Deploy book from CI"
git config user.email ""
cd gh-pages
# Delete the ref to avoid keeping history.
git update-ref -d refs/heads/gh-pages
rm -rf *
mv ../book/* .
git add .
git commit -m "Deploy book $GITHUB_SHA to gh-pages"
git push --force --set-upstream origin gh-pages

View File

@@ -1,188 +0,0 @@
name: Run Task
on:
workflow_call:
inputs:
directory:
required: true
type: string
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
DEBIAN_FRONTEND: noninteractive
RUSTFLAGS: ${{ inputs.erased_mode && '--cfg erase_components' || '' }}
LEPTOS_TAILWIND_VERSION: v4.0.14
LEPTOS_SASS_VERSION: 1.86.0
jobs:
test:
name: "Run (${{ matrix.toolchain }}) (erased_mode: ${{ matrix.erased_mode && 'enabled' || 'disabled' }})"
runs-on: ubuntu-latest
strategy:
matrix:
toolchain: [stable, nightly-2025-07-16]
erased_mode: [true, false]
steps:
- name: Free Disk Space
run: |
echo "Disk space before cleanup:"
df -h
sudo rm -rf /usr/local/.ghcup
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo rm -rf /usr/local/lib/android
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /usr/local/share/boost
sudo rm -rf /usr/local/lib/node_modules
# following lines currenly not needed as it takes too much time
# the new isolated CI doesn't need much space to test libraries
#
# uncommet only if nneded
#
# sudo apt-get clean
# sudo apt-get purge -y '^ghc-.*' '^dotnet-.*' '^llvm-.*' '^mono-.*' '^php.*' '^ruby.*'
# sudo apt-get autoremove -y
# sudo apt-get clean
# sudo rm -rf "$AGENT_TOOLSDIRECTORY"
# docker system prune -af
# docker image prune -af
# docker volume prune -f
echo "Disk space after cleanup:"
df -h
# Setup environment
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- uses: actions/checkout@v6
- name: Setup Rust
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.toolchain }}
targets: wasm32-unknown-unknown
components: clippy,rustfmt
- name: Install binstall
uses: cargo-bins/cargo-binstall@main
- name: Install wasm-bindgen
run: cargo binstall wasm-bindgen-cli --no-confirm
- name: Install cargo-leptos
run: cargo binstall cargo-leptos --locked --no-confirm
- name: Install cargo-make
run: cargo binstall cargo-make --no-confirm
- name: Install nextest
run: cargo binstall cargo-nextest --no-confirm
- name: Install cargo-all-features
run: cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
# Part of direct-minimal-versions check
- name: Install cargo-hack
if: contains(matrix.toolchain, 'nightly')
uses: taiki-e/install-action@cargo-hack
# Part of direct-minimal-versions check
- name: Install cargo-minimal-versions
if: contains(matrix.toolchain, 'nightly')
uses: taiki-e/install-action@cargo-minimal-versions
- name: Install Trunk
if: contains(inputs.directory, 'examples')
run: cargo binstall trunk --no-confirm
- name: Print Trunk Version
if: contains(inputs.directory, 'examples')
run: trunk --version
- name: Install Node.js
if: contains(inputs.directory, 'examples')
uses: actions/setup-node@v6
with:
node-version: 20
- uses: pnpm/action-setup@v4
name: Install pnpm
if: contains(inputs.directory, 'examples')
id: pnpm-install
with:
version: 8
run_install: false
- name: Get pnpm store directory
if: contains(inputs.directory, 'examples')
id: pnpm-cache
run: |
echo "STORE_PATH=$(pnpm store path)" >> $GITHUB_OUTPUT
- uses: actions/cache@v5
if: contains(inputs.directory, 'examples')
name: Setup pnpm cache
with:
path: ${{ steps.pnpm-cache.outputs.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: Maybe install chromedriver
if: contains(inputs.directory, 'examples')
run: |
project_makefile='${{inputs.directory}}/Makefile.toml'
webdriver_count=$(cat $project_makefile | grep "cargo-make/webdriver.toml" | wc -l)
if [ $webdriver_count -eq 1 ]; then
if ! command -v chromedriver &>/dev/null; then
echo chromedriver required
sudo apt-get update
sudo apt-get install chromium-chromedriver
else
echo chromedriver is already installed
fi
else
echo chromedriver is not required
fi
- name: Maybe install playwright browser dependencies
if: contains(inputs.directory, 'examples')
run: |
for pw_path in $(find '${{inputs.directory}}' -name playwright.config.ts)
do
pw_dir=$(dirname $pw_path)
if [ ! -v $pw_dir ]; then
echo "Playwright required in $pw_dir"
cd $pw_dir
pnpm dlx playwright install --with-deps
else
echo Playwright is not required
fi
done
- name: Install Deno
if: contains(inputs.directory, 'examples')
uses: denoland/setup-deno@v2
with:
deno-version: v1.x
- name: Maybe install gtk-rs dependencies
if: contains(inputs.directory, 'gtk')
run: |
sudo apt-get install -y libglib2.0-dev libgio2.0-cil-dev libgraphene-1.0-dev libcairo2-dev libpango1.0-dev libgtk-4-dev
- name: Install Tailwind and Sass dependencies
if: contains(inputs.directory, 'examples')
run: |
cd '${{ inputs.directory }}'
tailwindcss_version=$(echo "$LEPTOS_TAILWIND_VERSION" | sed 's/^v//')
sass_version="$LEPTOS_SASS_VERSION"
pnpm add "tailwindcss@$tailwindcss_version" "@tailwindcss/cli@$tailwindcss_version" "sass@$sass_version"
echo "Tailwind CSS version:"
./node_modules/.bin/tailwindcss --version
echo "Sass version:"
./node_modules/.bin/sass --version
# Run Cargo Make Task
- name: ${{ inputs.cargo_make_task }}
run: |
cd '${{ inputs.directory }}'
cargo make --no-workspace --profile=github-actions ci
# check the direct-minimal-versions on release
COMMIT_MSG=$(git log -1 --pretty=format:'%s')
# Supports: v1.2.3, v1.2.3-alpha, v1.2.3-beta1, v1.2.3-rc.1, etc.
if [[ "$COMMIT_MSG" =~ ^v[0-9]+\.[0-9]+\.[0-9]+(-[a-zA-Z0-9]+(\.?[0-9]+)?)?$ ]]; then
cargo make --no-workspace --profile=github-actions check-minimal-versions
fi
# Check if the counter_isomorphic can be built with leptos_debuginfo cfg flag in release mode
- name: ${{ inputs.cargo_make_task }} with --cfg=leptos_debuginfo
if: contains(inputs.directory, 'counter_isomorphic')
run: |
cd '${{ inputs.directory }}'
RUSTFLAGS="$RUSTFLAGS --cfg leptos_debuginfo" cargo leptos build --release
- name: Clean up ${{ inputs.directory }}
if: always()
run: |
cd '${{ inputs.directory }}'
cargo clean || true
rm -rf node_modules || true

95
.github/workflows/run-example-task.yml vendored Normal file
View File

@@ -0,0 +1,95 @@
name: Run Example Task
on:
workflow_call:
inputs:
directory:
required: true
type: string
cargo_make_task:
required: true
type: string
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
jobs:
test:
name: Run ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
# Setup environment
- name: Install playwright browser dependencies
run: |
sudo apt-get update
sudo apt-get install libegl1 libvpx7 libevent-2.1-7 libopus0 libopengl0 libwoff1 libharfbuzz-icu0 libgstreamer-plugins-base1.0-0 libgstreamer-gl1.0-0 libhyphen0 libmanette-0.2-0 libgles2 gstreamer1.0-libav
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Install Trunk
uses: jetli/trunk-action@v0.4.0
with:
version: "latest"
- name: Print Trunk Version
run: trunk --version
- name: Install Node.js
uses: actions/setup-node@v3
with:
node-version: 18
- uses: pnpm/action-setup@v2
name: Install pnpm
id: pnpm-install
with:
version: 8
run_install: false
- name: Get pnpm store directory
id: pnpm-cache
run: |
echo "STORE_PATH=$(pnpm store path)" >> $GITHUB_OUTPUT
- uses: actions/cache@v3
name: Setup pnpm cache
with:
path: ${{ steps.pnpm-cache.outputs.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
# Verify project
- name: ${{ inputs.cargo_make_task }}
run: |
if [ "${{ inputs.directory }}" = "INTERNAL" ]; then
echo No verification required
else
cd ${{ inputs.directory }}
cargo make --profile=github-actions ${{ inputs.cargo_make_task }}
fi

46
.github/workflows/test.yml vendored Normal file
View File

@@ -0,0 +1,46 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
jobs:
test:
name: Run tests ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run tests with all features
run: cargo make --profile=github-actions test

View File

@@ -0,0 +1,47 @@
name: Verify All Examples
on:
workflow_dispatch:
push:
tags:
- v*
schedule:
# Run once a day at 3:00 AM EST
- cron: "0 8 * * *"
jobs:
setup:
name: Get Examples
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install JQ Tool
uses: mbround18/install-jq@v1
- name: Set Matrix
id: set-matrix
run: |
examples=$(ls examples |
awk '{print "examples/" $0}' |
grep -v examples/README.md |
grep -v examples/Makefile.toml |
grep -v examples/cargo-make |
grep -v examples/gtk |
jq -R -s -c 'split("\n")[:-1]')
echo "Example Directories: $examples"
echo "matrix={\"directory\":$examples}" >> "$GITHUB_OUTPUT"
matrix-job:
name: Verify
needs: [setup]
strategy:
matrix: ${{ fromJSON(needs.setup.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-example-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "verify-flow"

View File

@@ -0,0 +1,71 @@
name: Verify Changed Examples
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
setup:
name: Get Changes
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Get all example files that changed
id: changed-files
uses: tj-actions/changed-files@v36
with:
files: |
examples
- name: List all example files that changed
run: echo '${{ steps.changed-files.outputs.all_changed_files }}'
- name: Get example project directories that changed
id: changed-dirs
uses: tj-actions/changed-files@v36
with:
dir_names: true
dir_names_max_depth: "2"
files: |
examples
!examples/cargo-make
!examples/gtk
!examples/Makefile.toml
!examples/README.md
json: true
quotepath: false
- name: List example project directories that changed
run: echo '${{ steps.changed-dirs.outputs.all_changed_files }}'
- name: Set Matrix
id: set-matrix
run: |
if [ ${{ steps.changed-files.outputs.any_changed }} == 'true' ]; then
# Create matrix with changed directories
echo "matrix={\"directory\":${{ steps.changed-dirs.outputs.all_changed_files }}}" >> "$GITHUB_OUTPUT"
else
# Create matrix with one item to prevent an empty vector error
echo "matrix={\"directory\":[\"INTERNAL\"]}" >> "$GITHUB_OUTPUT"
fi
matrix-job:
name: Verify
needs: [setup]
strategy:
matrix: ${{ fromJSON(needs.setup.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-example-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "verify-flow"

8
.gitignore vendored
View File

@@ -3,15 +3,9 @@ dist
pkg
comparisons
blob.rs
**/projects/**/Cargo.lock
**/examples/**/Cargo.lock
**/benchmarks/**/Cargo.lock
Cargo.lock
**/*.rs.bk
.DS_Store
.idea
.direnv
.envrc
.vscode
vendor
hash.txt

View File

@@ -220,8 +220,8 @@ for reference: they include large amounts of manual SSR route handling, etc.
## `cargo-leptos` helpers
`leptos_config` and `leptos_hot_reload` exist to support two different features
of `cargo-leptos`, namely its configuration and its view-patching/hot-reloading
features.
of `cargo-leptos`, namely its configuration and its view-patching/hot-
reloading features.
Its important to say that the main feature `cargo-leptos` remains its ability
to conveniently tie together different build tooling, compiling your app to

View File

@@ -62,7 +62,7 @@ are a few guidelines that will make it a better experience for everyone:
- If its an unsolicited PR not linked to an open issue, please include a
specific explanation for what its trying to achieve. For example: “When I
was trying to deploy my app under _circumstances X_, I found that the way
_function Y_ was implemented caused _issue Z_. This PR should fix that by
_function Z_ was implemented caused _issue Z_. This PR should fix that by
_solution._
- Our CI tests every PR against all the existing examples, sometimes requiring
compilation for both server and client side, etc. Its thorough but slow. If
@@ -70,32 +70,6 @@ are a few guidelines that will make it a better experience for everyone:
`cargo-make` and using `cargo make check && cargo make test && cargo make
check-examples`.
## Before Submitting a PR
We have a fairly extensive CI setup that runs both lints (like `rustfmt` and `clippy`)
and tests on PRs. You can run most of these locally if you have `cargo-make` installed.
Note that some of the `rustfmt` settings used require usage of the nightly compiler.
Formatting the code using the stable toolchain may result in a wrong code format and
subsequently CI errors.
Run `cargo +nightly fmt` if you want to keep the stable toolchain active.
You may want to let your IDE automatically use the `+nightly` parameter when a
"format on save" action is used.
If you added an example, make sure to add it to the list in `examples/Makefile.toml`.
From the root directory of the repo, run
- `cargo +nightly fmt`
- `cargo +nightly make check`
- `cargo +nightly make test`
- `cargo +nightly make check-examples`
- `cargo +nightly make --profile=github-actions ci`
If you modified an example:
- `cd examples/your_example`
- `cargo +nightly fmt -- --config-path ../..`
- `cargo +nightly make --profile=github-actions verify-flow`
## Architecture
See [ARCHITECTURE.md](./ARCHITECTURE.md).

4906
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,177 +1,47 @@
[workspace]
resolver = "2"
members = [
# utilities
"any_spawner",
"const_str_slice_concat",
"either_of",
"next_tuple",
"oco",
"or_poisoned",
# core
"hydration_context",
"leptos",
"leptos_dom",
"leptos_config",
"leptos_hot_reload",
"leptos_macro",
"leptos_reactive",
"leptos_server",
"reactive_graph",
"reactive_stores",
"reactive_stores_macro",
"server_fn",
"server_fn_macro",
"server_fn/server_fn_macro_default",
"tachys",
# integrations
"integrations/actix",
"integrations/axum",
"integrations/viz",
"integrations/utils",
# libraries
"meta",
"router",
"router_macro",
"any_error",
]
exclude = ["benchmarks", "examples", "projects"]
exclude = ["benchmarks", "examples"]
[workspace.package]
edition = "2021"
rust-version = "1.88"
version = "0.4.0"
[workspace.dependencies]
# members
throw_error = { path = "./any_error/", version = "0.3.1" }
any_spawner = { path = "./any_spawner/", version = "0.3.0" }
const_str_slice_concat = { path = "./const_str_slice_concat", version = "0.1" }
either_of = { path = "./either_of/", version = "0.1.6" }
hydration_context = { path = "./hydration_context", version = "0.3.0" }
leptos = { path = "./leptos", version = "0.8.15" }
leptos_config = { path = "./leptos_config", version = "0.8.8" }
leptos_dom = { path = "./leptos_dom", version = "0.8.7" }
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.8.5" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.8.7" }
leptos_macro = { path = "./leptos_macro", version = "0.8.13" }
leptos_router = { path = "./router", version = "0.8.11" }
leptos_router_macro = { path = "./router_macro", version = "0.8.6" }
leptos_server = { path = "./leptos_server", version = "0.8.6" }
leptos_meta = { path = "./meta", version = "0.8.5" }
next_tuple = { path = "./next_tuple", version = "0.1.0" }
oco_ref = { path = "./oco", version = "0.2.1" }
or_poisoned = { path = "./or_poisoned", version = "0.1.0" }
reactive_graph = { path = "./reactive_graph", version = "0.2.12" }
reactive_stores = { path = "./reactive_stores", version = "0.3.1" }
reactive_stores_macro = { path = "./reactive_stores_macro", version = "0.2.6" }
server_fn = { path = "./server_fn", version = "0.8.9" }
server_fn_macro = { path = "./server_fn_macro", version = "0.8.8" }
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", version = "0.8.5" }
tachys = { path = "./tachys", version = "0.2.11" }
# members deps
async-once-cell = { default-features = false, version = "0.5.4" }
itertools = { default-features = false, version = "0.14.0" }
convert_case = { default-features = false, version = "0.10.0" }
serde_json = { default-features = false, version = "1.0.145" }
trybuild = { default-features = false, version = "1.0.114" }
typed-builder = { default-features = false, version = "0.23.2" }
typed-builder-macro = { default-features = false, version = "0.23.2" }
thiserror = { default-features = false, version = "2.0.17" }
wasm-bindgen = { default-features = false, version = "0.2.106" }
indexmap = { default-features = false, version = "2.12.1" }
rstml = { default-features = false, version = "0.12.1" }
rustc_version = { default-features = false, version = "0.4.1" }
guardian = { default-features = false, version = "1.3.0" }
rustc-hash = { default-features = false, version = "2.1.1" }
actix-web = { default-features = false, version = "4.12.1" }
tracing = { default-features = false, version = "0.1.44" }
slotmap = { default-features = false, version = "1.1.1" }
futures = { default-features = false, version = "0.3.31" }
dashmap = { default-features = false, version = "6.1.0" }
pin-project-lite = { default-features = false, version = "0.2.16" }
send_wrapper = { default-features = false, version = "0.6.0" }
tokio-test = { default-features = false, version = "0.4.4" }
html-escape = { default-features = false, version = "0.2.13" }
proc-macro-error2 = { default-features = false, version = "2.0.1" }
const_format = { default-features = false, version = "0.2.35" }
gloo-net = { default-features = false, version = "0.6.0" }
url = { default-features = false, version = "2.5.7" }
tokio = { default-features = false, version = "1.48.0" }
base64 = { default-features = false, version = "0.22.1" }
cfg-if = { default-features = false, version = "1.0.4" }
wasm-bindgen-futures = { default-features = false, version = "0.4.56" }
tower = { default-features = false, version = "0.5.2" }
proc-macro2 = { default-features = false, version = "1.0.103" }
serde = { default-features = false, version = "1.0.228" }
parking_lot = { default-features = false, version = "0.12.5" }
axum = { default-features = false, version = "0.8.7" }
serde_qs = { default-features = false, version = "0.15.0" }
syn = { default-features = false, version = "2.0.111" }
xxhash-rust = { default-features = false, version = "0.8.15" }
paste = { default-features = false, version = "1.0.15" }
quote = { default-features = false, version = "1.0.42" }
web-sys = { default-features = false, version = "0.3.83" }
js-sys = { default-features = false, version = "0.3.83" }
rand = { default-features = false, version = "0.9.2" }
serde-lite = { default-features = false, version = "0.5.1" }
tokio-tungstenite = { default-features = false, version = "0.28.0" }
serial_test = { default-features = false, version = "3.2.0" }
erased = { default-features = false, version = "0.1.2" }
glib = { default-features = false, version = "0.21.5" }
async-trait = { default-features = false, version = "0.1.89" }
linear-map = { default-features = false, version = "1.2.0" }
anyhow = { default-features = false, version = "1.0.100" }
walkdir = { default-features = false, version = "2.5.0" }
actix-ws = { default-features = false, version = "0.3.0" }
tower-http = { default-features = false, version = "0.6.8" }
prettyplease = { default-features = false, version = "0.2.37" }
inventory = { default-features = false, version = "0.3.21" }
config = { default-features = false, version = "0.15.19" }
camino = { default-features = false, version = "1.2.2" }
ciborium = { default-features = false, version = "0.2.2" }
bitcode = { default-features = false, version = "0.6.9" }
multer = { default-features = false, version = "3.1.0" }
leptos-spin-macro = { default-features = false, version = "0.2.0" }
sledgehammer_utils = { default-features = false, version = "0.3.1" }
sledgehammer_bindgen = { default-features = false, version = "0.6.0" }
wasm-streams = { default-features = false, version = "0.4.2" }
rkyv = { default-features = false, version = "0.8.12" }
temp-env = { default-features = false, version = "0.3.6" }
uuid = { default-features = false, version = "1.19.0" }
bytes = { default-features = false, version = "1.11.0" }
http = { default-features = false, version = "1.4.0" }
regex = { default-features = false, version = "1.12.2" }
drain_filter_polyfill = { default-features = false, version = "0.1.3" }
tempfile = { default-features = false, version = "3.23.0" }
futures-lite = { default-features = false, version = "2.6.1" }
log = { default-features = false, version = "0.4.29" }
percent-encoding = { default-features = false, version = "2.3.2" }
async-executor = { default-features = false, version = "1.13.3" }
const-str = { default-features = false, version = "0.7.1" }
http-body-util = { default-features = false, version = "0.1.3" }
hyper = { default-features = false, version = "1.8.1" }
postcard = { default-features = false, version = "1.1.3" }
rmp-serde = { default-features = false, version = "1.3.0" }
reqwest = { default-features = false, version = "0.12.26" }
tower-layer = { default-features = false, version = "0.3.3" }
attribute-derive = { default-features = false, version = "0.10.5" }
insta = { default-features = false, version = "1.45.0" }
codee = { default-features = false, version = "0.3.5" }
actix-http = { default-features = false, version = "3.11.2" }
wasm-bindgen-test = { default-features = false, version = "0.3.56" }
rustversion = { default-features = false, version = "1.0.22" }
getrandom = { default-features = false, version = "0.3.4" }
actix-files = { default-features = false, version = "0.6.9" }
async-lock = { default-features = false, version = "3.4.1" }
base16 = { default-features = false, version = "0.2.1" }
digest = { default-features = false, version = "0.10.7" }
sha2 = { default-features = false, version = "0.10.9" }
subsecond = { default-features = false, version = "0.7.2" }
dioxus-cli-config = { default-features = false, version = "0.7.2" }
dioxus-devtools = { default-features = false, version = "0.7.2" }
wasm_split_helpers = { default-features = false, version = "0.2.0" }
leptos = { path = "./leptos", version = "0.4.0" }
leptos_dom = { path = "./leptos_dom", version = "0.4.0" }
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.4.0" }
leptos_macro = { path = "./leptos_macro", version = "0.4.0" }
leptos_reactive = { path = "./leptos_reactive", version = "0.4.0" }
leptos_server = { path = "./leptos_server", version = "0.4.0" }
server_fn = { path = "./server_fn", version = "0.4.0" }
server_fn_macro = { path = "./server_fn_macro", version = "0.4.0" }
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", version = "0.4.0" }
leptos_config = { path = "./leptos_config", version = "0.4.0" }
leptos_router = { path = "./router", version = "0.4.0" }
leptos_meta = { path = "./meta", version = "0.4.0" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.4.0" }
[profile.release]
codegen-units = 1
@@ -180,10 +50,3 @@ opt-level = 'z'
[workspace.metadata.cargo-all-features]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
max_combination_size = 2
[workspace.lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = [
'cfg(leptos_debuginfo)',
'cfg(erase_components)',
] }

View File

@@ -3,37 +3,122 @@
# cargo install --force cargo-make
############
[env]
CARGO_MAKE_EXTEND_WORKSPACE_MAKEFILE = true
[config]
# make tasks run at the workspace root
default_to_workspace = false
[tasks.check-stable]
workspace = false
[tasks.check]
clear = true
dependencies = [
{ name = "lint", path = "examples/counter_without_macros" },
{ name = "lint", path = "examples/counters_stable" },
"check-all",
"check-wasm",
"check-all-release",
"check-wasm-release",
]
[tasks.ci-examples]
workspace = false
cwd = "examples"
[tasks.check-all]
command = "cargo"
args = ["make", "ci-clean"]
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"
[tasks.check-wasm]
clear = true
dependencies = [{ name = "check-wasm", path = "leptos" }]
[tasks.check-all-release]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"
[tasks.check-wasm-release]
clear = true
dependencies = [{ name = "check-wasm-release", path = "leptos" }]
[tasks.check-examples]
workspace = false
cwd = "examples"
command = "cargo"
args = ["make", "check-clean"]
clear = true
dependencies = [
{ name = "check", path = "examples/counter" },
{ name = "check", path = "examples/counter_isomorphic" },
{ name = "check", path = "examples/counters" },
{ name = "check", path = "examples/error_boundary" },
{ name = "check", path = "examples/errors_axum" },
{ name = "check", path = "examples/fetch" },
{ name = "check", path = "examples/hackernews" },
{ name = "check", path = "examples/hackernews_axum" },
{ name = "check", path = "examples/js-framework-benchmark" },
{ name = "check", path = "examples/leptos-tailwind-axum" },
{ name = "check", path = "examples/login_with_token_csr_only" },
{ name = "check", path = "examples/parent_child" },
{ name = "check", path = "examples/router" },
{ name = "check", path = "examples/session_auth_axum" },
{ name = "check", path = "examples/slots" },
{ name = "check", path = "examples/ssr_modes" },
{ name = "check", path = "examples/ssr_modes_axum" },
{ name = "check", path = "examples/tailwind" },
{ name = "check", path = "examples/tailwind_csr_trunk" },
{ name = "check", path = "examples/timer" },
{ name = "check", path = "examples/todo_app_sqlite" },
{ name = "check", path = "examples/todo_app_sqlite_axum" },
{ name = "check", path = "examples/todo_app_sqlite_viz" },
{ name = "check", path = "examples/todomvc" },
]
[tasks.build-examples]
workspace = false
[tasks.check-stable]
clear = true
dependencies = [
{ name = "check", path = "examples/counter_without_macros" },
{ name = "check", path = "examples/counters_stable" },
]
[tasks.test]
clear = true
dependencies = [
"test-all",
"test-leptos_macro-example",
"doc-leptos_macro-example",
]
[tasks.test-all]
command = "cargo"
args = ["+nightly", "test-all-features"]
install_crate = "cargo-all-features"
[tasks.test-leptos_macro-example]
description = "Tests the leptos_macro/example to check if macro handles doc comments correctly"
command = "cargo"
args = ["+nightly", "test", "--doc"]
cwd = "leptos_macro/example"
install_crate = false
[tasks.doc-leptos_macro-example]
description = "Docs the leptos_macro/example to check if macro handles doc comments correctly"
command = "cargo"
args = ["+nightly", "doc"]
cwd = "leptos_macro/example"
install_crate = false
[tasks.test-examples]
description = "Run all unit and web tests for examples"
cwd = "examples"
command = "cargo"
args = ["make", "build-clean"]
args = ["make", "test-unit-and-web"]
[tasks.verify-examples]
description = "Run all quality checks and tests for examples"
env = { CLEAN_AFTER_VERIFY = "true" }
cwd = "examples"
command = "cargo"
args = ["make", "verify-flow"]
[tasks.clean-examples]
workspace = false
description = "Clean all example projects"
cwd = "examples"
command = "cargo"
args = ["make", "clean"]
args = ["make", "clean-all"]
[env]
RUSTFLAGS = ""
LEPTOS_OUTPUT_NAME = "ci" # allows examples to check/build without cargo-leptos
[env.github-actions]
RUSTFLAGS = "-D warnings"

118
README.md
View File

@@ -5,23 +5,20 @@
[![crates.io](https://img.shields.io/crates/v/leptos.svg)](https://crates.io/crates/leptos)
[![docs.rs](https://docs.rs/leptos/badge.svg)](https://docs.rs/leptos)
![Crates.io MSRV](https://img.shields.io/crates/msrv/leptos)
[![Discord](https://img.shields.io/discord/1031524867910148188?color=%237289DA&label=discord)](https://discord.gg/YdRAhS7eQB)
[![Matrix](https://img.shields.io/badge/Matrix-leptos-grey?logo=matrix&labelColor=white&logoColor=black)](https://matrix.to/#/#leptos:matrix.org)
[Website](https://leptos.dev) | [Book](https://leptos-rs.github.io/leptos/) | [Docs.rs](https://docs.rs/leptos/latest/leptos/) | [Playground](https://codesandbox.io/p/sandbox/leptos-rtfggt?file=%2Fsrc%2Fmain.rs%3A1%2C1) | [Discord](https://discord.gg/YdRAhS7eQB)
You can find a list of useful libraries and example projects at [`awesome-leptos`](https://github.com/leptos-rs/awesome-leptos).
# Leptos
```rust
use leptos::*;
#[component]
pub fn SimpleCounter(initial_value: i32) -> impl IntoView {
pub fn SimpleCounter(cx: Scope, initial_value: i32) -> impl IntoView {
// create a reactive signal with the initial value
let (value, set_value) = signal(initial_value);
let (value, set_value) = create_signal(cx, initial_value);
// create event handlers for our buttons
// note that `value` and `set_value` are `Copy`, so it's super easy to move them into closures
@@ -30,42 +27,21 @@ pub fn SimpleCounter(initial_value: i32) -> impl IntoView {
let increment = move |_| set_value.update(|value| *value += 1);
// create user interfaces with the declarative `view!` macro
view! {
view! { cx,
<div>
<button on:click=clear>Clear</button>
<button on:click=decrement>-1</button>
// text nodes can be quoted or unquoted
<button on:click=clear>"Clear"</button>
<button on:click=decrement>"-1"</button>
<span>"Value: " {value} "!"</span>
<button on:click=increment>+1</button>
<button on:click=increment>"+1"</button>
</div>
}
}
// we also support a builder syntax rather than the JSX-like `view` macro
#[component]
pub fn SimpleCounterWithBuilder(initial_value: i32) -> impl IntoView {
use leptos::html::*;
let (value, set_value) = signal(initial_value);
let clear = move |_| set_value(0);
let decrement = move |_| set_value.update(|value| *value -= 1);
let increment = move |_| set_value.update(|value| *value += 1);
// the `view` macro above expands to this builder syntax
div().child((
button().on(ev::click, clear).child("Clear"),
button().on(ev::click, decrement).child("-1"),
span().child(("Value: ", value, "!")),
button().on(ev::click, increment).child("+1")
))
}
// Easy to use with Trunk (trunkrs.dev) or with a simple wasm-bindgen setup
pub fn main() {
mount_to_body(|| view! {
<SimpleCounter initial_value=3 />
})
mount_to_body(|cx| view! { cx, <SimpleCounter initial_value=3 /> })
}
```
## About the Framework
@@ -90,13 +66,37 @@ Here are some resources for learning more about Leptos:
- [API Documentation](https://docs.rs/leptos/latest/leptos/)
- [Common Bugs](https://github.com/leptos-rs/leptos/tree/main/docs/COMMON_BUGS.md) (and how to fix them!)
## `nightly` Note
Most of the examples assume youre using `nightly` version of Rust and the `nightly` feature of Leptos. To use `nightly` Rust, you can either set your toolchain globally or on per-project basis.
To set `nightly` as a default toolchain for all projects (and add the ability to compile Rust to WebAssembly, if you havent already):
```
rustup toolchain install nightly
rustup default nightly
rustup target add wasm32-unknown-unknown
```
If you'd like to use `nightly` only in your Leptos project however, add [`rust-toolchain.toml`](https://rust-lang.github.io/rustup/overrides.html#the-toolchain-file) file with the following content:
```toml
[toolchain]
channel = "nightly"
targets = ["wasm32-unknown-unknown"]
```
The `nightly` feature enables the function call syntax for accessing and setting signals, as opposed to `.get()` and `.set()`. This leads to a consistent mental model in which accessing a reactive value of any kind (a signal, memo, or derived signal) is always represented as a function call. This is only possible with nightly Rust and the `nightly` feature.
> Note: The `nightly` feature is present on the main branch version right now, but not in 0.3.x. For 0.3.x, nightly is the default and `stable` has a special feature.
## `cargo-leptos`
[`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos) is a build tool that's designed to make it easy to build apps that run on both the client and the server, with seamless integration. The best way to get started with a real Leptos project right now is to use `cargo-leptos` and our starter templates for [Actix](https://github.com/leptos-rs/start) or [Axum](https://github.com/leptos-rs/start-axum).
```bash
cargo install cargo-leptos --locked
cargo leptos new --git https://github.com/leptos-rs/start-axum
cargo install cargo-leptos
cargo leptos new --git https://github.com/leptos-rs/start
cd [your project name]
cargo leptos watch
```
@@ -107,7 +107,7 @@ Open browser to [http://localhost:3000/](http://localhost:3000/).
### Whats up with the name?
_Leptos_ (λεπτός) is an ancient Greek word meaning “thin, light, refined, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
_Leptos_ (λεπτός) is an ancient Greek word meaning “thin, light, refine, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
### Is it production ready?
@@ -115,7 +115,7 @@ People usually mean one of three things by this question.
1. **Are the APIs stable?** i.e., will I have to rewrite my whole app from Leptos 0.1 to 0.2 to 0.3 to 0.4, or can I write it now and benefit from new features and updates as new versions come?
The APIs are basically settled. Were adding new features, but were very happy with where the type system and patterns have landed. I would not expect major breaking changes to your code to adapt to future releases, in terms of architecture.
The APIs are basically settled. Were adding new features, but were very happy with where the type system and patterns have landed. I would not expect major breaking changes to your code to adapt to future releases. The sorts of breaking changes that we discuss are things like “Oh yeah, that function should probably take `cx` as its argument...” not major changes to the way you write your application.
2. **Are there bugs?**
@@ -125,38 +125,48 @@ Yes, Im sure there are. You can see from the state of our issue tracker over
This may be the big one: “production ready” implies a certain orientation to a library: that you can basically use it, without any special knowledge of its internals or ability to contribute. Everyone has this at some level in their stack: for example I (@gbj) dont have the capacity or knowledge to contribute to something like `wasm-bindgen` at this point: I simply rely on it to work.
There are several people in the community using Leptos right now for many websites at work, who have also become significant contributors. There may be missing features that you need, and you may end up building them! But, if you're willing to contribute a few missing pieces along the way, the framework is most definitely usable for production applications, especially given the ecosystem of libraries that have sprung up around it.
There are several people in the community using Leptos right now for internal apps at work, who have also become significant contributors. I think this is the right level of production use for now. There may be missing features that you need, and you may end up building them! But for internal apps, if youre willing to build and contribute missing pieces along the way, the framework is definitely usable right now.
### Can I use this for native GUI?
Sure! Obviously the `view` macro is for generating DOM nodes but you can use the reactive system to drive any native GUI toolkit that uses the same kind of object-oriented, event-callback-based framework as the DOM pretty easily. The principles are the same:
Sure! Obviously the `view` macro is for generating DOM nodes but you can use the reactive system to drive native any GUI toolkit that uses the same kind of object-oriented, event-callback-based framework as the DOM pretty easily. The principles are the same:
- Use signals, derived signals, and memos to create your reactive system
- Create GUI widgets
- Use event listeners to update signals
- Create effects to update the UI
The 0.7 update originally set out to create a "generic rendering" approach that would allow us to reuse most of the same view logic to do all of the above. Unfortunately, this has had to be shelved for now due to difficulties encountered by the Rust compiler when building larger-scale applications with the number of generics spread throughout the codebase that this required. It's an approach I'm looking forward to exploring again in the future; feel free to reach out if you're interested in this kind of work.
I've put together a [very simple GTK example](https://github.com/leptos-rs/leptos/blob/main/examples/gtk/src/main.rs) so you can see what I mean.
### How is this different from Yew?
### How is this different from Yew/Dioxus?
Yew is the most-used library for Rust web UI development, but there are several differences between Yew and Leptos, in philosophy, approach, and performance.
On the surface level, these libraries may seem similar. Yew is, of course, the most mature Rust library for web UI development and has a huge ecosystem. Dioxus is similar in many ways, being heavily inspired by React. Here are some conceptual differences between Leptos and these frameworks:
- **VDOM vs. fine-grained:** Yew is built on the virtual DOM (VDOM) model: state changes cause components to re-render, generating a new virtual DOM tree. Yew diffs this against the previous VDOM, and applies those patches to the actual DOM. Component functions rerun whenever state changes. Leptos takes an entirely different approach. Components run once, creating (and returning) actual DOM nodes and setting up a reactive system to update those DOM nodes.
- **Performance:** This has huge performance implications: Leptos is simply much faster at both creating and updating the UI than Yew is.
- **Server integration:** Yew was created in an era in which browser-rendered single-page apps (SPAs) were the dominant paradigm. While Leptos supports client-side rendering, it also focuses on integrating with the server side of your application via server functions and multiple modes of serving HTML, including out-of-order streaming.
### How is this different from Dioxus?
Like Leptos, Dioxus is a framework for building UIs using web technologies. However, there are significant differences in approach and features.
- **VDOM vs. fine-grained:** While Dioxus has a performant virtual DOM (VDOM), it still uses coarse-grained/component-scoped reactivity: changing a stateful value reruns the component function and diffs the old UI against the new one. Leptos components use a different mental model, creating (and returning) actual DOM nodes and setting up a reactive system to update those DOM nodes.
- **Web vs. desktop priorities:** Dioxus uses Leptos server functions in its fullstack mode, but does not have the same `<Suspense>`-based support for things like streaming HTML rendering, or share the same focus on holistic web performance. Leptos tends to prioritize holistic web performance (streaming HTML rendering, smaller WASM binary sizes, etc.), whereas Dioxus has an unparalleled experience when building desktop apps, because your application logic runs as a native Rust binary.
- **Performance:** This has huge performance implications: Leptos is simply much faster at both creating and updating the UI than Yew is. (Dioxus has made huge advances in performance with its recent 0.3 release, and is now roughly on par with Leptos.)
- **Mental model:** Adopting fine-grained reactivity also tends to simplify the mental model. There are no surprising component re-renders because there are no re-renders. You can call functions, create timeouts, etc. within the body of your component functions because they wont be re-run. You dont need to think about manual dependency tracking for effects; fine-grained reactivity tracks dependencies automatically.
### How is this different from Sycamore?
Sycamore and Leptos are both heavily influenced by SolidJS. At this point, Leptos has a larger community and ecosystem and is more actively developed. Other differences:
Conceptually, these two frameworks are very similar: because both are built on fine-grained reactivity, most apps will end up looking very similar between the two, and Sycamore or Leptos apps will both look a lot like SolidJS apps, in the same way that Yew or Dioxus can look a lot like React.
- **Templating DSLs:** Sycamore uses a custom templating language for its views, while Leptos uses a JSX-like template format.
- **`'static` signals:** One of Leptoss main innovations was the creation of `Copy + 'static` signals, which have excellent ergonomics. Sycamore is in the process of adopting the same pattern, but this is not yet released.
- **Perseus vs. server functions:** The Perseus metaframework provides an opinionated way to build Sycamore apps that include server functionality. Leptos instead provides primitives like server functions in the core of the framework.
There are some practical differences that make a significant difference:
- **Templating:** Leptos uses a JSX-like template format (built on [syn-rsx](https://github.com/stoically/syn-rsx)) for its `view` macro. Sycamore offers the choice of its own templating DSL or a builder syntax.
- **Server integration:** Leptos provides primitives that encourage HTML streaming and allow for easy async integration and RPC calls, even without WASM enabled, making it easy to opt into integrations between your frontend and backend code without pushing you toward any particular metaframework patterns.
- **Read-write segregation:** Leptos, like Solid, encourages read-write segregation between signal getters and setters, so you end up accessing signals with tuples like `let (count, set_count) = create_signal(cx, 0);` _(If you prefer or if it's more convenient for your API, you can use [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html) to give a unified read/write signal.)_
- **Signals are functions:** In Leptos, you can call a signal to access it rather than calling a specific method (so, `count()` instead of `count.get()`) This creates a more consistent mental model: accessing a reactive value is always a matter of calling a function. For example:
```rust
let (count, set_count) = create_signal(cx, 0); // a signal
let double_count = move || count() * 2; // a derived signal
let memoized_count = create_memo(cx, move |_| count() * 3); // a memo
// all are accessed by calling them
assert_eq!(count(), 0);
assert_eq!(double_count(), 0);
assert_eq!(memoized_count(), 0);
// this function can accept any of those signals
fn do_work_on_signal(my_signal: impl Fn() -> i32) { ... }
```
- **Signals and scopes are `'static`:** Both Leptos and Sycamore ease the pain of moving signals in closures (in particular, event listeners) by making them `Copy`, to avoid the `{ let count = count.clone(); move |_| ... }` that's very familiar in Rust UI code. Sycamore does this by using bump allocation to tie the lifetimes of its signals to its scopes: since references are `Copy`, `&'a Signal<T>` can be moved into a closure. Leptos does this by using arena allocation and passing around indices: types like `ReadSignal<T>`, `WriteSignal<T>`, and `Memo<T>` are actually wrappers for indices into an arena. This means that both scopes and signals are both `Copy` and `'static` in Leptos, which means that they can be moved easily into closures without adding lifetime complexity.

View File

@@ -1,13 +0,0 @@
# Security Policy
## Reporting a Vulnerability
To report a suspected security issue, please contact security@leptos.dev rather than opening
a public issue.
## Supported Versions
The most-recently-released version of the library is supported with security updates.
For example, if a security issue is discovered that affects 0.3.2 and all later releases,
a 0.4.x patch will be released but a new 0.3.x patch release will not be made. You should
plan to update to the latest version to receive any new features or bugfixes of any kind.

40
TODO.md
View File

@@ -1,40 +0,0 @@
- core examples
- [x] counter
- [x] counters
- [x] fetch
- [x] todomvc
- [x] error_boundary
- [x] parent\_child
- [x] on: on components
- [ ] router
- [ ] slots
- [ ] hackernews
- [ ] counter\_isomorphic
- [ ] todo\_app\_sqlite
- other ssr examples
- [ ] error boundary SSR
- reactivity
- Signal wrappers
- SignalDispose implementations on all Copy types
- untracked access warnings
- ErrorBoundary
- [ ] RenderHtml implementation
- [ ] Separate component?
- Suspense/Transition components?
- callbacks
- unsync StoredValue
- SSR
- escaping HTML correctly (attributes + text nodes)
- router
- nested routes
- trailing slashes
- \_meta package (and use in hackernews)
- integrations
- update tests
- hackernews example
- TODOs
- Suspense/Transition/Await components
- nicer routing components
- async routing (waiting for data to load before navigation)
- `<A>` component
- figure out rebuilding issues: list (needs new signal IDs) vs. regular rebuild

View File

@@ -1,16 +0,0 @@
[package]
name = "throw_error"
version = "0.3.1"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Utilities for wrapping, throwing, and catching errors."
rust-version.workspace = true
edition.workspace = true
[dependencies]
pin-project-lite = { workspace = true, default-features = true }
[dev-dependencies]
anyhow.workspace = true

View File

@@ -1 +0,0 @@
extend = { path = "../cargo-make/main.toml" }

View File

@@ -1,2 +0,0 @@
A utility library for wrapping arbitrary errors, and for “throwing” errors in a way
that can be caught by user-defined error hooks.

View File

@@ -1,189 +0,0 @@
#![forbid(unsafe_code)]
#![deny(missing_docs)]
//! A utility library for wrapping arbitrary errors, and for “throwing” errors in a way
//! that can be caught by user-defined error hooks.
use std::{
cell::RefCell,
error,
fmt::{self, Display},
future::Future,
ops,
pin::Pin,
sync::Arc,
task::{Context, Poll},
};
/* Wrapper Types */
/// A generic wrapper for any error.
#[derive(Debug, Clone)]
#[repr(transparent)]
pub struct Error(Arc<dyn error::Error + Send + Sync>);
impl Error {
/// Converts the wrapper into the inner reference-counted error.
pub fn into_inner(self) -> Arc<dyn error::Error + Send + Sync> {
Arc::clone(&self.0)
}
}
impl ops::Deref for Error {
type Target = Arc<dyn error::Error + Send + Sync>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> From<T> for Error
where
T: Into<Box<dyn error::Error + Send + Sync + 'static>>,
{
fn from(value: T) -> Self {
Error(Arc::from(value.into()))
}
}
/// Implements behavior that allows for global or scoped error handling.
///
/// This allows for both "throwing" errors to register them, and "clearing" errors when they are no
/// longer valid. This is useful for something like a user interface, in which an error can be
/// "thrown" on some invalid user input, and later "cleared" if the user corrects the input.
/// Keeping a unique identifier for each error allows the UI to be updated accordingly.
pub trait ErrorHook: Send + Sync {
/// Handles the given error, returning a unique identifier.
fn throw(&self, error: Error) -> ErrorId;
/// Clears the error associated with the given identifier.
fn clear(&self, id: &ErrorId);
}
/// A unique identifier for an error. This is returned when you call [`throw`], which calls a
/// global error handler.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Default)]
pub struct ErrorId(usize);
impl Display for ErrorId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
impl From<usize> for ErrorId {
fn from(value: usize) -> Self {
Self(value)
}
}
thread_local! {
static ERROR_HOOK: RefCell<Option<Arc<dyn ErrorHook>>> = RefCell::new(None);
}
/// Resets the error hook to its previous state when dropped.
pub struct ResetErrorHookOnDrop(Option<Arc<dyn ErrorHook>>);
impl Drop for ResetErrorHookOnDrop {
fn drop(&mut self) {
ERROR_HOOK.with_borrow_mut(|this| *this = self.0.take())
}
}
/// Returns the current error hook.
pub fn get_error_hook() -> Option<Arc<dyn ErrorHook>> {
ERROR_HOOK.with_borrow(Clone::clone)
}
/// Sets the current thread-local error hook, which will be invoked when [`throw`] is called.
pub fn set_error_hook(hook: Arc<dyn ErrorHook>) -> ResetErrorHookOnDrop {
ResetErrorHookOnDrop(
ERROR_HOOK.with_borrow_mut(|this| Option::replace(this, hook)),
)
}
/// Invokes the error hook set by [`set_error_hook`] with the given error.
pub fn throw(error: impl Into<Error>) -> ErrorId {
ERROR_HOOK
.with_borrow(|hook| hook.as_ref().map(|hook| hook.throw(error.into())))
.unwrap_or_default()
}
/// Clears the given error from the current error hook.
pub fn clear(id: &ErrorId) {
ERROR_HOOK
.with_borrow(|hook| hook.as_ref().map(|hook| hook.clear(id)))
.unwrap_or_default()
}
pin_project_lite::pin_project! {
/// A [`Future`] that reads the error hook that is set when it is created, and sets this as the
/// current error hook whenever it is polled.
pub struct ErrorHookFuture<Fut> {
hook: Option<Arc<dyn ErrorHook>>,
#[pin]
inner: Fut
}
}
impl<Fut> ErrorHookFuture<Fut> {
/// Reads the current hook and wraps the given [`Future`], returning a new `Future` that will
/// set the error hook whenever it is polled.
pub fn new(inner: Fut) -> Self {
Self {
hook: ERROR_HOOK.with_borrow(Clone::clone),
inner,
}
}
}
impl<Fut> Future for ErrorHookFuture<Fut>
where
Fut: Future,
{
type Output = Fut::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let _hook = this
.hook
.as_ref()
.map(|hook| set_error_hook(Arc::clone(hook)));
this.inner.poll(cx)
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::error::Error as StdError;
#[derive(Debug)]
struct MyError;
impl Display for MyError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "MyError")
}
}
impl StdError for MyError {}
#[test]
fn test_from() {
let e = MyError;
let _le = Error::from(e);
let e = "some error".to_string();
let _le = Error::from(e);
let e = anyhow::anyhow!("anyhow error");
let _le = Error::from(e);
}
}

View File

@@ -1,47 +0,0 @@
[package]
name = "any_spawner"
version = "0.3.0"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Spawn asynchronous tasks in an executor-independent way."
edition.workspace = true
[dependencies]
async-executor = { optional = true , workspace = true, default-features = true }
futures = { workspace = true, default-features = true }
glib = { optional = true , workspace = true, default-features = true }
thiserror = { workspace = true , default-features = true }
tokio = { optional = true, default-features = false, features = [
"rt",
] , workspace = true }
tracing = { optional = true , workspace = true, default-features = true }
wasm-bindgen-futures = { optional = true , workspace = true, default-features = true }
[dev-dependencies]
futures-lite = { default-features = false , workspace = true }
tokio = { default-features = false, features = [
"rt",
"macros",
"time",
] , workspace = true }
wasm-bindgen-test = { workspace = true, default-features = true }
serial_test = { workspace = true, default-features = true }
[features]
async-executor = ["dep:async-executor"]
tracing = ["dep:tracing"]
tokio = ["dep:tokio"]
glib = ["dep:glib"]
wasm-bindgen = ["dep:wasm-bindgen-futures"]
futures-executor = ["futures/thread-pool", "futures/executor"]
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[package.metadata.cargo-all-features]
denylist = ["tracing"]
max_combination_size = 2

View File

@@ -1,4 +0,0 @@
extend = [
{ path = "../cargo-make/main.toml" },
{ path = "../cargo-make/wasm-test.toml" },
]

View File

@@ -1,26 +0,0 @@
This crate makes it easier to write asynchronous code that is executor-agnostic, by providing a
utility that can be used to spawn tasks in a variety of executors.
It only supports single executor per program, but that executor can be set at runtime, anywhere
in your crate (or an application that depends on it).
This can be extended to support any executor or runtime that supports spawning [`Future`]s.
This is a least common denominator implementation in many ways. Limitations include:
- setting an executor is a one-time, global action
- no "join handle" or other result is returned from the spawn
- the `Future` must output `()`
```rust
use any_spawner::Executor;
Executor::init_futures_executor()
.expect("executor should only be initialized once");
// spawn a thread-safe Future
Executor::spawn(async { /* ... */ });
// spawn a Future that is !Send
Executor::spawn_local(async { /* ... */ });
```

View File

@@ -1,514 +0,0 @@
//! This crate makes it easier to write asynchronous code that is executor-agnostic, by providing a
//! utility that can be used to spawn tasks in a variety of executors.
//!
//! It only supports single executor per program, but that executor can be set at runtime, anywhere
//! in your crate (or an application that depends on it).
//!
//! This can be extended to support any executor or runtime that supports spawning [`Future`]s.
//!
//! This is a least common denominator implementation in many ways. Limitations include:
//! - setting an executor is a one-time, global action
//! - no "join handle" or other result is returned from the spawn
//! - the `Future` must output `()`
//!
//! ```no_run
//! use any_spawner::Executor;
//!
//! // make sure an Executor has been initialized with one of the init_ functions
//!
//! // spawn a thread-safe Future
//! Executor::spawn(async { /* ... */ });
//!
//! // spawn a Future that is !Send
//! Executor::spawn_local(async { /* ... */ });
//! ```
#![forbid(unsafe_code)]
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg))]
use std::{future::Future, pin::Pin, sync::OnceLock};
use thiserror::Error;
/// A future that has been pinned.
pub type PinnedFuture<T> = Pin<Box<dyn Future<Output = T> + Send>>;
/// A future that has been pinned.
pub type PinnedLocalFuture<T> = Pin<Box<dyn Future<Output = T>>>;
// Type alias for the spawn function pointer.
type SpawnFn = fn(PinnedFuture<()>);
// Type alias for the spawn_local function pointer.
type SpawnLocalFn = fn(PinnedLocalFuture<()>);
// Type alias for the poll_local function pointer.
type PollLocalFn = fn();
/// Holds the function pointers for the current global executor.
#[derive(Clone, Copy)]
struct ExecutorFns {
spawn: SpawnFn,
spawn_local: SpawnLocalFn,
poll_local: PollLocalFn,
}
// Use a single OnceLock to ensure atomic initialization of all functions.
static EXECUTOR_FNS: OnceLock<ExecutorFns> = OnceLock::new();
// No-op functions to use when an executor doesn't support a specific operation.
#[cfg(any(feature = "tokio", feature = "wasm-bindgen", feature = "glib"))]
#[cold]
#[inline(never)]
fn no_op_poll() {}
#[cfg(all(not(feature = "wasm-bindgen"), not(debug_assertions)))]
#[cold]
#[inline(never)]
fn no_op_spawn(_: PinnedFuture<()>) {
#[cfg(debug_assertions)]
eprintln!(
"Warning: Executor::spawn called, but no global 'spawn' function is \
configured (perhaps only spawn_local is supported, e.g., on wasm \
without threading?)."
);
}
// Wasm panics if you spawn without an executor
#[cfg(feature = "wasm-bindgen")]
#[cold]
#[inline(never)]
fn no_op_spawn(_: PinnedFuture<()>) {
panic!(
"Executor::spawn called, but no global 'spawn' function is configured."
);
}
#[cfg(not(debug_assertions))]
#[cold]
#[inline(never)]
fn no_op_spawn_local(_: PinnedLocalFuture<()>) {
panic!(
"Executor::spawn_local called, but no global 'spawn_local' function \
is configured."
);
}
/// Errors that can occur when using the executor.
#[derive(Error, Debug)]
pub enum ExecutorError {
/// The executor has already been set.
#[error("Global executor has already been set.")]
AlreadySet,
}
/// A global async executor that can spawn tasks.
pub struct Executor;
impl Executor {
/// Spawns a thread-safe [`Future`].
///
/// Uses the globally configured executor.
/// Panics if no global executor has been initialized.
#[inline(always)]
#[track_caller]
pub fn spawn(fut: impl Future<Output = ()> + Send + 'static) {
let pinned_fut = Box::pin(fut);
if let Some(fns) = EXECUTOR_FNS.get() {
(fns.spawn)(pinned_fut)
} else {
// No global executor set.
handle_uninitialized_spawn(pinned_fut);
}
}
/// Spawns a [`Future`] that cannot be sent across threads.
///
/// Uses the globally configured executor.
/// Panics if no global executor has been initialized.
#[inline(always)]
#[track_caller]
pub fn spawn_local(fut: impl Future<Output = ()> + 'static) {
let pinned_fut = Box::pin(fut);
if let Some(fns) = EXECUTOR_FNS.get() {
(fns.spawn_local)(pinned_fut)
} else {
// No global executor set.
handle_uninitialized_spawn_local(pinned_fut);
}
}
/// Waits until the next "tick" of the current async executor.
/// Respects the global executor.
#[inline(always)]
pub async fn tick() {
let (tx, rx) = futures::channel::oneshot::channel();
#[cfg(not(all(feature = "wasm-bindgen", target_family = "wasm")))]
Executor::spawn(async move {
_ = tx.send(());
});
#[cfg(all(feature = "wasm-bindgen", target_family = "wasm"))]
Executor::spawn_local(async move {
_ = tx.send(());
});
_ = rx.await;
}
/// Polls the global async executor.
///
/// Uses the globally configured executor.
/// Does nothing if the global executor does not support polling.
#[inline(always)]
pub fn poll_local() {
if let Some(fns) = EXECUTOR_FNS.get() {
(fns.poll_local)()
}
// If not initialized or doesn't support polling, do nothing gracefully.
}
}
impl Executor {
/// Globally sets the [`tokio`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if a global executor has already been set.
///
/// Requires the `tokio` feature to be activated on this crate.
#[cfg(feature = "tokio")]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn init_tokio() -> Result<(), ExecutorError> {
let executor_impl = ExecutorFns {
spawn: |fut| {
tokio::spawn(fut);
},
spawn_local: |fut| {
tokio::task::spawn_local(fut);
},
// Tokio doesn't have an explicit global poll function like LocalPool::run_until_stalled
poll_local: no_op_poll,
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
/// Globally sets the [`wasm-bindgen-futures`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if a global executor has already been set.
///
/// Requires the `wasm-bindgen` feature to be activated on this crate.
#[cfg(feature = "wasm-bindgen")]
#[cfg_attr(docsrs, doc(cfg(feature = "wasm-bindgen")))]
pub fn init_wasm_bindgen() -> Result<(), ExecutorError> {
let executor_impl = ExecutorFns {
// wasm-bindgen-futures only supports spawn_local
spawn: no_op_spawn,
spawn_local: |fut| {
wasm_bindgen_futures::spawn_local(fut);
},
poll_local: no_op_poll,
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
/// Globally sets the [`glib`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if a global executor has already been set.
///
/// Requires the `glib` feature to be activated on this crate.
#[cfg(feature = "glib")]
#[cfg_attr(docsrs, doc(cfg(feature = "glib")))]
pub fn init_glib() -> Result<(), ExecutorError> {
let executor_impl = ExecutorFns {
spawn: |fut| {
let main_context = glib::MainContext::default();
main_context.spawn(fut);
},
spawn_local: |fut| {
let main_context = glib::MainContext::default();
main_context.spawn_local(fut);
},
// Glib needs event loop integration, explicit polling isn't the standard model here.
poll_local: no_op_poll,
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
/// Globally sets the [`futures`] executor as the executor used to spawn tasks,
/// lazily creating a thread pool to spawn tasks into.
///
/// Returns `Err(_)` if a global executor has already been set.
///
/// Requires the `futures-executor` feature to be activated on this crate.
#[cfg(feature = "futures-executor")]
#[cfg_attr(docsrs, doc(cfg(feature = "futures-executor")))]
pub fn init_futures_executor() -> Result<(), ExecutorError> {
use futures::{
executor::{LocalPool, LocalSpawner, ThreadPool},
task::{LocalSpawnExt, SpawnExt},
};
use std::cell::RefCell;
// Keep the lazy-init ThreadPool and thread-local LocalPool for spawn_local impl
static THREAD_POOL: OnceLock<ThreadPool> = OnceLock::new();
thread_local! {
static LOCAL_POOL: RefCell<LocalPool> = RefCell::new(LocalPool::new());
// SPAWNER is derived from LOCAL_POOL, keep it for efficiency inside the closure
static SPAWNER: LocalSpawner = LOCAL_POOL.with(|pool| pool.borrow().spawner());
}
fn get_thread_pool() -> &'static ThreadPool {
THREAD_POOL.get_or_init(|| {
ThreadPool::new()
.expect("could not create futures executor ThreadPool")
})
}
let executor_impl = ExecutorFns {
spawn: |fut| {
get_thread_pool()
.spawn(fut)
.expect("failed to spawn future on ThreadPool");
},
spawn_local: |fut| {
// Use the thread_local SPAWNER derived from LOCAL_POOL
SPAWNER.with(|spawner| {
spawner
.spawn_local(fut)
.expect("failed to spawn local future");
});
},
poll_local: || {
// Use the thread_local LOCAL_POOL
LOCAL_POOL.with(|pool| {
// Use try_borrow_mut to prevent panic during re-entrant calls
if let Ok(mut pool) = pool.try_borrow_mut() {
pool.run_until_stalled();
}
// If already borrowed, we're likely in a nested poll, so do nothing.
});
},
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
/// Globally sets the [`async_executor`] executor as the executor used to spawn tasks,
/// lazily creating a thread pool to spawn tasks into.
///
/// Returns `Err(_)` if a global executor has already been set.
///
/// Requires the `async-executor` feature to be activated on this crate.
#[cfg(feature = "async-executor")]
#[cfg_attr(docsrs, doc(cfg(feature = "async-executor")))]
pub fn init_async_executor() -> Result<(), ExecutorError> {
use async_executor::{Executor as AsyncExecutor, LocalExecutor};
// Keep the lazy-init global Executor and thread-local LocalExecutor for spawn_local impl
static ASYNC_EXECUTOR: OnceLock<AsyncExecutor<'static>> =
OnceLock::new();
thread_local! {
static LOCAL_EXECUTOR_POOL: LocalExecutor<'static> = const { LocalExecutor::new() };
}
fn get_async_executor() -> &'static AsyncExecutor<'static> {
ASYNC_EXECUTOR.get_or_init(AsyncExecutor::new)
}
let executor_impl = ExecutorFns {
spawn: |fut| {
get_async_executor().spawn(fut).detach();
},
spawn_local: |fut| {
LOCAL_EXECUTOR_POOL.with(|pool| pool.spawn(fut).detach());
},
poll_local: || {
LOCAL_EXECUTOR_POOL.with(|pool| {
// try_tick polls the local executor without blocking
// This prevents issues if called recursively or from within a task.
pool.try_tick();
});
},
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
/// Globally sets a custom executor as the executor used to spawn tasks.
///
/// Requires the custom executor to be `Send + Sync` as it will be stored statically.
///
/// Returns `Err(_)` if a global executor has already been set.
pub fn init_custom_executor(
custom_executor: impl CustomExecutor + Send + Sync + 'static,
) -> Result<(), ExecutorError> {
// Store the custom executor instance itself to call its methods.
// Use Box for dynamic dispatch.
static CUSTOM_EXECUTOR_INSTANCE: OnceLock<
Box<dyn CustomExecutor + Send + Sync>,
> = OnceLock::new();
CUSTOM_EXECUTOR_INSTANCE
.set(Box::new(custom_executor))
.map_err(|_| ExecutorError::AlreadySet)?;
// Now set the ExecutorFns using the stored instance
let executor_impl = ExecutorFns {
spawn: |fut| {
// Unwrap is safe because we just set it successfully or returned Err.
CUSTOM_EXECUTOR_INSTANCE.get().unwrap().spawn(fut);
},
spawn_local: |fut| {
CUSTOM_EXECUTOR_INSTANCE.get().unwrap().spawn_local(fut);
},
poll_local: || {
CUSTOM_EXECUTOR_INSTANCE.get().unwrap().poll_local();
},
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
// If setting EXECUTOR_FNS fails (extremely unlikely race if called *concurrently*
// with another init_* after CUSTOM_EXECUTOR_INSTANCE was set), we technically
// leave CUSTOM_EXECUTOR_INSTANCE set but EXECUTOR_FNS not. This is an edge case,
// but the primary race condition is solved.
}
/// Sets a custom executor *for the current thread only*.
///
/// This overrides the global executor for calls to `spawn`, `spawn_local`, and `poll_local`
/// made *from the current thread*. It does not affect other threads or the global state.
///
/// The provided `custom_executor` must implement [`CustomExecutor`] and `'static`, but does
/// **not** need to be `Send` or `Sync`.
///
/// Returns `Err(ExecutorError::AlreadySet)` if a *local* executor has already been set
/// *for this thread*.
pub fn init_local_custom_executor(
custom_executor: impl CustomExecutor + 'static,
) -> Result<(), ExecutorError> {
// Store the custom executor instance itself to call its methods.
// Use Box for dynamic dispatch.
thread_local! {
static CUSTOM_EXECUTOR_INSTANCE: OnceLock<
Box<dyn CustomExecutor>,
> = OnceLock::new();
};
CUSTOM_EXECUTOR_INSTANCE.with(|this| {
this.set(Box::new(custom_executor))
.map_err(|_| ExecutorError::AlreadySet)
})?;
// Now set the ExecutorFns using the stored instance
let executor_impl = ExecutorFns {
spawn: |fut| {
// Unwrap is safe because we just set it successfully or returned Err.
CUSTOM_EXECUTOR_INSTANCE
.with(|this| this.get().unwrap().spawn(fut));
},
spawn_local: |fut| {
CUSTOM_EXECUTOR_INSTANCE
.with(|this| this.get().unwrap().spawn_local(fut));
},
poll_local: || {
CUSTOM_EXECUTOR_INSTANCE
.with(|this| this.get().unwrap().poll_local());
},
};
EXECUTOR_FNS
.set(executor_impl)
.map_err(|_| ExecutorError::AlreadySet)
}
}
/// A trait for custom executors.
/// Custom executors can be used to integrate with any executor that supports spawning futures.
///
/// If used with `init_custom_executor`, the implementation must be `Send + Sync + 'static`.
///
/// All methods can be called recursively. Implementors should be mindful of potential
/// deadlocks or excessive resource consumption if recursive calls are not handled carefully
/// (e.g., using `try_borrow_mut` or non-blocking polls within implementations).
pub trait CustomExecutor {
/// Spawns a future, usually on a thread pool.
fn spawn(&self, fut: PinnedFuture<()>);
/// Spawns a local future. May require calling `poll_local` to make progress.
fn spawn_local(&self, fut: PinnedLocalFuture<()>);
/// Polls the executor, if it supports polling. Implementations should ideally be
/// non-blocking or use mechanisms like `try_tick` or `try_borrow_mut` to handle
/// re-entrant calls safely.
fn poll_local(&self);
}
// Ensure CustomExecutor is object-safe
#[allow(dead_code)]
fn test_object_safety(_: Box<dyn CustomExecutor + Send + Sync>) {} // Added Send + Sync constraint here for global usage
/// Handles the case where `Executor::spawn` is called without an initialized executor.
#[cold] // Less likely path
#[inline(never)]
#[track_caller]
fn handle_uninitialized_spawn(_fut: PinnedFuture<()>) {
let caller = std::panic::Location::caller();
#[cfg(all(debug_assertions, feature = "tracing"))]
{
tracing::error!(
target: "any_spawner",
spawn_caller=%caller,
"Executor::spawn called before a global executor was initialized. Task dropped."
);
// Drop the future implicitly after logging
drop(_fut);
}
#[cfg(all(debug_assertions, not(feature = "tracing")))]
{
panic!(
"At {caller}, tried to spawn a Future with Executor::spawn() \
before a global executor was initialized."
);
}
// In release builds (without tracing), call the specific no-op function.
#[cfg(not(debug_assertions))]
{
no_op_spawn(_fut);
}
}
/// Handles the case where `Executor::spawn_local` is called without an initialized executor.
#[cold] // Less likely path
#[inline(never)]
#[track_caller]
fn handle_uninitialized_spawn_local(_fut: PinnedLocalFuture<()>) {
let caller = std::panic::Location::caller();
#[cfg(all(debug_assertions, feature = "tracing"))]
{
tracing::error!(
target: "any_spawner",
spawn_caller=%caller,
"Executor::spawn_local called before a global executor was initialized. \
Task likely dropped or panicked."
);
// Fall through to panic or no-op depending on build/target
}
#[cfg(all(debug_assertions, not(feature = "tracing")))]
{
panic!(
"At {caller}, tried to spawn a Future with \
Executor::spawn_local() before a global executor was initialized."
);
}
// In release builds (without tracing), call the specific no-op function (which usually panics).
#[cfg(not(debug_assertions))]
{
no_op_spawn_local(_fut);
}
}

View File

@@ -1,24 +0,0 @@
use any_spawner::{Executor, ExecutorError};
#[test]
fn test_already_set_error() {
struct SimpleExecutor;
impl any_spawner::CustomExecutor for SimpleExecutor {
fn spawn(&self, _fut: any_spawner::PinnedFuture<()>) {}
fn spawn_local(&self, _fut: any_spawner::PinnedLocalFuture<()>) {}
fn poll_local(&self) {}
}
// First initialization should succeed
Executor::init_custom_executor(SimpleExecutor)
.expect("First initialization failed");
// Second initialization should fail with AlreadySet error
let result = Executor::init_custom_executor(SimpleExecutor);
assert!(matches!(result, Err(ExecutorError::AlreadySet)));
// First local initialization should fail
let result = Executor::init_local_custom_executor(SimpleExecutor);
assert!(matches!(result, Err(ExecutorError::AlreadySet)));
}

View File

@@ -1,74 +0,0 @@
#![cfg(feature = "async-executor")]
use std::{
future::Future,
pin::Pin,
sync::{Arc, Mutex},
};
// A simple async executor for testing
struct TestExecutor {
tasks: Mutex<Vec<Pin<Box<dyn Future<Output = ()> + Send + 'static>>>>,
}
impl TestExecutor {
fn new() -> Self {
TestExecutor {
tasks: Mutex::new(Vec::new()),
}
}
fn spawn<F>(&self, future: F)
where
F: Future<Output = ()> + Send + 'static,
{
self.tasks.lock().unwrap().push(Box::pin(future));
}
fn run_all(&self) {
// Take all tasks out to process them
let tasks = self.tasks.lock().unwrap().drain(..).collect::<Vec<_>>();
// Use a basic future executor to run each task to completion
for mut task in tasks {
// Use futures-lite's block_on to complete the future
futures::executor::block_on(async {
unsafe {
let task_mut = Pin::new_unchecked(&mut task);
let _ = std::future::Future::poll(
task_mut,
&mut std::task::Context::from_waker(
futures::task::noop_waker_ref(),
),
);
}
});
}
}
}
#[test]
fn test_async_executor() {
let executor = Arc::new(TestExecutor::new());
let executor_clone = executor.clone();
// Create a spawner function that will use our test executor
let spawner = move |future| {
executor_clone.spawn(future);
};
// Prepare test data
let counter = Arc::new(Mutex::new(0));
let counter_clone = counter.clone();
// Use the spawner to spawn a task
spawner(async move {
*counter_clone.lock().unwrap() += 1;
});
// Run all tasks
executor.run_all();
// Check if the task completed correctly
assert_eq!(*counter.lock().unwrap(), 1);
}

View File

@@ -1,63 +0,0 @@
use any_spawner::Executor;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
#[test]
fn test_custom_executor() {
// Define a simple custom executor
struct TestExecutor {
spawn_called: Arc<AtomicBool>,
spawn_local_called: Arc<AtomicBool>,
poll_local_called: Arc<AtomicBool>,
}
impl any_spawner::CustomExecutor for TestExecutor {
fn spawn(&self, fut: any_spawner::PinnedFuture<()>) {
self.spawn_called.store(true, Ordering::SeqCst);
// Execute the future immediately (this works for simple test futures)
futures::executor::block_on(fut);
}
fn spawn_local(&self, fut: any_spawner::PinnedLocalFuture<()>) {
self.spawn_local_called.store(true, Ordering::SeqCst);
// Execute the future immediately
futures::executor::block_on(fut);
}
fn poll_local(&self) {
self.poll_local_called.store(true, Ordering::SeqCst);
}
}
let spawn_called = Arc::new(AtomicBool::new(false));
let spawn_local_called = Arc::new(AtomicBool::new(false));
let poll_local_called = Arc::new(AtomicBool::new(false));
let executor = TestExecutor {
spawn_called: spawn_called.clone(),
spawn_local_called: spawn_local_called.clone(),
poll_local_called: poll_local_called.clone(),
};
// Initialize with our custom executor
Executor::init_custom_executor(executor)
.expect("Failed to initialize custom executor");
// Test spawn
Executor::spawn(async {
// Simple task
});
assert!(spawn_called.load(Ordering::SeqCst));
// Test spawn_local
Executor::spawn_local(async {
// Simple local task
});
assert!(spawn_local_called.load(Ordering::SeqCst));
// Test poll_local
Executor::poll_local();
assert!(poll_local_called.load(Ordering::SeqCst));
}

View File

@@ -1,56 +0,0 @@
#![cfg(feature = "futures-executor")]
use any_spawner::{CustomExecutor, Executor, PinnedFuture, PinnedLocalFuture};
#[test]
fn can_create_custom_executor() {
use futures::{
executor::{LocalPool, LocalSpawner},
task::LocalSpawnExt,
};
use std::{
cell::RefCell,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
};
thread_local! {
static LOCAL_POOL: RefCell<LocalPool> = RefCell::new(LocalPool::new());
static SPAWNER: LocalSpawner = LOCAL_POOL.with(|pool| pool.borrow().spawner());
}
struct CustomFutureExecutor;
impl CustomExecutor for CustomFutureExecutor {
fn spawn(&self, _fut: PinnedFuture<()>) {
panic!("not supported in this test");
}
fn spawn_local(&self, fut: PinnedLocalFuture<()>) {
SPAWNER.with(|spawner| {
spawner.spawn_local(fut).expect("failed to spawn future");
});
}
fn poll_local(&self) {
LOCAL_POOL.with(|pool| {
if let Ok(mut pool) = pool.try_borrow_mut() {
pool.run_until_stalled();
}
// If we couldn't borrow_mut, we're in a nested call to poll, so we don't need to do anything.
});
}
}
Executor::init_custom_executor(CustomFutureExecutor)
.expect("couldn't set executor");
let counter = Arc::new(AtomicUsize::new(0));
let counter_clone = Arc::clone(&counter);
Executor::spawn_local(async move {
counter_clone.store(1, Ordering::Release);
});
Executor::poll_local();
assert_eq!(counter.load(Ordering::Acquire), 1);
}

View File

@@ -1,28 +0,0 @@
#![cfg(feature = "tokio")]
use any_spawner::Executor;
use std::{
sync::{Arc, Mutex},
time::Duration,
};
#[tokio::test]
async fn test_executor_tick() {
// Initialize the tokio executor
Executor::init_tokio().expect("Failed to initialize tokio executor");
let value = Arc::new(Mutex::new(false));
let value_clone = value.clone();
// Spawn a task that sets the value after a tick
Executor::spawn(async move {
Executor::tick().await;
*value_clone.lock().unwrap() = true;
});
// Allow some time for the task to complete
tokio::time::sleep(Duration::from_millis(50)).await;
// Check that the value was set
assert!(*value.lock().unwrap());
}

View File

@@ -1,44 +0,0 @@
#![cfg(feature = "futures-executor")]
use any_spawner::Executor;
use futures::channel::oneshot;
use std::{
sync::{Arc, Mutex},
time::Duration,
};
#[test]
fn test_futures_executor() {
// Initialize the futures executor
Executor::init_futures_executor()
.expect("Failed to initialize futures executor");
let (tx, rx) = oneshot::channel();
let result = Arc::new(Mutex::new(None));
let result_clone = result.clone();
// Spawn a task
Executor::spawn(async move {
tx.send(84).expect("Failed to send value");
});
// Spawn a task that waits for the result
Executor::spawn(async move {
match rx.await {
Ok(val) => *result_clone.lock().unwrap() = Some(val),
Err(_) => panic!("Failed to receive value"),
}
});
// Poll a few times to ensure the task completes
for _ in 0..10 {
Executor::poll_local();
std::thread::sleep(Duration::from_millis(10));
if result.lock().unwrap().is_some() {
break;
}
}
assert_eq!(*result.lock().unwrap(), Some(84));
}

View File

@@ -1,37 +0,0 @@
#![cfg(feature = "futures-executor")]
use any_spawner::Executor;
// All tests in this file use the same executor.
#[test]
fn can_spawn_local_future() {
use std::rc::Rc;
let _ = Executor::init_futures_executor();
let rc = Rc::new(());
Executor::spawn_local(async {
_ = rc;
});
Executor::spawn(async {});
}
#[test]
fn can_make_local_progress() {
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
let _ = Executor::init_futures_executor();
let counter = Arc::new(AtomicUsize::new(0));
Executor::spawn_local({
let counter = Arc::clone(&counter);
async move {
assert_eq!(counter.fetch_add(1, Ordering::AcqRel), 0);
Executor::spawn_local(async {
// Should not crash
});
}
});
Executor::poll_local();
assert_eq!(counter.load(Ordering::Acquire), 1);
}

View File

@@ -1,151 +0,0 @@
#![cfg(feature = "glib")]
use any_spawner::Executor;
use glib::{MainContext, MainLoop};
use serial_test::serial;
use std::{
cell::Cell,
future::Future,
rc::Rc,
sync::{
atomic::{AtomicBool, Ordering},
Arc, Mutex,
},
time::Duration,
};
// Helper to run a future to completion on a dedicated glib MainContext.
// Returns true if the future completed within the timeout, false otherwise.
fn run_on_glib_context<F>(fut: F)
where
F: Future<Output = ()> + Send + 'static,
{
let _ = Executor::init_glib();
let context = MainContext::default();
let main_loop = MainLoop::new(Some(&context), false);
let main_loop_clone = main_loop.clone();
Executor::spawn(async move {
fut.await;
main_loop_clone.quit();
});
main_loop.run();
}
// Helper to run a local (!Send) future on the glib context.
fn run_local_on_glib_context<F>(fut: F)
where
F: Future<Output = ()> + 'static,
{
let _ = Executor::init_glib();
let context = MainContext::default();
let main_loop = MainLoop::new(Some(&context), false);
let main_loop_clone = main_loop.clone();
Executor::spawn_local(async move {
fut.await;
main_loop_clone.quit();
});
main_loop.run();
}
// This test must run after a test that successfully initializes glib,
// or within its own process.
#[test]
#[serial]
fn test_glib_spawn() {
let success_flag = Arc::new(AtomicBool::new(false));
let flag_clone = success_flag.clone();
run_on_glib_context(async move {
// Simulate async work
futures_lite::future::yield_now().await;
flag_clone.store(true, Ordering::SeqCst);
// We need to give the spawned task time to run.
// The run_on_glib_context handles the main loop.
// We just need to ensure spawn happened correctly.
// Let's wait a tiny bit within the driving future to ensure spawn gets processed.
glib::timeout_future(Duration::from_millis(10)).await;
});
assert!(
success_flag.load(Ordering::SeqCst),
"Spawned future did not complete successfully"
);
}
// Similar conditions as test_glib_spawn regarding initialization state.
#[test]
#[serial]
fn test_glib_spawn_local() {
let success_flag = Rc::new(Cell::new(false));
let flag_clone = success_flag.clone();
run_local_on_glib_context(async move {
// Use Rc to make the future !Send
let non_send_data = Rc::new(Cell::new(10));
let data = non_send_data.get();
assert_eq!(data, 10, "Rc data should be accessible");
non_send_data.set(20); // Modify non-Send data
// Simulate async work
futures_lite::future::yield_now().await;
assert_eq!(
non_send_data.get(),
20,
"Rc data should persist modification"
);
flag_clone.set(true);
// Wait a tiny bit
glib::timeout_future(Duration::from_millis(10)).await;
});
assert!(
success_flag.get(),
"Spawned local future did not complete successfully"
);
}
// Test Executor::tick with glib backend
#[test]
#[serial]
fn test_glib_tick() {
run_on_glib_context(async {
let value = Arc::new(Mutex::new(false));
let value_clone = value.clone();
// Spawn a task that sets the value after a tick
Executor::spawn(async move {
Executor::tick().await;
*value_clone.lock().unwrap() = true;
});
// Allow some time for the task to complete
glib::timeout_future(Duration::from_millis(10)).await;
// Check that the value was set
assert!(*value.lock().unwrap());
});
}
// Test Executor::poll_local with glib backend (should be a no-op)
#[test]
#[serial]
fn test_glib_poll_local_is_no_op() {
// Ensure glib executor is initialized
let _ = Executor::init_glib();
// poll_local for glib is configured as a no-op
// Calling it should not panic or cause issues.
Executor::poll_local();
Executor::poll_local();
println!("Executor::poll_local called successfully (expected no-op).");
}

View File

@@ -1,54 +0,0 @@
use any_spawner::Executor;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
#[test]
fn test_local_custom_executor() {
// Define a thread-local custom executor
struct LocalTestExecutor {
spawn_called: Arc<AtomicBool>,
spawn_local_called: Arc<AtomicBool>,
}
impl any_spawner::CustomExecutor for LocalTestExecutor {
fn spawn(&self, fut: any_spawner::PinnedFuture<()>) {
self.spawn_called.store(true, Ordering::SeqCst);
futures::executor::block_on(fut);
}
fn spawn_local(&self, fut: any_spawner::PinnedLocalFuture<()>) {
self.spawn_local_called.store(true, Ordering::SeqCst);
futures::executor::block_on(fut);
}
fn poll_local(&self) {
// No-op for this test
}
}
let local_spawn_called = Arc::new(AtomicBool::new(false));
let local_spawn_local_called = Arc::new(AtomicBool::new(false));
let local_executor = LocalTestExecutor {
spawn_called: local_spawn_called.clone(),
spawn_local_called: local_spawn_local_called.clone(),
};
// Initialize a thread-local executor
Executor::init_local_custom_executor(local_executor)
.expect("Failed to initialize local custom executor");
// Test spawn - should use the thread-local executor
Executor::spawn(async {
// Simple task
});
assert!(local_spawn_called.load(Ordering::SeqCst));
// Test spawn_local - should use the thread-local executor
Executor::spawn_local(async {
// Simple local task
});
assert!(local_spawn_local_called.load(Ordering::SeqCst));
}

View File

@@ -1,35 +0,0 @@
#![cfg(feature = "tokio")]
use any_spawner::Executor;
use futures::channel::oneshot;
use std::sync::{Arc, Mutex};
#[tokio::test]
async fn test_multiple_tasks() {
Executor::init_tokio().expect("Failed to initialize tokio executor");
let counter = Arc::new(Mutex::new(0));
let tasks = 10;
let mut handles = Vec::new();
// Spawn multiple tasks that increment the counter
for _ in 0..tasks {
let counter_clone = counter.clone();
let (tx, rx) = oneshot::channel();
Executor::spawn(async move {
*counter_clone.lock().unwrap() += 1;
tx.send(()).expect("Failed to send completion signal");
});
handles.push(rx);
}
// Wait for all tasks to complete
for handle in handles {
handle.await.expect("Task failed");
}
// Verify that all tasks incremented the counter
assert_eq!(*counter.lock().unwrap(), tasks);
}

View File

@@ -1,20 +0,0 @@
#![cfg(feature = "tokio")]
use any_spawner::Executor;
use futures::channel::oneshot;
#[tokio::test]
async fn test_tokio_executor() {
// Initialize the tokio executor
Executor::init_tokio().expect("Failed to initialize tokio executor");
let (tx, rx) = oneshot::channel();
// Spawn a task that sends a value
Executor::spawn(async move {
tx.send(42).expect("Failed to send value");
});
// Wait for the spawned task to complete
assert_eq!(rx.await.unwrap(), 42);
}

View File

@@ -1,88 +0,0 @@
#![cfg(all(feature = "wasm-bindgen", target_family = "wasm"))]
use any_spawner::Executor;
use futures::channel::oneshot;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use wasm_bindgen_test::*;
wasm_bindgen_test_configure!(run_in_browser);
#[wasm_bindgen_test]
async fn test_wasm_bindgen_spawn_local() {
// Initialize the wasm-bindgen executor
let _ = Executor::init_wasm_bindgen();
// Create a channel to verify the task completes
let (tx, rx) = oneshot::channel();
// Spawn a local task (wasm doesn't support sending futures between threads)
Executor::spawn_local(async move {
// Simulate some async work
Executor::tick().await;
tx.send(42).expect("Failed to send result");
});
// Wait for the task to complete
let result = rx.await.expect("Failed to receive result");
assert_eq!(result, 42);
}
#[wasm_bindgen_test]
async fn test_wasm_bindgen_tick() {
// Initialize the wasm-bindgen executor if not already initialized
let _ = Executor::init_wasm_bindgen();
let flag = Arc::new(AtomicBool::new(false));
let flag_clone = flag.clone();
// Spawn a task that will set the flag
Executor::spawn_local(async move {
flag_clone.store(true, Ordering::SeqCst);
});
// Wait for a tick, which should allow the spawned task to run
Executor::tick().await;
// Verify the flag was set
assert!(flag.load(Ordering::SeqCst));
}
#[wasm_bindgen_test]
async fn test_multiple_wasm_bindgen_tasks() {
// Initialize once for all tests
let _ = Executor::init_wasm_bindgen();
// Create channels for multiple tasks
let (tx1, rx1) = oneshot::channel();
let (tx2, rx2) = oneshot::channel();
// Spawn multiple tasks
Executor::spawn_local(async move {
tx1.send("task1").expect("Failed to send from task1");
});
Executor::spawn_local(async move {
tx2.send("task2").expect("Failed to send from task2");
});
// Wait for both tasks to complete
let (result1, result2) = futures::join!(rx1, rx2);
assert_eq!(result1.unwrap(), "task1");
assert_eq!(result2.unwrap(), "task2");
}
// This test verifies that spawn (not local) fails on wasm as expected
#[wasm_bindgen_test]
#[should_panic]
fn test_wasm_bindgen_spawn_errors() {
let _ = Executor::init_wasm_bindgen();
// Using should_panic to test that Executor::spawn panics in wasm
Executor::spawn(async {
// This should panic since wasm-bindgen doesn't support Send futures
});
}

View File

@@ -4,32 +4,24 @@ version = "0.1.0"
edition = "2021"
[dependencies]
l0410 = { package = "leptos", version = "0.4.10", features = [
"nightly",
"ssr",
] }
leptos = { path = "../leptos", features = ["ssr", "nightly"] }
leptos_reactive = { path = "../leptos_reactive", features = ["ssr", "nightly"] }
tachydom = { git = "https://github.com/gbj/tachys", features = [
"nightly",
"leptos",
] }
tachy_maccy = { git = "https://github.com/gbj/tachys", features = ["nightly"] }
sycamore = { version = "0.8.0", features = ["ssr"] }
yew = { version = "0.20.0", features = ["ssr"] }
tokio-test = "0.4.0"
miniserde = "0.1.0"
gloo = "0.8.0"
uuid = { version = "1.0", features = ["serde", "v4", "wasm-bindgen"] }
wasm-bindgen = "0.2.100"
lazy_static = "1.0"
log = "0.4.0"
strum = "0.24.0"
strum_macros = "0.24.0"
serde = { version = "1.0", features = ["derive", "rc"] }
serde_json = "1.0"
tera = "1.0"
l021 = { package = "leptos", version = "0.2.1" }
leptos = { path = "../leptos", features = ["ssr"] }
sycamore = { version = "0.8", features = ["ssr"] }
yew = { git = "https://github.com/yewstack/yew", features = ["ssr"] }
tokio-test = "0.4"
miniserde = "0.1"
gloo = "0.8"
uuid = { version = "1", features = ["serde", "v4", "wasm-bindgen"] }
wasm-bindgen = "0.2"
lazy_static = "1"
log = "0.4"
strum = "0.24"
strum_macros = "0.24"
serde = { version = "1", features = ["derive", "rc"] }
serde_json = "1"
tera = "1"
reactive-signals = "0.1.0-alpha.4"
[dependencies.web-sys]
version = "0.3.0"
version = "0.3"
features = ["Window", "Document", "HtmlElement", "HtmlInputElement"]

View File

@@ -2,6 +2,6 @@
extern crate test;
mod reactive;
mod ssr;
//åmod reactive;
//mod ssr;
mod todomvc;

View File

@@ -6,122 +6,13 @@ fn leptos_deep_creation(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let signal = create_rw_signal(0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
let prev = memos.last().copied();
if let Some(prev) = prev {
memos.push(create_memo(move |_| prev.get() + 1));
} else {
memos.push(create_memo(move |_| signal.get() + 1));
}
}
});
runtime.dispose();
}
#[bench]
fn leptos_deep_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let signal = create_rw_signal(0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(move |_| prev.get() + 1));
} else {
memos.push(create_memo(move |_| signal.get() + 1));
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_down(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let sigs = (0..1000).map(|n| create_signal(n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo =
create_memo(move |_| reads.iter().map(|r| r.get()).sum::<i32>());
assert_eq!(memo(), 499500);
});
runtime.dispose();
}
#[bench]
fn leptos_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let sig = create_rw_signal(0);
let memos = (0..1000)
.map(|_| create_memo(move |_| sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let sigs = (0..1000).map(|n| create_signal(n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo =
create_memo(move |_| reads.iter().map(|r| r.get()).sum::<i32>());
assert_eq!(memo(), 499500);
create_isomorphic_effect({
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
writes[1].update(|n| *n += 1);
writes[10].update(|n| *n += 1);
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo(), 499503);
});
runtime.dispose();
}
#[bench]
fn l0410_deep_creation(b: &mut Bencher) {
use l0410::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
let prev = memos.last().copied();
if let Some(prev) = prev {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
@@ -135,8 +26,8 @@ fn l0410_deep_creation(b: &mut Bencher) {
}
#[bench]
fn l0410_deep_update(b: &mut Bencher) {
use l0410::*;
fn leptos_deep_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
@@ -160,8 +51,238 @@ fn l0410_deep_update(b: &mut Bencher) {
}
#[bench]
fn l0410_narrowing_down(b: &mut Bencher) {
use l0410::*;
fn leptos_narrowing_down(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let sigs =
(0..1000).map(|n| create_signal(cx, n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo(), 499500);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let sig = create_rw_signal(cx, 0);
let memos = (0..1000)
.map(|_| create_memo(cx, move |_| sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let acc = Rc::new(Cell::new(0));
let sigs =
(0..1000).map(|n| create_signal(cx, n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo(), 499500);
create_isomorphic_effect(cx, {
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
writes[1].update(|n| *n += 1);
writes[10].update(|n| *n += 1);
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo(), 499503);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_scope_creation_and_disposal(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let disposers = (0..1000)
.map(|_| {
create_scope(runtime, {
let acc = Rc::clone(&acc);
move |cx| {
let (r, w) = create_signal(cx, 0);
create_isomorphic_effect(cx, {
move |_| {
acc.set(r());
}
});
w.update(|n| *n += 1);
}
})
})
.collect::<Vec<_>>();
for disposer in disposers {
disposer.dispose();
}
});
runtime.dispose();
}
#[bench]
fn rs_deep_update(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let sc = ClientRuntime::new_root_scope();
b.iter(|| {
let signal = signal!(sc, 0);
let mut memos = Vec::<Signal<Func<i32>, ClientRuntime>>::new();
for i in 0..1000usize {
let prev = memos.get(i.saturating_sub(1)).copied();
if let Some(prev) = prev {
memos.push(signal!(sc, move || prev.get() + 1))
} else {
memos.push(signal!(sc, move || signal.get() + 1))
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
});
}
#[bench]
fn rs_fanning_out(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let cx = ClientRuntime::new_root_scope();
b.iter(|| {
let sig = signal!(cx, 0);
let memos = (0..1000)
.map(|_| signal!(cx, move || sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
});
}
#[bench]
fn rs_narrowing_update(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let cx = ClientRuntime::new_root_scope();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let sigs =
(0..1000).map(|n| signal!(cx, n)).collect::<Vec<_>>();
let memo = signal!(cx, {
let sigs = sigs.clone();
move || {
sigs.iter().map(|r| r.get()).sum::<i32>()
}
});
assert_eq!(memo.get(), 499500);
signal!(cx, {
let acc = Rc::clone(&acc);
move || {
acc.set(memo.get());
}
});
assert_eq!(acc.get(), 499500);
sigs[1].update(|n| *n += 1);
sigs[10].update(|n| *n += 1);
sigs[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo.get(), 499503);
});
}
#[bench]
fn l021_deep_creation(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
}
}
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn l021_deep_update(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn l021_narrowing_down(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -183,8 +304,8 @@ fn l0410_narrowing_down(b: &mut Bencher) {
}
#[bench]
fn l0410_fanning_out(b: &mut Bencher) {
use l0410::*;
fn l021_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
@@ -203,8 +324,8 @@ fn l0410_fanning_out(b: &mut Bencher) {
runtime.dispose();
}
#[bench]
fn l0410_narrowing_update(b: &mut Bencher) {
use l0410::*;
fn l021_narrowing_update(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -217,11 +338,11 @@ fn l0410_narrowing_update(b: &mut Bencher) {
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo.get(), 499500);
assert_eq!(memo(), 499500);
create_isomorphic_effect(cx, {
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo.get());
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
@@ -231,7 +352,7 @@ fn l0410_narrowing_update(b: &mut Bencher) {
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo.get(), 499503);
assert_eq!(memo(), 499503);
})
.dispose()
});
@@ -240,8 +361,8 @@ fn l0410_narrowing_update(b: &mut Bencher) {
}
#[bench]
fn l0410_scope_creation_and_disposal(b: &mut Bencher) {
use l0410::*;
fn l021_scope_creation_and_disposal(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -254,7 +375,7 @@ fn l0410_scope_creation_and_disposal(b: &mut Bencher) {
let (r, w) = create_signal(cx, 0);
create_isomorphic_effect(cx, {
move |_| {
acc.set(r.get());
acc.set(r());
}
});
w.update(|n| *n += 1);

View File

@@ -2,14 +2,15 @@ use test::Bencher;
#[bench]
fn leptos_ssr_bench(b: &mut Bencher) {
use leptos::*;
let r = create_runtime();
b.iter(|| {
leptos::leptos_dom::HydrationCtx::reset_id();
use leptos::*;
leptos_dom::HydrationCtx::reset_id();
_ = create_scope(create_runtime(), |cx| {
#[component]
fn Counter(initial: i32) -> impl IntoView {
let (value, set_value) = create_signal(initial);
fn Counter(cx: Scope, initial: i32) -> impl IntoView {
let (value, set_value) = create_signal(cx, initial);
view! {
cx,
<div>
<button on:click=move |_| set_value.update(|value| *value -= 1)>"-1"</button>
<span>"Value: " {move || value().to_string()} "!"</span>
@@ -18,7 +19,8 @@ fn leptos_ssr_bench(b: &mut Bencher) {
}
}
let rendered = view! {
let rendered = view! {
cx,
<main>
<h1>"Welcome to our benchmark page."</h1>
<p>"Here's some introductory text."</p>
@@ -26,53 +28,14 @@ fn leptos_ssr_bench(b: &mut Bencher) {
<Counter initial=2/>
<Counter initial=3/>
</main>
}.into_view().render_to_string();
}.into_view(cx).render_to_string(cx);
assert_eq!(
rendered,
"<main data-hk=\"0-0-0-1\"><h1 data-hk=\"0-0-0-2\">Welcome to our benchmark page.</h1><p data-hk=\"0-0-0-3\">Here&#x27;s some introductory text.</p><div data-hk=\"0-0-0-5\"><button data-hk=\"0-0-0-6\">-1</button><span data-hk=\"0-0-0-7\">Value: <!>1<!--hk=0-0-0-8-->!</span><button data-hk=\"0-0-0-9\">+1</button></div><!--hk=0-0-0-4--><div data-hk=\"0-0-0-11\"><button data-hk=\"0-0-0-12\">-1</button><span data-hk=\"0-0-0-13\">Value: <!>2<!--hk=0-0-0-14-->!</span><button data-hk=\"0-0-0-15\">+1</button></div><!--hk=0-0-0-10--><div data-hk=\"0-0-0-17\"><button data-hk=\"0-0-0-18\">-1</button><span data-hk=\"0-0-0-19\">Value: <!>3<!--hk=0-0-0-20-->!</span><button data-hk=\"0-0-0-21\">+1</button></div><!--hk=0-0-0-16--></main>" );
"<main id=\"_0-1\"><h1 id=\"_0-2\">Welcome to our benchmark page.</h1><p id=\"_0-3\">Here&#x27;s some introductory text.</p><div id=\"_0-3-1\"><button id=\"_0-3-2\">-1</button><span id=\"_0-3-3\">Value: <!>1<!--hk=_0-3-4-->!</span><button id=\"_0-3-5\">+1</button></div><!--hk=_0-3-0--><div id=\"_0-3-5-1\"><button id=\"_0-3-5-2\">-1</button><span id=\"_0-3-5-3\">Value: <!>2<!--hk=_0-3-5-4-->!</span><button id=\"_0-3-5-5\">+1</button></div><!--hk=_0-3-5-0--><div id=\"_0-3-5-5-1\"><button id=\"_0-3-5-5-2\">-1</button><span id=\"_0-3-5-5-3\">Value: <!>3<!--hk=_0-3-5-5-4-->!</span><button id=\"_0-3-5-5-5\">+1</button></div><!--hk=_0-3-5-5-0--></main>"
);
});
});
r.dispose();
}
#[bench]
fn tachys_ssr_bench(b: &mut Bencher) {
use leptos::{create_runtime, create_signal, SignalGet, SignalUpdate};
use tachy_maccy::view;
use tachydom::view::{Render, RenderHtml};
use tachydom::html::element::ElementChild;
use tachydom::html::attribute::global::ClassAttribute;
use tachydom::html::attribute::global::GlobalAttributes;
use tachydom::html::attribute::global::OnAttribute;
use tachydom::renderer::dom::Dom;
let rt = create_runtime();
b.iter(|| {
fn counter(initial: i32) -> impl Render<Dom> + RenderHtml<Dom> {
let (value, set_value) = create_signal(initial);
view! {
<div>
<button on:click=move |_| set_value.update(|value| *value -= 1)>"-1"</button>
<span>"Value: " {move || value().to_string()} "!"</span>
<button on:click=move |_| set_value.update(|value| *value += 1)>"+1"</button>
</div>
}
}
let rendered = view! {
<main>
<h1>"Welcome to our benchmark page."</h1>
<p>"Here's some introductory text."</p>
{counter(1)}
{counter(2)}
{counter(3)}
</main>
}.to_html();
assert_eq!(
rendered,
"<main><h1>Welcome to our benchmark page.</h1><p>Here's some introductory text.</p><div><button>-1</button><span>Value: <!>1<!>!</span><button>+1</button></div><div><button>-1</button><span>Value: <!>2<!>!</span><button>+1</button></div><div><button>-1</button><span>Value: <!>3<!>!</span><button>+1</button></div></main>"
);
});
rt.dispose();
}
#[bench]
@@ -92,13 +55,13 @@ fn tera_ssr_bench(b: &mut Bencher) {
{% endfor %}
</main>"#;
static LazyCell<TERA>: Tera = LazyLock::new(|| {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
};
}
#[derive(Serialize, Deserialize)]
struct Counter {

View File

@@ -1,7 +1,7 @@
pub use leptos::*;
use miniserde::*;
use wasm_bindgen::JsCast;
use web_sys::HtmlInputElement;
use wasm_bindgen::JsCast;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Todos(pub Vec<Todo>);
@@ -9,13 +9,13 @@ pub struct Todos(pub Vec<Todo>);
const STORAGE_KEY: &str = "todos-leptos";
impl Todos {
pub fn new() -> Self {
pub fn new(cx: Scope) -> Self {
Self(vec![])
}
pub fn new_with_1000() -> Self {
pub fn new_with_1000(cx: Scope) -> Self {
let todos = (0..1000)
.map(|id| Todo::new(id, format!("Todo #{id}")))
.map(|id| Todo::new(cx, id, format!("Todo #{id}")))
.collect();
Self(todos)
}
@@ -72,17 +72,13 @@ pub struct Todo {
}
impl Todo {
pub fn new(id: usize, title: String) -> Self {
Self::new_with_completed(id, title, false)
pub fn new(cx: Scope, id: usize, title: String) -> Self {
Self::new_with_completed(cx, id, title, false)
}
pub fn new_with_completed(
id: usize,
title: String,
completed: bool,
) -> Self {
let (title, set_title) = create_signal(title);
let (completed, set_completed) = create_signal(completed);
pub fn new_with_completed(cx: Scope, id: usize, title: String, completed: bool) -> Self {
let (title, set_title) = create_signal(cx, title);
let (completed, set_completed) = create_signal(cx, completed);
Self {
id,
title,
@@ -102,7 +98,7 @@ const ESCAPE_KEY: u32 = 27;
const ENTER_KEY: u32 = 13;
#[component]
pub fn TodoMVC(todos: Todos) -> impl IntoView {
pub fn TodoMVC(cx: Scope, todos: Todos) -> impl IntoView {
let mut next_id = todos
.0
.iter()
@@ -111,10 +107,10 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
.map(|last| last + 1)
.unwrap_or(0);
let (todos, set_todos) = create_signal(todos);
provide_context(set_todos);
let (todos, set_todos) = create_signal(cx, todos);
provide_context(cx, set_todos);
let (mode, set_mode) = create_signal(Mode::All);
let (mode, set_mode) = create_signal(cx, Mode::All);
let add_todo = move |ev: web_sys::KeyboardEvent| {
let target = event_target::<HtmlInputElement>(&ev);
@@ -124,7 +120,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
let title = event_target_value(&ev);
let title = title.trim();
if !title.is_empty() {
let new = Todo::new(next_id, title.to_string());
let new = Todo::new(cx, next_id, title.to_string());
set_todos.update(|t| t.add(new));
next_id += 1;
target.set_value("");
@@ -132,7 +128,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
}
};
let filtered_todos = create_memo::<Vec<Todo>>(move |_| {
let filtered_todos = create_memo::<Vec<Todo>>(cx, move |_| {
todos.with(|todos| match mode.get() {
Mode::All => todos.0.to_vec(),
Mode::Active => todos
@@ -152,7 +148,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
// effect to serialize to JSON
// this does reactive reads, so it will automatically serialize on any relevant change
create_effect(move |_| {
create_effect(cx, move |_| {
if let Ok(Some(storage)) = window().local_storage() {
let objs = todos
.get()
@@ -167,7 +163,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
}
});
view! {
view! { cx,
<main>
<section class="todoapp">
<header class="header">
@@ -192,8 +188,8 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
<For
each=filtered_todos
key=|todo| todo.id
children=move |todo: Todo| {
view! { <Todo todo=todo.clone()/> }
view=move |cx, todo: Todo| {
view! { cx, <Todo todo=todo.clone()/> }
}
/>
</ul>
@@ -240,14 +236,14 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
<p>"Part of " <a href="http://todomvc.com">"TodoMVC"</a></p>
</footer>
</main>
}.into_view()
}.into_view(cx)
}
#[component]
pub fn Todo(todo: Todo) -> impl IntoView {
let (editing, set_editing) = create_signal(false);
let set_todos = use_context::<WriteSignal<Todos>>().unwrap();
//let input = NodeRef::new();
pub fn Todo(cx: Scope, todo: Todo) -> impl IntoView {
let (editing, set_editing) = create_signal(cx, false);
let set_todos = use_context::<WriteSignal<Todos>>(cx).unwrap();
//let input = NodeRef::new(cx);
let save = move |value: &str| {
let value = value.trim();
@@ -259,7 +255,7 @@ pub fn Todo(todo: Todo) -> impl IntoView {
set_editing(false);
};
view! {
view! { cx,
<li class="todo" class:editing=editing class:completed=move || (todo.completed)()>
<div class="view">
<input class="toggle" type="checkbox" prop:checked=move || (todo.completed)()/>
@@ -272,7 +268,7 @@ pub fn Todo(todo: Todo) -> impl IntoView {
{move || {
editing()
.then(|| {
view! {
view! { cx,
<input
class="edit"
class:hidden=move || !(editing)()
@@ -323,8 +319,8 @@ pub struct TodoSerialized {
}
impl TodoSerialized {
pub fn into_todo(self, ) -> Todo {
Todo::new_with_completed(self.id, self.title, self.completed)
pub fn into_todo(self, cx: Scope) -> Todo {
Todo::new_with_completed(cx, self.id, self.title, self.completed)
}
}

View File

@@ -2,7 +2,6 @@ use test::Bencher;
mod leptos;
mod sycamore;
mod tachys;
mod tera;
mod yew;
@@ -13,34 +12,18 @@ fn leptos_todomvc_ssr(b: &mut Bencher) {
b.iter(|| {
use crate::todomvc::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
view! { <TodoMVC todos=Todos::new()/> }
let html = ::leptos::ssr::render_to_string(|cx| {
view! { cx, <TodoMVC todos=Todos::new(cx)/> }
});
assert!(html.len() > 1);
});
runtime.dispose();
}
#[bench]
fn tachys_todomvc_ssr(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::tachys::*;
use tachydom::view::{Render, RenderHtml};
let rendered = TodoMVC(Todos::new()).to_html();
assert_eq!(
rendered,
"<main><section class=\"todoapp\"><header class=\"header\"><h1>todos</h1><input placeholder=\"What needs to be done?\" autofocus class=\"new-todo\"></header><section class=\"main hidden\"><input id=\"toggle-all\" type=\"checkbox\" class=\"toggle-all\"><label for=\"toggle-all\">Mark all as complete</label><ul class=\"todo-list\"></ul></section><footer class=\"footer hidden\"><span class=\"todo-count\"><strong>0</strong><!> items<!> left</span><ul class=\"filters\"><li><a href=\"#/\" class=\"selected selected\">All</a></li><li><a href=\"#/active\" class=\"\">Active</a></li><li><a href=\"#/completed\" class=\"\">Completed</a></li></ul><button class=\"clear-completed hidden hidden\">Clear completed</button></footer></section><footer class=\"info\"><p>Double-click to edit a todo</p><p>Created by <a href=\"http://todomvc.com\">Greg Johnston</a></p><p>Part of <a href=\"http://todomvc.com\">TodoMVC</a></p></footer></main>" );
});
runtime.dispose();
}
#[bench]
fn sycamore_todomvc_ssr(b: &mut Bencher) {
use self::sycamore::*;
use ::sycamore::{prelude::*, *};
use ::sycamore::prelude::*;
use ::sycamore::*;
b.iter(|| {
_ = create_scope(|cx| {
@@ -59,7 +42,8 @@ fn sycamore_todomvc_ssr(b: &mut Bencher) {
#[bench]
fn yew_todomvc_ssr(b: &mut Bencher) {
use self::yew::*;
use ::yew::{prelude::*, ServerRenderer};
use ::yew::prelude::*;
use ::yew::ServerRenderer;
b.iter(|| {
tokio_test::block_on(async {
@@ -76,33 +60,21 @@ fn leptos_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::leptos::*;
use ::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
let html = ::leptos::ssr::render_to_string(|cx| {
view! {
<TodoMVC todos=Todos::new_with_1000()/>
cx,
<TodoMVC todos=Todos::new_with_1000(cx)/>
}
});
assert!(html.len() > 1);
});
}
#[bench]
fn tachys_todomvc_ssr_with_1000(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::tachys::*;
use tachydom::view::{Render, RenderHtml};
let rendered = TodoMVC(Todos::new_with_1000()).to_html();
assert!(rendered.len() > 20_000)
});
runtime.dispose();
}
#[bench]
fn sycamore_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::sycamore::*;
use ::sycamore::{prelude::*, *};
use ::sycamore::prelude::*;
use ::sycamore::*;
b.iter(|| {
_ = create_scope(|cx| {
@@ -121,7 +93,8 @@ fn sycamore_todomvc_ssr_with_1000(b: &mut Bencher) {
#[bench]
fn yew_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::yew::*;
use ::yew::{prelude::*, ServerRenderer};
use ::yew::prelude::*;
use ::yew::ServerRenderer;
b.iter(|| {
tokio_test::block_on(async {
@@ -130,19 +103,4 @@ fn yew_todomvc_ssr_with_1000(b: &mut Bencher) {
assert!(rendered.len() > 1);
});
});
}
#[bench]
fn tera_todomvc_ssr(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
view! { <TodoMVC todos=Todos::new()/> }
});
assert!(html.len() > 1);
});
runtime.dispose();
}
}

View File

@@ -1,333 +0,0 @@
pub use leptos_reactive::*;
use miniserde::*;
use tachy_maccy::view;
use tachydom::{
html::{
attribute::global::{ClassAttribute, GlobalAttributes, OnAttribute},
element::ElementChild,
},
renderer::dom::Dom,
view::{keyed::keyed, Render, RenderHtml},
};
use wasm_bindgen::JsCast;
use web_sys::HtmlInputElement;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Todos(pub Vec<Todo>);
const STORAGE_KEY: &str = "todos-leptos";
impl Todos {
pub fn new() -> Self {
Self(vec![])
}
pub fn new_with_1000() -> Self {
let todos = (0..1000)
.map(|id| Todo::new(id, format!("Todo #{id}")))
.collect();
Self(todos)
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn add(&mut self, todo: Todo) {
self.0.push(todo);
}
pub fn remove(&mut self, id: usize) {
self.0.retain(|todo| todo.id != id);
}
pub fn remaining(&self) -> usize {
self.0.iter().filter(|todo| !(todo.completed)()).count()
}
pub fn completed(&self) -> usize {
self.0.iter().filter(|todo| (todo.completed)()).count()
}
pub fn toggle_all(&self) {
// if all are complete, mark them all active instead
if self.remaining() == 0 {
for todo in &self.0 {
if todo.completed.get() {
(todo.set_completed)(false);
}
}
}
// otherwise, mark them all complete
else {
for todo in &self.0 {
(todo.set_completed)(true);
}
}
}
fn clear_completed(&mut self) {
self.0.retain(|todo| !todo.completed.get());
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Todo {
pub id: usize,
pub title: ReadSignal<String>,
pub set_title: WriteSignal<String>,
pub completed: ReadSignal<bool>,
pub set_completed: WriteSignal<bool>,
}
impl Todo {
pub fn new(id: usize, title: String) -> Self {
Self::new_with_completed(id, title, false)
}
pub fn new_with_completed(
id: usize,
title: String,
completed: bool,
) -> Self {
let (title, set_title) = create_signal(title);
let (completed, set_completed) = create_signal(completed);
Self {
id,
title,
set_title,
completed,
set_completed,
}
}
pub fn toggle(&self) {
self.set_completed
.update(|completed| *completed = !*completed);
}
}
const ESCAPE_KEY: u32 = 27;
const ENTER_KEY: u32 = 13;
pub fn TodoMVC(todos: Todos) -> impl Render<Dom> + RenderHtml<Dom> {
let mut next_id = todos
.0
.iter()
.map(|todo| todo.id)
.max()
.map(|last| last + 1)
.unwrap_or(0);
let (todos, set_todos) = create_signal(todos);
provide_context(set_todos);
let (mode, set_mode) = create_signal(Mode::All);
let add_todo = move |ev: web_sys::KeyboardEvent| {
todo!()
/* let target = event_target::<HtmlInputElement>(&ev);
ev.stop_propagation();
let key_code = ev.unchecked_ref::<web_sys::KeyboardEvent>().key_code();
if key_code == ENTER_KEY {
let title = event_target_value(&ev);
let title = title.trim();
if !title.is_empty() {
let new = Todo::new(next_id, title.to_string());
set_todos.update(|t| t.add(new));
next_id += 1;
target.set_value("");
}
} */
};
let filtered_todos = create_memo::<Vec<Todo>>(move |_| {
todos.with(|todos| match mode.get() {
Mode::All => todos.0.to_vec(),
Mode::Active => todos
.0
.iter()
.filter(|todo| !todo.completed.get())
.cloned()
.collect(),
Mode::Completed => todos
.0
.iter()
.filter(|todo| todo.completed.get())
.cloned()
.collect(),
})
});
// effect to serialize to JSON
// this does reactive reads, so it will automatically serialize on any relevant change
create_effect(move |_| {
()
/* if let Ok(Some(storage)) = window().local_storage() {
let objs = todos
.get()
.0
.iter()
.map(TodoSerialized::from)
.collect::<Vec<_>>();
let json = json::to_string(&objs);
if storage.set_item(STORAGE_KEY, &json).is_err() {
log::error!("error while trying to set item in localStorage");
}
} */
});
view! {
<main>
<section class="todoapp">
<header class="header">
<h1>"todos"</h1>
<input
class="new-todo"
placeholder="What needs to be done?"
autofocus
/>
</header>
<section class="main" class:hidden=move || todos.with(|t| t.is_empty())>
<input
id="toggle-all"
class="toggle-all"
r#type="checkbox"
//prop:checked=move || todos.with(|t| t.remaining() > 0)
on:input=move |_| set_todos.update(|t| t.toggle_all())
/>
<label r#for="toggle-all">"Mark all as complete"</label>
<ul class="todo-list">
{move || {
keyed(filtered_todos.get(), |todo| todo.id, Todo)
}}
</ul>
</section>
<footer class="footer" class:hidden=move || todos.with(|t| t.is_empty())>
<span class="todo-count">
<strong>{move || todos.with(|t| t.remaining().to_string())}</strong>
{move || if todos.with(|t| t.remaining()) == 1 { " item" } else { " items" }}
" left"
</span>
<ul class="filters">
<li>
<a
href="#/"
class="selected"
class:selected=move || mode() == Mode::All
>
"All"
</a>
</li>
<li>
<a href="#/active" class:selected=move || mode() == Mode::Active>
"Active"
</a>
</li>
<li>
<a href="#/completed" class:selected=move || mode() == Mode::Completed>
"Completed"
</a>
</li>
</ul>
<button
class="clear-completed hidden"
class:hidden=move || todos.with(|t| t.completed() == 0)
on:click=move |_| set_todos.update(|t| t.clear_completed())
>
"Clear completed"
</button>
</footer>
</section>
<footer class="info">
<p>"Double-click to edit a todo"</p>
<p>"Created by " <a href="http://todomvc.com">"Greg Johnston"</a></p>
<p>"Part of " <a href="http://todomvc.com">"TodoMVC"</a></p>
</footer>
</main>
}
}
pub fn Todo(todo: Todo) -> impl Render<Dom> + RenderHtml<Dom> {
let (editing, set_editing) = create_signal(false);
let set_todos = use_context::<WriteSignal<Todos>>().unwrap();
//let input = NodeRef::new();
let save = move |value: &str| {
let value = value.trim();
if value.is_empty() {
set_todos.update(|t| t.remove(todo.id));
} else {
(todo.set_title)(value.to_string());
}
set_editing(false);
};
view! {
<li class="todo" class:editing=editing class:completed=move || (todo.completed)()>
/* <div class="view">
<input class="toggle" r#type="checkbox"/>
<label on:dblclick=move |_| set_editing(true)>{move || todo.title.get()}</label>
<button
class="destroy"
on:click=move |_| set_todos.update(|t| t.remove(todo.id))
></button>
</div>
{move || {
editing()
.then(|| {
view! {
<input
class="edit"
class:hidden=move || !(editing)()
/>
}
})
}} */
</li>
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Mode {
Active,
Completed,
All,
}
impl Default for Mode {
fn default() -> Self {
Mode::All
}
}
pub fn route(hash: &str) -> Mode {
match hash {
"/active" => Mode::Active,
"/completed" => Mode::Completed,
_ => Mode::All,
}
}
#[derive(Serialize, Deserialize)]
pub struct TodoSerialized {
pub id: usize,
pub title: String,
pub completed: bool,
}
impl TodoSerialized {
pub fn into_todo(self) -> Todo {
Todo::new_with_completed(self.id, self.title, self.completed)
}
}
impl From<&Todo> for TodoSerialized {
fn from(todo: &Todo) -> Self {
Self {
id: todo.id,
title: todo.title.get(),
completed: (todo.completed)(),
}
}
}

View File

@@ -55,7 +55,7 @@ static TEMPLATE: &str = r#"<main>
{% else %}
<li><a href="/">All</a></li>
{% endif %}
{% if mode_active %}
<li><a href="/active" class="selected">Active</a></li>
{% else %}
@@ -87,17 +87,17 @@ static TEMPLATE: &str = r#"<main>
</main>"#;
#[bench]
fn tera_todomvc_ssr(b: &mut Bencher) {
fn tera_todomvc(b: &mut Bencher) {
use serde::{Deserialize, Serialize};
use tera::*;
static LazyLock<TERA>: Tera = LazyLock( || {
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
};
}
#[derive(Serialize, Deserialize)]
struct Todo {
@@ -127,17 +127,17 @@ fn tera_todomvc_ssr(b: &mut Bencher) {
}
#[bench]
fn tera_todomvc_ssr_1000(b: &mut Bencher) {
fn tera_todomvc_1000(b: &mut Bencher) {
use serde::{Deserialize, Serialize};
use tera::*;
static TERA: LazyLock<Tera> = LazyLock::new(|| {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
};
}
#[derive(Serialize, Deserialize)]
struct Todo {
@@ -174,4 +174,4 @@ fn tera_todomvc_ssr_1000(b: &mut Bencher) {
let _ = TERA.render("template.html", &ctx).unwrap();
});
}
}

View File

@@ -1,14 +0,0 @@
[tasks.check-minimal-versions]
condition = { channels = ["nightly"] }
command = "cargo"
args = [
"all-features",
"minimal-versions",
"check",
"--ignore-private",
"--detach-path-deps",
"--direct",
]
install_script = '''
cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
'''

View File

@@ -1,20 +0,0 @@
[tasks.lint]
dependencies = ["check-format-flow", "clippy-each-feature"]
[tasks.check-format]
env = { LEPTOS_PROJECT_DIRECTORY = "../" }
args = ["fmt", "--", "--check", "--config-path", "${LEPTOS_PROJECT_DIRECTORY}"]
[tasks.clippy-each-feature]
command = "cargo"
args = [
"all-features",
"clippy",
"--no-deps",
"--",
"-D",
"clippy::print_stdout",
]
install_script = '''
cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
'''

View File

@@ -1,15 +0,0 @@
extend = [
{ path = "./lint.toml" },
{ path = "./test.toml" },
{ path = "./check-minimal-versions.toml" },
]
[env]
RUSTFLAGS = ""
LEPTOS_OUTPUT_NAME = "ci" # allows examples to check/build without cargo-leptos
[env.github-actions]
RUSTFLAGS = "-D warnings"
[tasks.ci]
dependencies = ["lint", "test-each-feature", "doctests"]

View File

@@ -1,16 +0,0 @@
[tasks.test-each-feature]
env = { "NEXTEST_NO_TESTS" = "warn" }
command = "cargo"
args = ["all-features", "nextest", "run", "--all-targets"]
install_script = '''
cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
'''
# This can be removed once doctests is supported in nextest
# https://github.com/nextest-rs/nextest/issues/16
[tasks.doctests]
command = "cargo"
args = ["all-features", "test", "--doc"]
install_script = '''
cargo install --git https://github.com/sabify/cargo-all-features --branch arbitrary-command-support
'''

View File

@@ -1,7 +0,0 @@
[tasks.post-test]
dependencies = ["test-wasm"]
[tasks.test-wasm]
env = { CARGO_MAKE_WASM_TEST_ARGS = "--headless --chrome --features=wasm-bindgen" }
command = "cargo"
args = ["make", "wasm-pack-test"]

View File

@@ -1,12 +0,0 @@
[package]
name = "const_str_slice_concat"
version = "0.1.0"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Utilities for const concatenation of string slices."
rust-version.workspace = true
edition.workspace = true
[dependencies]

View File

@@ -1 +0,0 @@
extend = { path = "../cargo-make/main.toml" }

View File

@@ -1,139 +0,0 @@
#![no_std]
#![forbid(unsafe_code)]
#![deny(missing_docs)]
//! Utilities for const concatenation of string slices.
pub(crate) const MAX_TEMPLATE_SIZE: usize = 4096;
/// Converts a zero-terminated buffer of bytes into a UTF-8 string.
pub const fn str_from_buffer(buf: &[u8; MAX_TEMPLATE_SIZE]) -> &str {
match core::ffi::CStr::from_bytes_until_nul(buf) {
Ok(cstr) => match cstr.to_str() {
Ok(str) => str,
Err(_) => panic!("TEMPLATE FAILURE"),
},
Err(_) => panic!("TEMPLATE FAILURE"),
}
}
/// Concatenates any number of static strings into a single array.
// credit to Rainer Stropek, "Constant fun," Rust Linz, June 2022
pub const fn const_concat(
strs: &'static [&'static str],
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable references in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
remaining = tail;
}
buffer
}
/// Converts a zero-terminated buffer of bytes into a UTF-8 string with the given prefix.
pub const fn const_concat_with_prefix(
strs: &'static [&'static str],
prefix: &'static str,
suffix: &'static str,
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable references in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
remaining = tail;
}
if buffer[0] == 0 {
buffer
} else {
let mut new_buf = [0; MAX_TEMPLATE_SIZE];
let prefix = prefix.as_bytes();
let suffix = suffix.as_bytes();
let mut position = 0;
let mut i = 0;
while i < prefix.len() {
new_buf[position] = prefix[i];
position += 1;
i += 1;
}
i = 0;
while i < buffer.len() {
if buffer[i] == 0 {
break;
}
new_buf[position] = buffer[i];
position += 1;
i += 1;
}
i = 0;
while i < suffix.len() {
new_buf[position] = suffix[i];
position += 1;
i += 1;
}
new_buf
}
}
/// Converts any number of strings into a UTF-8 string, separated by the given string.
pub const fn const_concat_with_separator(
strs: &[&str],
separator: &'static str,
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable references in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
if !x.is_empty() {
let mut position = 0;
let separator = separator.as_bytes();
while i < separator.len() {
buffer[position] = separator[i];
position += 1;
i += 1;
}
}
remaining = tail;
}
buffer
}

View File

@@ -9,10 +9,10 @@ This document is intended as a running list of common issues, with example code
**Issue**: Sometimes you want to update a reactive signal in a way that depends on another signal.
```rust
let (a, set_a) = create_signal(0);
let (b, set_b) = create_signal(false);
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, false);
create_effect(move |_| {
create_effect(cx, move |_| {
if a() > 5 {
set_b(true);
}
@@ -24,7 +24,7 @@ This creates an inefficient chain of updates, and can easily lead to infinite lo
**Solution**: Follow the rule, _What can be derived, should be derived._ In this case, this has the benefit of massively reducing the code size, too!
```rust
let (a, set_a) = create_signal(0);
let (a, set_a) = create_signal(cx, 0);
let b = move || a () > 5;
```
@@ -34,19 +34,19 @@ Sometimes you have nested signals: for example, hash-map that can change over ti
```rust
#[component]
pub fn App() -> impl IntoView {
let resources = create_rw_signal(HashMap::new());
pub fn App(cx: Scope) -> impl IntoView {
let resources = create_rw_signal(cx, HashMap::new());
let update = move |id: usize| {
resources.update(|resources| {
resources
.entry(id)
.or_insert_with(|| create_rw_signal(0))
.or_insert_with(|| create_rw_signal(cx, 0))
.update(|amount| *amount += 1)
})
};
view! {
view! { cx,
<div>
<pre>{move || format!("{:#?}", resources.get().into_iter().map(|(id, resource)| (id, resource.get())).collect::<Vec<_>>())}</pre>
<button on:click=move |_| update(1)>"+"</button>
@@ -55,17 +55,17 @@ pub fn App() -> impl IntoView {
}
```
Clicking the button twice will cause a panic, because of the nested signal _read_. Calling the `update` function on `resources` immediately takes out a mutable borrow on `resources`, then updates the `resource` signal—which re-runs the effect that reads from the signals, which tries to immutably access `resources` and panics. It's the nested update here which causes a problem, because the inner update triggers and effect that tries to read both signals while the outer is still updating.
Clicking the button twice will cause a panic, because of the nested signal *read*. Calling the `update` function on `resources` immediately takes out a mutable borrow on `resources`, then updates the `resource` signal—which re-runs the effect that reads from the signals, which tries to immutably access `resources` and panics. It's the nested update here which causes a problem, because the inner update triggers and effect that tries to read both signals while the outer is still updating.
You can fix this fairly easily by using the [`batch()`](https://docs.rs/leptos/latest/leptos/fn.batch.html) method:
You can fix this fairly easily by using the [`Scope::batch()`](https://docs.rs/leptos/latest/leptos/struct.Scope.html#method.batch) method:
```rust
let update = move |id: usize| {
batch(move || {
cx.batch(move || {
resources.update(|resources| {
resources
.entry(id)
.or_insert_with(|| create_rw_signal(0))
.or_insert_with(|| create_rw_signal(cx, 0))
.update(|amount| *amount += 1)
})
});
@@ -83,11 +83,11 @@ Many DOM attributes can be updated either by setting an attribute on the DOM nod
This means that in practice, attributes like `value` or `checked` on an `<input/>` element only update the _default_ value for the `<input/>`. If you want to reactively update the value, you should use `prop:value` instead to set the `value` property.
```rust
let (a, set_a) = create_signal("Starting value".to_string());
let (a, set_a) = create_signal(cx, "Starting value".to_string());
let on_input = move |ev| set_a(event_target_value(&ev));
view! {
cx,
// ❌ reactivity doesn't work as expected: typing only updates the default
// of each input, so if you start typing in the second input, it won't
// update the first one
@@ -97,11 +97,11 @@ view! {
```
```rust
let (a, set_a) = create_signal("Starting value".to_string());
let (a, set_a) = create_signal(cx, "Starting value".to_string());
let on_input = move |ev| set_a(event_target_value(&ev));
view! {
cx,
// ✅ works as intended by setting the value *property*
<input prop:value=a on:input=on_input />
<input prop:value=a on:input=on_input />

View File

@@ -1,3 +1,14 @@
The Leptos book is now available at [https://book.leptos.dev](https://book.leptos.dev).
This project contains the core of a new introductory guide to Leptos.
The source code for the book has moved to [https://github.com/leptos-rs/book](https://github.com/leptos-rs/book). Please open issues or make PRs in that repository.
It is built using `mdbook`. You can view a local copy by installing `mdbook`
```bash
cargo install mdbook
```
and run the book with
```
mdbook serve
```
It should be available at `http://localhost:3000`.

View File

@@ -1,10 +0,0 @@
[output.html]
additional-css = ["./mdbook-admonish.css"]
[output.html.playground]
runnable = false
[preprocessor]
[preprocessor.admonish]
command = "mdbook-admonish"
assets_version = "3.0.1" # do not edit: managed by `mdbook-admonish install`

View File

@@ -1,345 +0,0 @@
@charset "UTF-8";
:root {
--md-admonition-icon--admonish-note: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M20.71 7.04c.39-.39.39-1.04 0-1.41l-2.34-2.34c-.37-.39-1.02-.39-1.41 0l-1.84 1.83 3.75 3.75M3 17.25V21h3.75L17.81 9.93l-3.75-3.75L3 17.25z'/></svg>");
--md-admonition-icon--admonish-abstract: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M17 9H7V7h10m0 6H7v-2h10m-3 6H7v-2h7M12 3a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m7 0h-4.18C14.4 1.84 13.3 1 12 1c-1.3 0-2.4.84-2.82 2H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2V5a2 2 0 0 0-2-2z'/></svg>");
--md-admonition-icon--admonish-info: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M13 9h-2V7h2m0 10h-2v-6h2m-1-9A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2z'/></svg>");
--md-admonition-icon--admonish-tip: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M17.66 11.2c-.23-.3-.51-.56-.77-.82-.67-.6-1.43-1.03-2.07-1.66C13.33 7.26 13 4.85 13.95 3c-.95.23-1.78.75-2.49 1.32-2.59 2.08-3.61 5.75-2.39 8.9.04.1.08.2.08.33 0 .22-.15.42-.35.5-.23.1-.47.04-.66-.12a.58.58 0 0 1-.14-.17c-1.13-1.43-1.31-3.48-.55-5.12C5.78 10 4.87 12.3 5 14.47c.06.5.12 1 .29 1.5.14.6.41 1.2.71 1.73 1.08 1.73 2.95 2.97 4.96 3.22 2.14.27 4.43-.12 6.07-1.6 1.83-1.66 2.47-4.32 1.53-6.6l-.13-.26c-.21-.46-.77-1.26-.77-1.26m-3.16 6.3c-.28.24-.74.5-1.1.6-1.12.4-2.24-.16-2.9-.82 1.19-.28 1.9-1.16 2.11-2.05.17-.8-.15-1.46-.28-2.23-.12-.74-.1-1.37.17-2.06.19.38.39.76.63 1.06.77 1 1.98 1.44 2.24 2.8.04.14.06.28.06.43.03.82-.33 1.72-.93 2.27z'/></svg>");
--md-admonition-icon--admonish-success: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='m9 20.42-6.21-6.21 2.83-2.83L9 14.77l9.88-9.89 2.83 2.83L9 20.42z'/></svg>");
--md-admonition-icon--admonish-question: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='m15.07 11.25-.9.92C13.45 12.89 13 13.5 13 15h-2v-.5c0-1.11.45-2.11 1.17-2.83l1.24-1.26c.37-.36.59-.86.59-1.41a2 2 0 0 0-2-2 2 2 0 0 0-2 2H8a4 4 0 0 1 4-4 4 4 0 0 1 4 4 3.2 3.2 0 0 1-.93 2.25M13 19h-2v-2h2M12 2A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10c0-5.53-4.5-10-10-10z'/></svg>");
--md-admonition-icon--admonish-warning: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M13 14h-2V9h2m0 9h-2v-2h2M1 21h22L12 2 1 21z'/></svg>");
--md-admonition-icon--admonish-failure: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M20 6.91 17.09 4 12 9.09 6.91 4 4 6.91 9.09 12 4 17.09 6.91 20 12 14.91 17.09 20 20 17.09 14.91 12 20 6.91z'/></svg>");
--md-admonition-icon--admonish-danger: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M11 15H6l7-14v8h5l-7 14v-8z'/></svg>");
--md-admonition-icon--admonish-bug: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M14 12h-4v-2h4m0 6h-4v-2h4m6-6h-2.81a5.985 5.985 0 0 0-1.82-1.96L17 4.41 15.59 3l-2.17 2.17a6.002 6.002 0 0 0-2.83 0L8.41 3 7 4.41l1.62 1.63C7.88 6.55 7.26 7.22 6.81 8H4v2h2.09c-.05.33-.09.66-.09 1v1H4v2h2v1c0 .34.04.67.09 1H4v2h2.81c1.04 1.79 2.97 3 5.19 3s4.15-1.21 5.19-3H20v-2h-2.09c.05-.33.09-.66.09-1v-1h2v-2h-2v-1c0-.34-.04-.67-.09-1H20V8z'/></svg>");
--md-admonition-icon--admonish-example: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M7 13v-2h14v2H7m0 6v-2h14v2H7M7 7V5h14v2H7M3 8V5H2V4h2v4H3m-1 9v-1h3v4H2v-1h2v-.5H3v-1h1V17H2m2.25-7a.75.75 0 0 1 .75.75c0 .2-.08.39-.21.52L3.12 13H5v1H2v-.92L4 11H2v-1h2.25z'/></svg>");
--md-admonition-icon--admonish-quote: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M14 17h3l2-4V7h-6v6h3M6 17h3l2-4V7H5v6h3l-2 4z'/></svg>");
--md-details-icon: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M8.59 16.58 13.17 12 8.59 7.41 10 6l6 6-6 6-1.41-1.42Z'/></svg>");
}
:is(.admonition) {
display: flow-root;
margin: 1.5625em 0;
padding: 0 1.2rem;
color: var(--fg);
page-break-inside: avoid;
background-color: var(--bg);
border: 0 solid black;
border-inline-start-width: 0.4rem;
border-radius: 0.2rem;
box-shadow: 0 0.2rem 1rem rgba(0, 0, 0, 0.05), 0 0 0.1rem rgba(0, 0, 0, 0.1);
}
@media print {
:is(.admonition) {
box-shadow: none;
}
}
:is(.admonition) > * {
box-sizing: border-box;
}
:is(.admonition) :is(.admonition) {
margin-top: 1em;
margin-bottom: 1em;
}
:is(.admonition) > .tabbed-set:only-child {
margin-top: 0;
}
html :is(.admonition) > :last-child {
margin-bottom: 1.2rem;
}
a.admonition-anchor-link {
display: none;
position: absolute;
left: -1.2rem;
padding-right: 1rem;
}
a.admonition-anchor-link:link, a.admonition-anchor-link:visited {
color: var(--fg);
}
a.admonition-anchor-link:link:hover, a.admonition-anchor-link:visited:hover {
text-decoration: none;
}
a.admonition-anchor-link::before {
content: "§";
}
:is(.admonition-title, summary.admonition-title) {
position: relative;
min-height: 4rem;
margin-block: 0;
margin-inline: -1.6rem -1.2rem;
padding-block: 0.8rem;
padding-inline: 4.4rem 1.2rem;
font-weight: 700;
background-color: rgba(68, 138, 255, 0.1);
print-color-adjust: exact;
-webkit-print-color-adjust: exact;
display: flex;
}
:is(.admonition-title, summary.admonition-title) p {
margin: 0;
}
html :is(.admonition-title, summary.admonition-title):last-child {
margin-bottom: 0;
}
:is(.admonition-title, summary.admonition-title)::before {
position: absolute;
top: 0.625em;
inset-inline-start: 1.6rem;
width: 2rem;
height: 2rem;
background-color: #448aff;
print-color-adjust: exact;
-webkit-print-color-adjust: exact;
mask-image: url('data:image/svg+xml;charset=utf-8,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"></svg>');
-webkit-mask-image: url('data:image/svg+xml;charset=utf-8,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"></svg>');
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-size: contain;
content: "";
}
:is(.admonition-title, summary.admonition-title):hover a.admonition-anchor-link {
display: initial;
}
details.admonition > summary.admonition-title::after {
position: absolute;
top: 0.625em;
inset-inline-end: 1.6rem;
height: 2rem;
width: 2rem;
background-color: currentcolor;
mask-image: var(--md-details-icon);
-webkit-mask-image: var(--md-details-icon);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-size: contain;
content: "";
transform: rotate(0deg);
transition: transform 0.25s;
}
details[open].admonition > summary.admonition-title::after {
transform: rotate(90deg);
}
:is(.admonition):is(.admonish-note) {
border-color: #448aff;
}
:is(.admonish-note) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(68, 138, 255, 0.1);
}
:is(.admonish-note) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #448aff;
mask-image: var(--md-admonition-icon--admonish-note);
-webkit-mask-image: var(--md-admonition-icon--admonish-note);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-abstract, .admonish-summary, .admonish-tldr) {
border-color: #00b0ff;
}
:is(.admonish-abstract, .admonish-summary, .admonish-tldr) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 176, 255, 0.1);
}
:is(.admonish-abstract, .admonish-summary, .admonish-tldr) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00b0ff;
mask-image: var(--md-admonition-icon--admonish-abstract);
-webkit-mask-image: var(--md-admonition-icon--admonish-abstract);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-info, .admonish-todo) {
border-color: #00b8d4;
}
:is(.admonish-info, .admonish-todo) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 184, 212, 0.1);
}
:is(.admonish-info, .admonish-todo) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00b8d4;
mask-image: var(--md-admonition-icon--admonish-info);
-webkit-mask-image: var(--md-admonition-icon--admonish-info);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-tip, .admonish-hint, .admonish-important) {
border-color: #00bfa5;
}
:is(.admonish-tip, .admonish-hint, .admonish-important) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 191, 165, 0.1);
}
:is(.admonish-tip, .admonish-hint, .admonish-important) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00bfa5;
mask-image: var(--md-admonition-icon--admonish-tip);
-webkit-mask-image: var(--md-admonition-icon--admonish-tip);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-success, .admonish-check, .admonish-done) {
border-color: #00c853;
}
:is(.admonish-success, .admonish-check, .admonish-done) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 200, 83, 0.1);
}
:is(.admonish-success, .admonish-check, .admonish-done) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00c853;
mask-image: var(--md-admonition-icon--admonish-success);
-webkit-mask-image: var(--md-admonition-icon--admonish-success);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-question, .admonish-help, .admonish-faq) {
border-color: #64dd17;
}
:is(.admonish-question, .admonish-help, .admonish-faq) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(100, 221, 23, 0.1);
}
:is(.admonish-question, .admonish-help, .admonish-faq) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #64dd17;
mask-image: var(--md-admonition-icon--admonish-question);
-webkit-mask-image: var(--md-admonition-icon--admonish-question);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-warning, .admonish-caution, .admonish-attention) {
border-color: #ff9100;
}
:is(.admonish-warning, .admonish-caution, .admonish-attention) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 145, 0, 0.1);
}
:is(.admonish-warning, .admonish-caution, .admonish-attention) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff9100;
mask-image: var(--md-admonition-icon--admonish-warning);
-webkit-mask-image: var(--md-admonition-icon--admonish-warning);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-failure, .admonish-fail, .admonish-missing) {
border-color: #ff5252;
}
:is(.admonish-failure, .admonish-fail, .admonish-missing) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 82, 82, 0.1);
}
:is(.admonish-failure, .admonish-fail, .admonish-missing) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff5252;
mask-image: var(--md-admonition-icon--admonish-failure);
-webkit-mask-image: var(--md-admonition-icon--admonish-failure);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-danger, .admonish-error) {
border-color: #ff1744;
}
:is(.admonish-danger, .admonish-error) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 23, 68, 0.1);
}
:is(.admonish-danger, .admonish-error) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff1744;
mask-image: var(--md-admonition-icon--admonish-danger);
-webkit-mask-image: var(--md-admonition-icon--admonish-danger);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-bug) {
border-color: #f50057;
}
:is(.admonish-bug) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(245, 0, 87, 0.1);
}
:is(.admonish-bug) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #f50057;
mask-image: var(--md-admonition-icon--admonish-bug);
-webkit-mask-image: var(--md-admonition-icon--admonish-bug);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-example) {
border-color: #7c4dff;
}
:is(.admonish-example) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(124, 77, 255, 0.1);
}
:is(.admonish-example) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #7c4dff;
mask-image: var(--md-admonition-icon--admonish-example);
-webkit-mask-image: var(--md-admonition-icon--admonish-example);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-quote, .admonish-cite) {
border-color: #9e9e9e;
}
:is(.admonish-quote, .admonish-cite) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(158, 158, 158, 0.1);
}
:is(.admonish-quote, .admonish-cite) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #9e9e9e;
mask-image: var(--md-admonition-icon--admonish-quote);
-webkit-mask-image: var(--md-admonition-icon--admonish-quote);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
.navy :is(.admonition) {
background-color: var(--sidebar-bg);
}
.ayu :is(.admonition),
.coal :is(.admonition) {
background-color: var(--theme-hover);
}
.rust :is(.admonition) {
background-color: var(--sidebar-bg);
color: var(--sidebar-fg);
}
.rust .admonition-anchor-link:link, .rust .admonition-anchor-link:visited {
color: var(--sidebar-fg);
}

View File

@@ -1,2 +1,20 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/">
<link rel="canonical" href="https://book.leptos.dev/">
# Introduction
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework.
It will walk through the fundamental concepts you need to build applications,
beginning with a simple application rendered in the browser, and building toward a
full-stack application with server-side rendering and hydration.
The guide doesnt assume you know anything about fine-grained reactivity or the
details of modern Web frameworks. It does assume you are familiar with the Rust
programming language, HTML, CSS, and the DOM and basic Web APIs.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript)
and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities
to other frameworks like React (JavaScript), Svelte (JavaScript), Yew (Rust), and
Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to
understand Leptos.
You can find more detailed docs for each part of the API at [Docs.rs](https://docs.rs/leptos/latest/leptos/).
**The guide is a work in progress.**

View File

@@ -0,0 +1,70 @@
# Getting Started
There are two basic paths to getting started with Leptos:
1. Client-side rendering with [Trunk](https://trunkrs.dev/)
2. Full-stack rendering with [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos)
For the early examples, it will be easiest to begin with Trunk. Well introduce
`cargo-leptos` a little later in this series.
If you dont already have it installed, you can install Trunk by running
```bash
cargo install trunk
```
Create a basic Rust binary project
```bash
cargo init leptos-tutorial
```
> We recommend using `nightly` Rust, as it enables [a few nice features](https://github.com/leptos-rs/leptos#nightly-note). To use `nightly` Rust with WebAssembly, you can run
>
> ```bash
> rustup toolchain install nightly
> rustup default nightly
> rustup target add wasm32-unknown-unknown
> ```
`cd` into your new `leptos-tutorial` project and add `leptos` as a dependency
```bash
cargo add leptos --features=csr,nightly # or just csr if you're using stable Rust
```
Create a simple `index.html` in the root of the `leptos-tutorial` directory
```html
<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>
```
And add a simple “Hello, world!” to your `main.rs`
```rust
use leptos::*;
fn main() {
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
}
```
Your directory structure should now look something like this
```
leptos_tutorial
├── src
│ └── main.rs
├── Cargo.toml
├── index.html
```
Now run `trunk serve --open` from the root of the `leptos-tutorial` directory.
Trunk should automatically compile your app and open it in your default browser.
If you make edits to `main.rs`, Trunk will recompile your source code and
live-reload the page.

View File

@@ -0,0 +1 @@
# Responding to Changes with create_effect

View File

@@ -1,2 +1,185 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/15_global_state.html">
<link rel="canonical" href="https://book.leptos.dev/15_global_state.html">
# Global State Management
So far, we've only been working with local state in components, and weve seen how to coordinate state between parent and child components. On occasion, there are times where people look for a more general solution for global state management that can work throughout an application.
In general, **you do not need this chapter.** The typical pattern is to compose your application out of components, each of which manages its own local state, not to store all state in a global structure. However, there are some cases (like theming, saving user settings, or sharing data between components in different parts of your UI) in which you may want to use some kind of global state management.
The three best approaches to global state are
1. Using the router to drive global state via the URL
2. Passing signals through context
3. Creating a global state struct and creating lenses into it with `create_slice`
## Option #1: URL as Global State
In many ways, the URL is actually the best way to store global state. It can be accessed from any component, anywhere in your tree. There are native HTML elements like `<form>` and `<a>` that exist solely to update the URL. And it persists across page reloads and between devices; you can share a URL with a friend or send it from your phone to your laptop and any state stored in it will be replicated.
The next few sections of the tutorial will be about the router, and well get much more into these topics.
But for now, we'll just look at options #2 and #3.
## Option #2: Passing Signals through Context
In the section on [parent-child communication](view/08_parent_child.md), we saw that you can use `provide_context` to pass signal from a parent component to a child, and `use_context` to read it in the child. But `provide_context` works across any distance. If you want to create a global signal that holds some piece of state, you can provide it and access it via context anywhere in the descendants of the component where you provide it.
A signal provided via context only causes reactive updates where it is read, not in any of the components in between, so it maintains the power of fine-grained reactive updates, even at a distance.
We start by creating a signal in the root of the app and providing it to
all its children and descendants using `provide_context`.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
// here we create a signal in the root that can be consumed
// anywhere in the app.
let (count, set_count) = create_signal(cx, 0);
// we'll pass the setter to specific components,
// but provide the count itself to the whole app via context
provide_context(cx, count);
view! { cx,
// SetterButton is allowed to modify the count
<SetterButton set_count/>
// These consumers can only read from it
// But we could give them write access by passing `set_count` if we wanted
<FancyMath/>
<ListItems/>
}
}
```
`<SetterButton/>` is the kind of counter weve written several times now.
(See the sandbox below if you dont understand what I mean.)
`<FancyMath/>` and `<ListItems/>` both consume the signal were providing via
`use_context` and do something with it.
```rust
/// A component that does some "fancy" math with the global count
#[component]
fn FancyMath(cx: Scope) -> impl IntoView {
// here we consume the global count signal with `use_context`
let count = use_context::<ReadSignal<u32>>(cx)
// we know we just provided this in the parent component
.expect("there to be a `count` signal provided");
let is_even = move || count() & 1 == 0;
view! { cx,
<div class="consumer blue">
"The number "
<strong>{count}</strong>
{move || if is_even() {
" is"
} else {
" is not"
}}
" even."
</div>
}
}
```
Note that this same pattern can be applied to more complex state. If you have multiple fields you want to update independently, you can do that by providing some struct of signals:
```rust
#[derive(Copy, Clone, Debug)]
struct GlobalState {
count: RwSignal<i32>,
name: RwSignal<String>
}
impl GlobalState {
pub fn new(cx: Scope) -> Self {
Self {
count: create_rw_signal(cx, 0),
name: create_rw_signal(cx, "Bob".to_string())
}
}
}
#[component]
fn App(cx: Scope) -> impl IntoView {
provide_context(cx, GlobalState::new(cx));
// etc.
}
```
## Option #3: Create a Global State Struct and Slices
You may find it cumbersome to wrap each field of a structure in a separate signal like this. In some cases, it can be useful to create a plain struct with non-reactive fields, and then wrap that in a signal.
```rust
#[derive(Copy, Clone, Debug, Default)]
struct GlobalState {
count: i32,
name: String
}
#[component]
fn App(cx: Scope) -> impl IntoView {
provide_context(cx, create_rw_signal(GlobalState::default()));
// etc.
}
```
But theres a problem: because our whole state is wrapped in one signal, updating the value of one field will cause reactive updates in parts of the UI that only depend on the other.
```rust
let state = expect_context::<RwSignal<GlobalState>>(cx);
view! { cx,
<button on:click=move |_| state.update(|n| *n += 1)>"+1"</button>
<p>{move || state.with(|state| state.name.clone())}</p>
}
```
In this example, clicking the button will cause the text inside `<p>` to be updated, cloning `state.name` again! Because signals are the atomic unit of reactivity, updating any field of the signal triggers updates to everything that depends on the signal.
Theres a better way. You can use take fine-grained, reactive slices by using [`create_memo`](https://docs.rs/leptos/latest/leptos/fn.create_memo.html) or [`create_slice`](https://docs.rs/leptos/latest/leptos/fn.create_slice.html) (which uses `create_memo` but also provides a setter). “Memoizing” a value means creating a new reactive value which will only update when it changes. “Memoizing a slice” means creating a new reactive value which will only update when some field of the state struct updates.
Here, instead of reading from the state signal directly, we create “slices” of that state with fine-grained updates via `create_slice`. Each slice signal only updates when the particular piece of the larger struct it accesses updates. This means you can create a single root signal, and then take independent, fine-grained slices of it in different components, each of which can update without notifying the others of changes.
```rust
/// A component that updates the count in the global state.
#[component]
fn GlobalStateCounter(cx: Scope) -> impl IntoView {
let state = expect_context::<RwSignal<GlobalState>>(cx);
// `create_slice` lets us create a "lens" into the data
let (count, set_count) = create_slice(
cx,
// we take a slice *from* `state`
state,
// our getter returns a "slice" of the data
|state| state.count,
// our setter describes how to mutate that slice, given a new value
|state, n| state.count = n,
);
view! { cx,
<div class="consumer blue">
<button
on:click=move |_| {
set_count(count() + 1);
}
>
"Increment Global Count"
</button>
<br/>
<span>"Count is: " {count}</span>
</div>
}
}
```
Clicking this button only updates `state.count`, so if we create another slice
somewhere else that only takes `state.name`, clicking the button wont cause
that other slice to update. This allows you to combine the benefits of a top-down
data flow and of fine-grained reactive updates.
> **Note**: There are some significant drawbacks to this approach. Both signals and memos need to own their values, so a memo will need to clone the fields value on every change. The most natural way to manage state in a framework like Leptos is always to provide signals that are as locally-scoped and fine-grained as they can be, not to hoist everything up into global state. But when you _do_ need some kind of global state, `create_slice` can be a useful tool.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,21 +1,17 @@
# Summary
- [Introduction](./01_introduction.md)
- [Getting Started](./getting_started/README.md)
- [Leptos DX](./getting_started/leptos_dx.md)
- [The Leptos Community and leptos-* Crates](./getting_started/community_crates.md)
- [Part 1: Building User Interfaces](./view/README.md)
- [Getting Started](./02_getting_started.md)
- [Building User Interfaces](./view/README.md)
- [A Basic Component](./view/01_basic_component.md)
- [Dynamic Attributes](./view/02_dynamic_attributes.md)
- [Components and Props](./view/03_components.md)
- [Iteration](./view/04_iteration.md)
- [Iterating over More Complex Data](./view/04b_iteration.md)
- [Forms and Inputs](./view/05_forms.md)
- [Control Flow](./view/06_control_flow.md)
- [Error Handling](./view/07_errors.md)
- [Parent-Child Communication](./view/08_parent_child.md)
- [Passing Children to Components](./view/09_component_children.md)
- [No Macros: The View Builder Syntax](./view/builder.md)
- [Reactivity](./reactivity/README.md)
- [Working with Signals](./reactivity/working_with_signals.md)
- [Responding to Changes with `create_effect`](./reactivity/14_create_effect.md)
@@ -27,6 +23,7 @@
- [Transition](./async/12_transition.md)
- [Actions](./async/13_actions.md)
- [Interlude: Projecting Children](./interlude_projecting_children.md)
- [Responding to Changes with `create_effect`](./14_create_effect.md)
- [Global State Management](./15_global_state.md)
- [Router](./router/README.md)
- [Defining `<Routes/>`](./router/16_routes.md)
@@ -36,8 +33,7 @@
- [`<Form/>`](./router/20_form.md)
- [Interlude: Styling](./interlude_styling.md)
- [Metadata](./metadata.md)
- [Client-Side Rendering: Wrapping Up](./csr_wrapping_up.md)
- [Part 2: Server Side Rendering](./ssr/README.md)
- [Server Side Rendering](./ssr/README.md)
- [`cargo-leptos`](./ssr/21_cargo_leptos.md)
- [The Life of a Page Load](./ssr/22_life_cycle.md)
- [Async Rendering and SSR “Modes”](./ssr/23_ssr_modes.md)
@@ -48,9 +44,5 @@
- [Responses and Redirects](./server/27_response.md)
- [Progressive Enhancement and Graceful Degradation](./progressive_enhancement/README.md)
- [`<ActionForm/>`s](./progressive_enhancement/action_form.md)
- [Deployment](./deployment/README.md)
- [Optimizing WASM Binary Size](./deployment/binary_size.md)
- [Guide: Islands](./islands.md)
- [Appendix: How Does the Reactive System Work?](./appendix_reactive_graph.md)
- [Deployment]()
- [Appendix: Optimizing WASM Binary Size](./appendix_binary_size.md)

View File

@@ -0,0 +1,72 @@
# Appendix: Optimizing WASM Binary Size
One of the primary downsides of deploying a Rust/WebAssembly frontend app is that splitting a WASM file into smaller chunks to be dynamically loaded is significantly more difficult than splitting a JavaScript bundle. There have been experiments like [`wasm-split`](https://emscripten.org/docs/optimizing/Module-Splitting.html) in the Emscripten ecosystem but at present theres no way to split and dynamically load a Rust/`wasm-bindgen` binary. This means that the whole WASM binary needs to be loaded before your app becomes interactive. Because the WASM format is designed for streaming compilation, WASM files are much faster to compile per kilobyte than JavaScript files. (For a deeper look, you can [read this great article from the Mozilla team](https://hacks.mozilla.org/2018/01/making-webassembly-even-faster-firefoxs-new-streaming-and-tiering-compiler/) on streaming WASM compilation.)
Still, its important to ship the smallest WASM binary to users that you can, as it will reduce their network usage and make your app interactive as quickly as possible.
So what are some practical steps?
## Things to Do
1. Make sure youre looking at a release build. (Debug builds are much, much larger.)
2. Add a release profile for WASM that optimizes for size, not speed.
For a `cargo-leptos` project, for example, you can add this to your `Cargo.toml`:
```toml
[profile.wasm-release]
inherits = "release"
opt-level = 'z'
lto = true
codegen-units = 1
# ....
[package.metadata.leptos]
# ....
lib-profile-release = "wasm-release"
```
This will hyper-optimize the WASM for your release build for size, while keeping your server build optimized for speed. (For a pure client-rendered app without server considerations, just use the `[profile.wasm-release]` block as your `[profile.release]`.)
3. Always serve compressed WASM in production. WASM tends to compress very well, typically shrinking to less than 50% its uncompressed size, and its trivial to enable compression for static files being served from Actix or Axum.
4. If youre using nightly Rust, you can rebuild the standard library with this same profile rather than the prebuilt standard library thats distributed with the `wasm32-unknown-unknown` target.
To do this, create a file in your project at `.cargo/config.toml`
```toml
[unstable]
build-std = ["std", "panic_abort", "core", "alloc"]
build-std-features = ["panic_immediate_abort"]
```
Note that if you're using this with SSR too, the same Cargo profile will be applied. You'll need to explicitly specify your target:
```toml
[build]
target = "x86_64-unknown-linux-gnu" # or whatever
```
Also note that in some cases, the cfg feature `has_std` will not be set, which may cause build errors with some dependencies which check for `has_std`. You may fix any build errors due to this by adding:
```toml
[build]
rustflags = ["--cfg=has_std"]
```
And you'll need to add `panic = "abort"` to `[profile.release]` in `Cargo.toml`. Note that this applies the same `build-std` and panic settings to your server binary, which may not be desirable. Some further exploration is probably needed here.
5. One of the sources of binary size in WASM binaries can be `serde` serialization/deserialization code. Leptos uses `serde` by default to serialize and deserialize resources created with `create_resource`. You might try experimenting with the `miniserde` and `serde-lite` features, which allow you to use those crates for serialization and deserialization instead; each only implements a subset of `serde`s functionality, but typically optimizes for size over speed.
## Things to Avoid
There are certain crates that tend to inflate binary sizes. For example, the `regex` crate with its default features adds about 500kb to a WASM binary (largely because it has to pull in Unicode table data!) In a size-conscious setting, you might consider avoiding regexes in general, or even dropping down and calling browser APIs to use the built-in regex engine instead. (This is what `leptos_router` does on the few occasions it needs a regular expression.)
In general, Rusts commitment to runtime performance is sometimes at odds with a commitment to a small binary. For example, Rust monomorphizes generic functions, meaning it creates a distinct copy of the function for each generic type its called with. This is significantly faster than dynamic dispatch, but increases binary size. Leptos tries to balance runtime performance with binary size considerations pretty carefully; but you might find that writing code that uses many generics tends to increase binary size. For example, if you have a generic component with a lot of code in its body and call it with four different types, remember that the compiler could include four copies of that same code. Refactoring to use a concrete inner function or helper can often maintain performance and ergonomics while reducing binary size.
## A Final Thought
Remember that in a server-rendered app, JS bundle size/WASM binary size affects only _one_ thing: time to interactivity on the first load. This is very important to a good user experience—nobody wants to click a button three times and have it do nothing because the interactive code is still loading—but it is not the only important measure.
Its especially worth remembering that streaming in a single WASM binary means all subsequent navigations are nearly instantaneous, depending only on any additional data loading. Precisely because your WASM binary is _not_ bundle split, navigating to a new route does not require loading additional JS/WASM, as it does in nearly every JavaScript framework. Is this copium? Maybe. Or maybe its just an honest trade-off between the two approaches!
Always take the opportunity to optimize the low-hanging fruit in your application. And always test your app under real circumstances with real user network speeds and devices before making any heroic efforts.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/appendix_reactive_graph.html">
<link rel="canonical" href="https://book.leptos.dev/appendix_reactive_graph.html">

View File

@@ -1,2 +1,55 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/10_resources.html">
<link rel="canonical" href="https://book.leptos.dev/async/10_resources.html">
# Loading Data with Resources
A [Resource](https://docs.rs/leptos/latest/leptos/struct.Resource.html) is a reactive data structure that reflects the current state of an asynchronous task, allowing you to integrate asynchronous `Future`s into the synchronous reactive system. Rather than waiting for its data to load with `.await`, you transform the `Future` into a signal that returns `Some(T)` if it has resolved, and `None` if its still pending.
You do this by using the [`create_resource`](https://docs.rs/leptos/latest/leptos/fn.create_resource.html) function. This takes two arguments (other than the ubiquitous `cx`):
1. a source signal, which will generate a new `Future` whenever it changes
2. a fetcher function, which takes the data from that signal and returns a `Future`
Heres an example
```rust
// our source signal: some synchronous, local state
let (count, set_count) = create_signal(cx, 0);
// our resource
let async_data = create_resource(cx,
count,
// every time `count` changes, this will run
|value| async move {
log!("loading data from API");
load_data(value).await
},
);
```
To create a resource that simply runs once, you can pass a non-reactive, empty source signal:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
```
To access the value you can use `.read(cx)` or `.with(cx, |data| /* */)`. These work just like `.get()` and `.with()` on a signal—`read` clones the value and returns it, `with` applies a closure to it—but with two differences
1. For any `Resource<_, T>`, they always return `Option<T>`, not `T`: because its always possible that your resource is still loading.
2. They take a `Scope` argument. Youll see why in the next chapter, on `<Suspense/>`.
So, you can show the current state of a resource in your view:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
Resources also provide a `refetch()` method that allows you to manually reload the data (for example, in response to a button click) and a `loading()` method that returns a `ReadSignal<bool>` indicating whether the resource is currently loading or not.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,74 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/11_suspense.html">
<link rel="canonical" href="https://book.leptos.dev/async/11_suspense.html">
# `<Suspense/>`
In the previous chapter, we showed how you can create a simple loading screen to show some fallback while a resource is loading.
```rust
let (count, set_count) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
But what if we have two resources, and want to wait for both of them?
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match (a.read(cx), b.read(cx)) {
(Some(a), Some(b)) => view! { cx,
<ShowA a/>
<ShowA b/>
}.into_view(cx),
_ => view! { cx, <p>"Loading..."</p> }.into_view(cx)
}}
}
```
Thats not _so_ bad, but its kind of annoying. What if we could invert the flow of control?
The [`<Suspense/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html) component lets us do exactly that. You give it a `fallback` prop and children, one or more of which usually involves reading from a resource. Reading from a resource “under” a `<Suspense/>` (i.e., in one of its children) registers that resource with the `<Suspense/>`. If its still waiting for resources to load, it shows the `fallback`. When theyve all loaded, it shows the children.
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
<Suspense
fallback=move || view! { cx, <p>"Loading..."</p> }
>
<h2>"My Data"</h2>
<h3>"A"</h3>
{move || {
a.read(cx)
.map(|a| view! { cx, <ShowA a/> })
}}
<h3>"B"</h3>
{move || {
b.read(cx)
.map(|b| view! { cx, <ShowB b/> })
}}
</Suspense>
}
```
Every time one of the resources is reloading, the `"Loading..."` fallback will show again.
This inversion of the flow of control makes it easier to add or remove individual resources, as you dont need to handle the matching yourself. It also unlocks some massive performance improvements during server-side rendering, which well talk about during a later chapter.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/11-suspense-907niv?file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/11-suspense-907niv?file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,11 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/12_transition.html">
<link rel="canonical" href="https://book.leptos.dev/async/12_transition.html">
# `<Transition/>`
Youll notice in the `<Suspense/>` example that if you keep reloading the data, it keeps flickering back to `"Loading..."`. Sometimes this is fine. For other times, theres [`<Transition/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html).
`<Transition/>` behaves exactly the same as `<Suspense/>`, but instead of falling back every time, it only shows the fallback the first time. On all subsequent loads, it continues showing the old data until the new data are ready. This can be really handy to prevent the flickering effect, and to allow users to continue interacting with your application.
This example shows how you can create a simple tabbed contact list with `<Transition/>`. When you select a new tab, it continues showing the current contact until the new data loads. This can be a much better user experience than constantly falling back to a loading message.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,96 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/13_action.html">
<link rel="canonical" href="https://book.leptos.dev/async/13_action.html">
# Mutating Data with Actions
Weve talked about how to load `async` data with resources. Resources immediately load data and work closely with `<Suspense/>` and `<Transition/>` components to show whether data is loading in your app. But what if you just want to call some arbitrary `async` function and keep track of what its doing?
Well, you could always use [`spawn_local`](https://docs.rs/leptos/latest/leptos/fn.spawn_local.html). This allows you to just spawn an `async` task in a synchronous environment by handing the `Future` off to the browser (or, on the server, Tokio or whatever other runtime youre using). But how do you know if its still pending? Well, you could just set a signal to show whether its loading, and another one to show the result...
All of this is true. Or you could use the final `async` primitive: [`create_action`](https://docs.rs/leptos/latest/leptos/fn.create_action.html).
Actions and resources seem similar, but they represent fundamentally different things. If youre trying to load data by running an `async` function, either once or when some other value changes, you probably want to use `create_resource`. If youre trying to occasionally run an `async` function in response to something like a user clicking a button, you probably want to use `create_action`.
Say we have some `async` function we want to run.
```rust
async fn add_todo_request(new_title: &str) -> Uuid {
/* do some stuff on the server to add a new todo */
}
```
`create_action` takes a reactive `Scope` and an `async` function that takes a reference to a single argument, which you could think of as its “input type.”
> The input is always a single type. If you want to pass in multiple arguments, you can do it with a struct or tuple.
>
> ```rust
> // if there's a single argument, just use that
> let action1 = create_action(cx, |input: &String| {
> let input = input.clone();
> async move { todo!() }
> });
>
> // if there are no arguments, use the unit type `()`
> let action2 = create_action(cx, |input: &()| async { todo!() });
>
> // if there are multiple arguments, use a tuple
> let action3 = create_action(cx,
> |input: &(usize, String)| async { todo!() }
> );
> ```
>
> Because the action function takes a reference but the `Future` needs to have a `'static` lifetime, youll usually need to clone the value to pass it into the `Future`. This is admittedly awkward but it unlocks some powerful features like optimistic UI. Well see a little more about that in future chapters.
So in this case, all we need to do to create an action is
```rust
let add_todo_action = create_action(cx, |input: &String| {
let input = input.to_owned();
async move { add_todo_request(&input).await }
});
```
Rather than calling `add_todo_action` directly, well call it with `.dispatch()`, as in
```rust
add_todo_action.dispatch("Some value".to_string());
```
You can do this from an event listener, a timeout, or anywhere; because `.dispatch()` isnt an `async` function, it can be called from a synchronous context.
Actions provide access to a few signals that synchronize between the asynchronous action youre calling and the synchronous reactive system:
```rust
let submitted = add_todo_action.input(); // RwSignal<Option<String>>
let pending = add_todo_action.pending(); // ReadSignal<bool>
let todo_id = add_todo_action.value(); // RwSignal<Option<Uuid>>
```
This makes it easy to track the current state of your request, show a loading indicator, or do “optimistic UI” based on the assumption that the submission will succeed.
```rust
let input_ref = create_node_ref::<Input>(cx);
view! { cx,
<form
on:submit=move |ev| {
ev.prevent_default(); // don't reload the page...
let input = input_ref.get().expect("input to exist");
add_todo_action.dispatch(input.value());
}
>
<label>
"What do you need to do?"
<input type="text"
node_ref=input_ref
/>
</label>
<button type="submit">"Add Todo"</button>
</form>
// use our loading state
<p>{move || pending().then("Loading...")}</p>
}
```
Now, theres a chance this all seems a little over-complicated, or maybe too restricted. I wanted to include actions here, alongside resources, as the missing piece of the puzzle. In a real Leptos app, youll actually most often use actions alongside server functions, [`create_server_action`](https://docs.rs/leptos/latest/leptos/fn.create_server_action.html), and the [`<ActionForm/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.ActionForm.html) component to create really powerful progressively-enhanced forms. So if this primitive seems useless to you... Dont worry! Maybe it will make sense later. (Or check out our [`todo_app_sqlite`](https://github.com/leptos-rs/leptos/blob/main/examples/todo_app_sqlite/src/todo.rs) example now.)
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,9 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/index.html">
<link rel="canonical" href="https://book.leptos.dev/async/index.html">
# Working with `async`
So far weve only been working with synchronous users interfaces: You provide some input,
the app immediately processes it and updates the interface. This is great, but is a tiny
subset of what web applications do. In particular, most web apps have to deal with some kind of asynchronous data loading, usually loading something from an API.
Asynchronous data is notoriously hard to integrate with the synchronous parts of your code. Leptos provides a cross-platform [`spawn_local`](https://docs.rs/leptos/latest/leptos/fn.spawn_local.html) function that makes it easy to run a `Future`, but theres much more to it than that.
In this chapter, well see how Leptos helps smooth out that process for you.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/csr_wrapping_up.html">
<link rel="canonical" href="https://book.leptos.dev/csr_wrapping_up.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/deployment/index.html">
<link rel="canonical" href="https://book.leptos.dev/deployment/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/deployment/binary_size.html">
<link rel="canonical" href="https://book.leptos.dev/deployment/binary_size.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/index.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/community_crates.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/community_crates.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/leptos_dx.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/leptos_dx.html">

View File

@@ -1,2 +1,177 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/interlude_projecting_children.html">
<link rel="canonical" href="https://book.leptos.dev/interlude_projecting_children.html">
# Projecting Children
As you build components you may occasionally find yourself wanting to “project” children through multiple layers of components.
## The Problem
Consider the following:
```rust
pub fn LoggedIn<F, IV>(cx: Scope, fallback: F, children: ChildrenFn) -> impl IntoView
where
F: Fn(Scope) -> IV + 'static,
IV: IntoView,
{
view! { cx,
<Suspense
fallback=|| ()
>
<Show
// check whether user is verified
// by reading from the resource
when=move || todo!()
fallback=fallback
>
{children(cx)}
</Show>
</Suspense>
}
}
```
This is pretty straightforward: when the user is logged in, we want to show `children`. If the user is not logged in, we want to show `fallback`. And while were waiting to find out, we just render `()`, i.e., nothing.
In other words, we want to pass the children of `<LoggedIn/>` _through_ the `<Suspense/>` component to become the children of the `<Show/>`. This is what I mean by “projection.”
This wont compile.
```
error[E0507]: cannot move out of `fallback`, a captured variable in an `Fn` closure
error[E0507]: cannot move out of `children`, a captured variable in an `Fn` closure
```
The problem here is that both `<Suspense/>` and `<Show/>` need to be able to construct their `children` multiple times. The first time you construct `<Suspense/>`s children, it would take ownership of `fallback` and `children` to move them into the invocation of `<Show/>`, but then they're not available for future `<Suspense/>` children construction.
## The Details
> Feel free to skip ahead to the solution.
If you want to really understand the issue here, it may help to look at the expanded `view` macro. Heres a cleaned-up version:
```rust
Suspense(
cx,
::leptos::component_props_builder(&Suspense)
.fallback(|| ())
.children({
// fallback and children are moved into this closure
Box::new(move |cx| {
{
// fallback and children captured here
leptos::Fragment::lazy(|| {
vec![
(Show(
cx,
::leptos::component_props_builder(&Show)
.when(|| true)
// but fallback is moved into Show here
.fallback(fallback)
// and children is moved into Show here
.children(children)
.build(),
)
.into_view(cx)),
]
})
}
})
})
.build(),
)
```
All components own their props; so the `<Show/>` in this case cant be called because it only has captured references to `fallback` and `children`.
## Solution
However, both `<Suspense/>` and `<Show/>` take `ChildrenFn`, i.e., their `children` should implement the `Fn` type so they can be called multiple times with only an immutable reference. This means we dont need to own `children` or `fallback`; we just need to be able to pass `'static` references to them.
We can solve this problem by using the [`store_value`](https://docs.rs/leptos/latest/leptos/fn.store_value.html) primitive. This essentially stores a value in the reactive system, handing ownership off to the framework in exchange for a reference that is, like signals, `Copy` and `'static`, which we can access or modify through certain methods.
In this case, its really simple:
```rust
pub fn LoggedIn<F, IV>(cx: Scope, fallback: F, children: ChildrenFn) -> impl IntoView
where
F: Fn(Scope) -> IV + 'static,
IV: IntoView,
{
let fallback = store_value(cx, fallback);
let children = store_value(cx, children);
view! { cx,
<Suspense
fallback=|| ()
>
<Show
when=|| todo!()
fallback=move |cx| fallback.with_value(|fallback| fallback(cx))
>
{children.with_value(|children| children(cx))}
</Show>
</Suspense>
}
}
```
At the top level, we store both `fallback` and `children` in the reactive scope owned by `LoggedIn`. Now we can simply move those references down through the other layers into the `<Show/>` component and call them there.
## A Final Note
Note that this works because `<Show/>` and `<Suspense/>` only need an immutable reference to their children (which `.with_value` can give it), not ownership.
In other cases, you may need to project owned props through a function that takes `ChildrenFn` and therefore needs to be called more than once. In this case, you may find the `clone:` helper in the`view` macro helpful.
Consider this example
```rust
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let name = "Alice".to_string();
view! { cx,
<Outer>
<Inner>
<Inmost name=name.clone()/>
</Inner>
</Outer>
}
}
#[component]
pub fn Outer(cx: Scope, children: ChildrenFn) -> impl IntoView {
children(cx)
}
#[component]
pub fn Inner(cx: Scope, children: ChildrenFn) -> impl IntoView {
children(cx)
}
#[component]
pub fn Inmost(cx: Scope, name: String) -> impl IntoView {
view! { cx,
<p>{name}</p>
}
}
```
Even with `name=name.clone()`, this gives the error
```
cannot move out of `name`, a captured variable in an `Fn` closure
```
Its captured through multiple levels of children that need to run more than once, and theres no obvious way to clone it _into_ the children.
In this case, the `clone:` syntax comes in handy. Calling `clone:name` will clone `name` _before_ moving it into `<Inner/>`s children, which solves our ownership issue.
```rust
view! { cx,
<Outer>
<Inner clone:name>
<Inmost name=name.clone()/>
</Inner>
</Outer>
}
```
These issues can be a little tricky to understand or debug, because of the opacity of the `view` macro. But in general, they can always be solved.

View File

@@ -1,2 +1,112 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/interlude_styling.html">
<link rel="canonical" href="https://book.leptos.dev/interlude_styling.html">
# Interlude: Styling
Anyone creating a website or application soon runs into the question of styling. For a small app, a single CSS file is probably plenty to style your user interface. But as an application grows, many developers find that plain CSS becomes increasingly hard to manage.
Some frontend frameworks (like Angular, Vue, and Svelte) provide built-in ways to scope your CSS to particular components, making it easier to manage styles across a whole application without styles meant to modify one small component having a global effect. Other frameworks (like React or Solid) dont provide built-in CSS scoping, but rely on libraries in the ecosystem to do it for them. Leptos is in this latter camp: the framework itself has no opinions about CSS at all, but provides a few tools and primitives that allow others to build styling libraries.
Here are a few different approaches to styling your Leptos app, other than plain CSS.
## TailwindCSS: Utility-first CSS
[TailwindCSS](https://tailwindcss.com/) is a popular utility-first CSS library. It allows you to style your application by using inline utility classes, with a custom CLI tool that scans your files for Tailwind class names and bundles the necessary CSS.
This allows you to write components like this:
```rust
#[component]
fn Home(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<main class="my-0 mx-auto max-w-3xl text-center">
<h2 class="p-6 text-4xl">"Welcome to Leptos with Tailwind"</h2>
<p class="px-10 pb-10 text-left">"Tailwind will scan your Rust files for Tailwind class names and compile them into a CSS file."</p>
<button
class="bg-sky-600 hover:bg-sky-700 px-5 py-3 text-white rounded-lg"
on:click=move |_| set_count.update(|count| *count += 1)
>
{move || if count() == 0 {
"Click me!".to_string()
} else {
count().to_string()
}}
</button>
</main>
}
}
```
It can be a little complicated to set up the Tailwind integration at first, but you can check out our two examples of how to use Tailwind with a [client-side-rendered `trunk` application](https://github.com/leptos-rs/leptos/tree/main/examples/tailwind_csr_trunk) or with a [server-rendered `cargo-leptos` application](https://github.com/leptos-rs/leptos/tree/main/examples/tailwind). `cargo-leptos` also has some [built-in Tailwind support](https://github.com/leptos-rs/cargo-leptos#site-parameters) that you can use as an alternative to Tailwinds CLI.
## Stylers: Compile-time CSS Extraction
[Stylers](https://github.com/abishekatp/stylers) is a compile-time scoped CSS library that lets you declare scoped CSS in the body of your component. Stylers will extract this CSS at compile time into CSS files that you can then import into your app, which means that it doesnt add anything to the WASM binary size of your application.
This allows you to write components like this:
```rust
use stylers::style;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let styler_class = style! { "App",
#two{
color: blue;
}
div.one{
color: red;
content: raw_str(r#"\hello"#);
font: "1.3em/1.2" Arial, Helvetica, sans-serif;
}
div {
border: 1px solid black;
margin: 25px 50px 75px 100px;
background-color: lightblue;
}
h2 {
color: purple;
}
@media only screen and (max-width: 1000px) {
h3 {
background-color: lightblue;
color: blue
}
}
};
view! { cx, class = styler_class,
<div class="one">
<h1 id="two">"Hello"</h1>
<h2>"World"</h2>
<h2>"and"</h2>
<h3>"friends!"</h3>
</div>
}
}
```
## Styled: Runtime CSS Scoping
[Styled](https://github.com/eboody/styled) is a runtime scoped CSS library that integrates well with Leptos. It lets you declare scoped CSS in the body of your component function, and then applies those styles at runtime.
```rust
use styled::style;
#[component]
pub fn MyComponent(cx: Scope) -> impl IntoView {
let styles = style!(
div {
background-color: red;
color: white;
}
);
styled::view! { cx, styles,
<div>"This text should be red with white text."</div>
}
}
```
## Contributions Welcome
Leptos has no opinions on how you style your website or app, but were very happy to provide support to any tools youre trying to create to make it easier. If youre working on a CSS or styling approach that youd like to add to this list, please let us know!

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/islands.html">
<link rel="canonical" href="https://book.leptos.dev/islands.html">

View File

@@ -1,2 +1,49 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/metadata.html">
<link rel="canonical" href="https://book.leptos.dev/metadata.html">
# Metadata
So far, everything weve rendered has been inside the `<body>` of the HTML document. And this makes sense. After all, everything you can see on a web page lives inside the `<body>`.
However, there are plenty of occasions where you might want to update something inside the `<head>` of the document using the same reactive primitives and component patterns you use for your UI.
Thats where the [`leptos_meta`](https://docs.rs/leptos_meta/latest/leptos_meta/) package comes in.
## Metadata Components
`leptos_meta` provides special components that let you inject data from inside components anywhere in your application into the `<head>`:
[`<Title/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Title.html) allows you to set the documents title from any component. It also takes a `formatter` function that can be used to apply the same format to the title set by other pages. So, for example, if you put `<Title formatter=|text| format!("{text} — My Awesome Site")/>` in your `<App/>` component, and then `<Title text="Page 1"/>` and `<Title text="Page 2"/>` on your routes, youll get `Page 1 — My Awesome Site` and `Page 2 — My Awesome Site`.
[`<Link/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Link.html) takes the standard attributes of the `<link>` element.
[`<Stylesheet/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Stylesheet.html) creates a `<link rel="stylesheet">` with the `href` you give.
[`<Style/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Style.html) creates a `<style>` with the children you pass in (usually a string). You can use this to import some custom CSS from another file at compile time `<Style>{include_str!("my_route.css")}</Style>`.
[`<Meta/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Meta.html) lets you set `<meta>` tags with descriptions and other metadata.
## `<Script/>` and `<script>`
`leptos_meta` also provides a [`<Script/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Script.html) component, and its worth pausing here for a second. All of the other components weve considered inject `<head>`-only elements in the `<head>`. But a `<script>` can also be included in the body.
Theres a very simple way to determine whether you should use a capital-S `<Script/>` component or a lowercase-s `<script>` element: the `<Script/>` component will be rendered in the `<head>`, and the `<script>` element will be rendered wherever in the `<body>` of your user interface you put it in, alongside other normal HTML elements. These cause JavaScript to load and run at different times, so use whichever is appropriate to your needs.
## `<Body/>` and `<Html/>`
There are even a couple elements designed to make semantic HTML and styling easier. [`<Html/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Html.html) lets you set the `lang` and `dir` on your `<html>` tag from your application code. `<Html/>` and [`<Body/>`](https://docs.rs/leptos_meta/latest/leptos_meta/fn.Html.html) both have `class` props that let you set their respective `class` attributes, which is sometimes needed by CSS frameworks for styling.
`<Body/>` and `<Html/>` both also have `attributes` props which can be used to set any number of additional attributes on them via the [`AdditionalAttributes`](https://docs.rs/leptos/latest/leptos/struct.AdditionalAttributes.html) type:
```rust
<Html
lang="he"
dir="rtl"
attributes=AdditionalAttributes::from(vec![("data-theme", "dark")])
/>
```
## Metadata and Server Rendering
Now, some of this is useful in any scenario, but some of it is especially important for search-engine optimization (SEO). Making sure you have things like appropriate `<title>` and `<meta>` tags is crucial. Modern search engine crawlers do handle client-side rendering, i.e., apps that are shipped as an empty `index.html` and rendered entirely in JS/WASM. But they prefer to receive pages in which your app has been rendered to actual HTML, with metadata in the `<head>`.
This is exactly what `leptos_meta` is for. And in fact, during server rendering, this is exactly what it does: collect all the `<head>` content youve declared by using its components throughout your application, and then inject it into the actual `<head>`.
But Im getting ahead of myself. We havent actually talked about server-side rendering yet. As a matter of fact... Lets do that next!

View File

@@ -1,2 +1,36 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/progressive_enhancement/index.html">
<link rel="canonical" href="https://book.leptos.dev/progressive_enhancement/index.html">
# Progressive Enhancement (and Graceful Degradation)
Ive been driving around Boston for about fifteen years. If you dont know Boston, let me tell you: Massachusetts has some of the most aggressive drivers(and pedestrians!) in the world. Ive learned to practice whats sometimes called “defensive driving”: assuming that someones about to swerve in front of you at an intersection when you have the right of way, preparing for a pedestrian to cross into the street at any moment, and driving accordingly.
“Progressive enhancement” is the “defensive driving” of web design. Or really, thats “graceful degradation,” although theyre two sides of the same coin, or the same process, from two different directions.
**Progressive enhancement**, in this context, means beginning with a simple HTML site or application that works for any user who arrives at your page, and gradually enhancing it with layers of additional features: CSS for styling, JavaScript for interactivity, WebAssembly for Rust-powered interactivity; using particular Web APIs for a richer experience if theyre available and as needed.
**Graceful degradation** means handling failure gracefully when parts of that stack of enhancement *arent* available. Here are some sources of failure your users might encounter in your app:
- Their browser doesnt support WebAssembly because it needs to be updated.
- Their browser cant support WebAssembly because browser updates are limited to newer OS versions, which cant be installed on the device. (Looking at you, Apple.)
- They have WASM turned off for security or privacy reasons.
- They have JavaScript turned off for security or privacy reasons.
- JavaScript isnt supported on their device (for example, some accessibility devices only support HTML browsing)
- The JavaScript (or WASM) never arrived at their device because they walked outside and lost WiFi.
- They stepped onto a subway car after loading the initial page and subsequent navigations cant load data.
- ... and so on.
How much of your app still works if one of these holds true? Two of them? Three?
If the answer is something like “95%... okay, then 90%... okay, then 75%,” thats graceful degradation. If the answer is “my app shows a blank screen unless everything works correctly,” thats... rapid unscheduled disassembly.
**Graceful degradation is especially important for WASM apps,** because WASM is the newest and least-likely-to-be-supported of the four languages that run in the browser (HTML, CSS, JS, WASM).
Luckily, weve got some tools to help.
## Defensive Design
There are a few practices that can help your apps degrade more gracefully:
1. **Server-side rendering.** Without SSR, your app simply doesnt work without both JS and WASM loading. In some cases this may be appropriate (think internal apps gated behind a login) but in others its simply broken.
2. **Native HTML elements.** Use HTML elements that do the things that you want, without additional code: `<a>` for navigation (including to hashes within the page), `<details>` for an accordion, `<form>` to persist information in the URL, etc.
3. **URL-driven state.** The more of your global state is stored in the URL (as a route param or part of the query string), the more of the page can be generated during server rendering and updated by an `<a>` or a `<form>`, which means that not only navigations but state changes can work without JS/WASM.
4. **[`SsrMode::PartiallyBlocked` or `SsrMode::InOrder`](https://docs.rs/leptos_router/latest/leptos_router/enum.SsrMode.html).** Out-of-order streaming requires a small amount of inline JS, but can fail if 1) the connection is broken halfway through the response or 2) the clients device doesnt support JS. Async streaming will give a complete HTML page, but only after all resources load. In-order streaming begins showing pieces of the page sooner, in top-down order. “Partially-blocked” SSR builds on out-of-order streaming by replacing `<Suspense/>` fragments that read from blocking resources on the server. This adds marginally to the initial response time (because of the `O(n)` string replacement work), in exchange for a more complete initial HTML response. This can be a good choice for situations in which theres a clear distinction between “more important” and “less important” content, e.g., blog post vs. comments, or product info vs. reviews. If you choose to block on all the content, youve essentially recreated async rendering.
5. **Leaning on `<form>`s.** Theres been a bit of a `<form>` renaissance recently, and its no surprise. The ability of a `<form>` to manage complicated `POST` or `GET` requests in an easily-enhanced way makes it a powerful tool for graceful degradation. The example in [the `<Form/>` chapter](../router/20_form.md), for example, would work fine with no JS/WASM: because it uses a `<form method="GET">` to persist state in the URL, it works with pure HTML by making normal HTTP requests and then progressively enhances to use client-side navigations instead.
Theres one final feature of the framework that we havent seen yet, and which builds on this characteristic of forms to build powerful applications: the `<ActionForm/>`.

View File

@@ -1,2 +1,56 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/progressive_enhancement/action_form.html">
<link rel="canonical" href="https://book.leptos.dev/progressive_enhancement/action_form.html">
# `<ActionForm/>`
[`<ActionForm/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.ActionForm.html) is a specialized `<Form/>` that takes a server action, and automatically dispatches it on form submission. This allows you to call a server function directly from a `<form>`, even without JS/WASM.
The process is simple:
1. Define a server function using the [`#[server]` macro](https://docs.rs/leptos/latest/leptos/attr.server.html) (see [Server Functions](../server/25_server_functions.md).)
2. Create an action using [`create_server_action`](https://docs.rs/leptos/latest/leptos/fn.create_server_action.html), specifying the type of the server function youve defined.
3. Create an `<ActionForm/>`, providing the server action in the `action` prop.
4. Pass the named arguments to the server function as form fields with the same names.
> **Note:** `<ActionForm/>` only works with the default URL-encoded `POST` encoding for server functions, to ensure graceful degradation/correct behavior as an HTML form.
```rust
#[server(AddTodo, "/api")]
pub async fn add_todo(title: String) -> Result<(), ServerFnError> {
todo!()
}
#[component]
fn AddTodo(cx: Scope) -> impl IntoView {
let add_todo = create_server_action::<AddTodo>(cx);
// holds the latest *returned* value from the server
let value = add_todo.value();
// check if the server has returned an error
let has_error = move || value.with(|val| matches!(val, Some(Err(_))));
view! { cx,
<ActionForm action=add_todo>
<label>
"Add a Todo"
// `title` matches the `title` argument to `add_todo`
<input type="text" name="title"/>
</label>
<input type="submit" value="Add"/>
</ActionForm>
}
}
```
Its really that easy. With JS/WASM, your form will submit without a page reload, storing its most recent submission in the `.input()` signal of the action, its pending status in `.pending()`, and so on. (See the [`Action`](https://docs.rs/leptos/latest/leptos/struct.Action.html) docs for a refresher, if you need.) Without JS/WASM, your form will submit with a page reload. If you call a `redirect` function (from `leptos_axum` or `leptos_actix`) it will redirect to the correct page. By default, it will redirect back to the page youre currently on. The power of HTML, HTTP, and isomorphic rendering mean that your `<ActionForm/>` simply works, even with no JS/WASM.
## Client-Side Validation
Because the `<ActionForm/>` is just a `<form>`, it fires a `submit` event. You can use either HTML validation, or your own client-side validation logic in an `on:submit`. Just call `ev.prevent_default()` to prevent submission.
The [`FromFormData`](https://docs.rs/leptos_router/latest/leptos_router/trait.FromFormData.html) trait can be helpful here, for attempting to parse your server functions data type from the submitted form.
```rust
let on_submit = move |ev| {
let data = AddTodo::from_event(&ev);
// silly example of validation: if the todo is "nope!", nope it
if data.is_err() || data.unwrap().title == "nope!" {
// ev.prevent_default() will prevent form submission
ev.prevent_default();
}
}
```

View File

@@ -1,2 +1,114 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/14_create_effect.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/14_create_effect.html">
# Responding to Changes with `create_effect`
Weve made it this far without having mentioned half of the reactive system: effects.
Reactivity works in two halves: updating individual reactive values (“signals”) notifies the pieces of code that depend on them (“effects”) that they need to run again. These two halves of the reactive system are inter-dependent. Without effects, signals can change within the reactive system but never be observed in a way that interacts with the outside world. Without signals, effects run once but never again, as theres no observable value to subscribe to. Effects are quite literally “side effects” of the reactive system: they exist to synchronize the reactive system with the non-reactive world outside it.
Hidden behind the whole reactive DOM renderer that weve seen so far is a function called `create_effect`.
[`create_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_effect.html) takes a function as its argument. It immediately runs the function. If you access any reactive signal inside that function, it registers the fact that the effect depends on that signal with the reactive runtime. Whenever one of the signals that the effect depends on changes, the effect runs again.
```rust
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
create_effect(cx, move |_| {
// immediately prints "Value: 0" and subscribes to `a`
log::debug!("Value: {}", a());
});
```
The effect function is called with an argument containing whatever value it returned the last time it ran. On the initial run, this is `None`.
By default, effects **do not run on the server**. This means you can call browser-specific APIs within the effect function without causing issues. If you need an effect to run on the server, use [`create_isomorphic_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_isomorphic_effect.html).
## Autotracking and Dynamic Dependencies
If youre familiar with a framework like React, you might notice one key difference. React and similar frameworks typically require you to pass a “dependency array,” an explicit set of variables that determine when the effect should rerun.
Because Leptos comes from the tradition of synchronous reactive programming, we dont need this explicit dependency list. Instead, we automatically track dependencies depending on which signals are accessed within the effect.
This has two effects (no pun intended). Dependencies are:
1. **Automatic**: You dont need to maintain a dependency list, or worry about what should or shouldnt be included. The framework simply tracks which signals might cause the effect to rerun, and handles it for you.
2. **Dynamic**: The dependency list is cleared and updated every time the effect runs. If your effect contains a conditional (for example), only signals that are used in the current branch are tracked. This means that effects rerun the absolute minimum number of times.
> If this sounds like magic, and if you want a deep dive into how automatic dependency tracking works, [check out this video](https://www.youtube.com/watch?v=GWB3vTWeLd4). (Apologies for the low volume!)
## Effects as Zero-Cost-ish Abstraction
While theyre not a “zero-cost abstraction” in the most technical sense—they require some additional memory use, exist at runtime, etc.—at a higher level, from the perspective of whatever expensive API calls or other work youre doing within them, effects are a zero-cost abstraction. They rerun the absolute minimum number of times necessary, given how youve described them.
Imagine that Im creating some kind of chat software, and I want people to be able to display their full name, or just their first name, and to notify the server whenever their name changes:
```rust
let (first, set_first) = create_signal(cx, String::new());
let (last, set_last) = create_signal(cx, String::new());
let (use_last, set_use_last) = create_signal(cx, true);
// this will add the name to the log
// any time one of the source signals changes
create_effect(cx, move |_| {
log(
cx,
if use_last() {
format!("{} {}", first(), last())
} else {
first()
},
)
});
```
If `use_last` is `true`, effect should rerun whenever `first`, `last`, or `use_last` changes. But if I toggle `use_last` to `false`, a change in `last` will never cause the full name to change. In fact, `last` will be removed from the dependency list until `use_last` toggles again. This saves us from sending multiple unnecessary requests to the API if I change `last` multiple times while `use_last` is still `false`.
## To `create_effect`, or not to `create_effect`?
Effects are intended to run _side-effects_ of the system, not to synchronize state _within_ the system. In other words: dont write to signals within effects.
If you need to define a signal that depends on the value of other signals, use a derived signal or [`create_memo`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_memo.html).
If you need to synchronize some reactive value with the non-reactive world outside—like a web API, the console, the filesystem, or the DOM—create an effect.
> If youre curious for more information about when you should and shouldnt use `create_effect`, [check out this video](https://www.youtube.com/watch?v=aQOFJQ2JkvQ) for a more in-depth consideration!
## Effects and Rendering
Weve managed to get this far without mentioning effects because theyre built into the Leptos DOM renderer. Weve seen that you can create a signal and pass it into the `view` macro, and it will update the relevant DOM node whenever the signal changes:
```rust
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<p>{count}</p>
}
```
This works because the framework essentially creates an effect wrapping this update. You can imagine Leptos translating this view into something like this:
```rust
let (count, set_count) = create_signal(cx, 0);
// create a DOM element
let p = create_element("p");
// create an effect to reactively update the text
create_effect(cx, move |prev_value| {
// first, access the signals value and convert it to a string
let text = count().to_string();
// if this is different from the previous value, update the node
if prev_value != Some(text) {
p.set_text_content(&text);
}
// return this value so we can memoize the next update
text
});
```
Every time `count` is updated, this effect wil rerun. This is what allows reactive, fine-grained updates to the DOM.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,5 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/index.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/index.html">
# Reactivity
Leptos is built on top of a fine-grained reactive system, designed to run expensive side effects (like rendering something in a browser, or making a network request) as infrequently as possible in response to change, reactive values.
So far weve seen signals in action. These chapters will go into a bit more depth, and look at effects, which are the other half of the story.

View File

@@ -1,2 +1,76 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/interlude_functions.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/interlude_functions.html">
# Interlude: Reactivity and Functions
One of our core contributors said to me recently: “I never used closures this often
until I started using Leptos.” And its true. Closures are at the heart of any Leptos
application. It sometimes looks a little silly:
```rust
// a signal holds a value, and can be updated
let (count, set_count) = create_signal(cx, 0);
// a derived signal is a function that accesses other signals
let double_count = move || count() * 2;
let count_is_odd = move || count() & 1 == 1;
let text = move || if count_is_odd() {
"odd"
} else {
"even"
};
// an effect automatically tracks the signals it depends on
// and reruns when they change
create_effect(cx, move |_| {
log!("text = {}", text());
});
view! { cx,
<p>{move || text().to_uppercase()}</p>
}
```
Closures, closures everywhere!
But why?
## Functions and UI Frameworks
Functions are at the heart of every UI framework. And this makes perfect sense. Creating a user interface is basically divided into two phases:
1. initial rendering
2. updates
In a web framework, the framework does some kind of initial rendering. Then it hands control back over to the browser. When certain events fire (like a mouse click) or asynchronous tasks finish (like an HTTP request finishing), the browser wakes the framework back up to update something. The framework runs some kind of code to update your user interface, and goes back asleep until the browser wakes it up again.
The key phrase here is “runs some kind of code.” The natural way to “run some kind of code” at an arbitrary point in time—in Rust or in any other programming language—is to call a function. And in fact every UI framework is based on rerunning some kind of function over and over:
1. virtual DOM (VDOM) frameworks like React, Yew, or Dioxus rerun a component or render function over and over, to generate a virtual DOM tree that can be reconciled with the previous result to patch the DOM
2. compiled frameworks like Angular and Svelte divide your component templates into “create” and “update” functions, rerunning the update function when they detect a change to the components state
3. in fine-grained reactive frameworks like SolidJS, Sycamore, or Leptos, _you_ define the functions that rerun
Thats what all our components are doing.
Take our typical `<SimpleCounter/>` example in its simplest form:
```rust
#[component]
pub fn SimpleCounter(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, 0);
let increment = move |_| set_value.update(|value| *value += 1);
view! { cx,
<button on:click=increment>
{value}
</button>
}
}
```
The `SimpleCounter` function itself runs once. The `value` signal is created once. The framework hands off the `increment` function to the browser as an event listener. When you click the button, the browser calls `increment`, which updates `value` via `set_value`. And that updates the single text node represented in our view by `{value}`.
Closures are key to reactivity. They provide the framework with the ability to rerun the smallest possible unit of your application in responsive to a change.
So remember two things:
1. Your component function is a setup function, not a render function: it only runs once.
2. For values in your view template to be reactive, they must be functions: either signals (which implement the `Fn` traits) or closures.

View File

@@ -1,2 +1,106 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/working_with_signals.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/working_with_signals.html">
# Working with Signals
So far weve used some simple examples of [`create_signal`](https://docs.rs/leptos/latest/leptos/fn.create_signal.html), which returns a [`ReadSignal`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html) getter and a [`WriteSignal`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html) setter.
## Getting and Setting
There are four basic signal operations:
1. [`.get()`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html#impl-SignalGet%3CT%3E-for-ReadSignal%3CT%3E) clones the current value of the signal and tracks any future changes to the value reactively.
2. [`.with()`](https://docs.rs/leptos/latest/leptos/struct.ReadSignal.html#impl-SignalWith%3CT%3E-for-ReadSignal%3CT%3E) takes a function, which receives the current value of the signal by reference (`&T`), and tracks any future changes.
3. [`.set()`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html#impl-SignalSet%3CT%3E-for-WriteSignal%3CT%3E) replaces the current value of the signal and notifies any subscribers that they need to update.
4. [`.update()`](https://docs.rs/leptos/latest/leptos/struct.WriteSignal.html#impl-SignalUpdate%3CT%3E-for-WriteSignal%3CT%3E) takes a function, which receives a mutable reference to the current value of the signal (`&mut T`), and notifies any subscribers that they need to update. (`.update()` doesnt return the value returned by the closure, but you can use [`.try_update()`](https://docs.rs/leptos/latest/leptos/trait.SignalUpdate.html#tymethod.try_update) if you need to; for example, if youre removing an item from a `Vec<_>` and want the removed item.)
Calling a `ReadSignal` as a function is syntax sugar for `.get()`. Calling a `WriteSignal` as a function is syntax sugar for `.set()`. So
```rust
let (count, set_count) = create_signal(cx, 0);
set_count(1);
log!(count());
```
is the same as
```rust
let (count, set_count) = create_signal(cx, 0);
set_count.set(1);
log!(count.get());
```
You might notice that `.get()` and `.set()` can be implemented in terms of `.with()` and `.update()`. In other words, `count.get()` is identical with `count.with(|n| n.clone())`, and `count.set(1)` is implemented by doing `count.update(|n| *n = 1)`.
But of course, `.get()` and `.set()` (or the plain function-call forms!) are much nicer syntax.
However, there are some very good use cases for `.with()` and `.update()`.
For example, consider a signal that holds a `Vec<String>`.
```rust
let (names, set_names) = create_signal(cx, Vec::new());
if names().is_empty() {
set_names(vec!["Alice".to_string()]);
}
```
In terms of logic, this is simple enough, but its hiding some significant inefficiencies. Remember that `names().is_empty()` is sugar for `names.get().is_empty()`, which clones the value (its `names.with(|n| n.clone()).is_empty()`). This means we clone the whole `Vec<String>`, run `is_empty()`, and then immediately throw away the clone.
Likewise, `set_names` replaces the value with a whole new `Vec<_>`. This is fine, but we might as well just mutate the original `Vec<_>` in place.
```rust
let (names, set_names) = create_signal(cx, Vec::new());
if names.with(|names| names.is_empty()) {
set_names.update(|names| names.push("Alice".to_string()));
}
```
Now our function simply takes `names` by reference to run `is_empty()`, avoiding that clone.
And if you have Clippy on, or if you have sharp eyes, you may notice we can make this even neater:
```rust
if names.with(Vec::is_empty) {
// ...
}
```
After all, `.with()` simply takes a function that takes the value by reference. Since `Vec::is_empty` takes `&self`, we can pass it in directly and avoid the unncessary closure.
## Making signals depend on each other
Often people ask about situations in which some signal needs to change based on some other signals value. There are three good ways to do this, and one thats less than ideal but okay under controlled circumstances.
### Good Options
**1) B is a function of A.** Create a signal for A and a derived signal or memo for B.
```rust
let (count, set_count) = create_signal(cx, 1);
let derived_signal_double_count = move || count() * 2;
let memoized_double_count = create_memo(cx, move |_| count() * 2);
```
> For guidance on whether to use a derived signal or a memo, see the docs for [`create_memo`](https://docs.rs/leptos/latest/leptos/fn.create_memo.html)
>
**2) C is a function of A and some other thing B.** Create signals for A and B and a derived signal or memo for C.
```rust
let (first_name, set_first_name) = create_signal(cx, "Bridget".to_string());
let (last_name, set_last_name) = create_signal(cx, "Jones".to_string());
let full_name = move || format!("{} {}", first_name(), last_name());
```
**3) A and B are independent signals, but sometimes updated at the same time.** When you make the call to update A, make a separate call to update B.
```rust
let (age, set_age) = create_signal(cx, 32);
let (favorite_number, set_favorite_number) = create_signal(cx, 42);
// use this to handle a click on a `Clear` button
let clear_handler = move |_| {
set_age(0);
set_favorite_number(0);
};
```
### If you really must...
**4) Create an effect to write to B whenever A changes.** This is officially discouraged, for several reasons:
a) It will always be less efficient, as it means every time A updates you do two full trips through the reactive process. (You set A, which causes the effect to run, as well as any other effects that depend on A. Then you set B, which causes any effects that depend on B to run.)
b) It increases your chances of accidentally creating things like infinite loops or over-re-running effects. This is the kind of ping-ponging, reactive spaghetti code that was common in the early 2010s and that we try to avoid with things like read-write segregation and discouraging writing to signals from effects.
In most situations, its best to rewrite things such that theres a clear, top-down data flow based on derived signals or memos. But this isnt the end of the world.
> Im intentionally not providing an example here. Read the [`create_effect`](https://docs.rs/leptos/latest/leptos/fn.create_effect.html) docs to figure out how this would work.

View File

@@ -1,2 +1,101 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/16_routes.html">
<link rel="canonical" href="https://book.leptos.dev/router/16_routes.html">
# Defining Routes
## Getting Started
Its easy to get started with the router.
First things first, make sure youve added the `leptos_router` package to your dependencies.
> Its important that the router is a separate package from `leptos` itself. This means that everything in the router can be defined in user-land code. If you want to create your own router, or use no router, youre completely free to do that!
And import the relevant types from the router, either with something like
```rust
use leptos_router::{Route, RouteProps, Router, RouterProps, Routes, RoutesProps};
```
or simply
```rust
use leptos_router::*;
```
## Providing the `<Router/>`
Routing behavior is provided by the [`<Router/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Router.html) component. This should usually be somewhere near the root of your application, the rest of the app.
> You shouldnt try to use multiple `<Router/>`s in your app. Remember that the router drives global state: if you have multiple routers, which ones decides what to do when the URL changes?
Lets start with a simple `<App/>` component using the router:
```rust
use leptos::*;
use leptos_router::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
view! { cx,
<Router>
<nav>
/* ... */
</nav>
<main>
/* ... */
</main>
</Router>
}
}
```
## Defining `<Routes/>`
The [`<Routes/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Routes.html) component is where you define all the routes to which a user can navigate in your application. Each possible route is defined by a [`<Route/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Route.html) component.
You should place the `<Routes/>` component at the location within your app where you want routes to be rendered. Everything outside `<Routes/>` will be present on every page, so you can leave things like a navigation bar or menu outside the `<Routes/>`.
```rust
use leptos::*;
use leptos_router::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
view! { cx,
<Router>
<nav>
/* ... */
</nav>
<main>
// all our routes will appear inside <main>
<Routes>
/* ... */
</Routes>
</main>
</Router>
}
}
```
Individual routes are defined by providing children to `<Routes/>` with the `<Route/>` component. `<Route/>` takes a `path` and a `view`. When the current location matches `path`, the `view` will be created and displayed.
The `path` can include
- a static path (`/users`),
- dynamic, named parameters beginning with a colon (`/:id`),
- and/or a wildcard beginning with an asterisk (`/user/*any`)
The `view` is a function that takes a `Scope` and returns a view.
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home/> }/>
<Route path="/users" view=|cx| view! { cx, <Users/> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile/> }/>
<Route path="/*any" view=|cx| view! { cx, <NotFound/> }/>
</Routes>
```
> The router scores each route to see how good a match it is, so you can define your routes in any order.
Now if you navigate to `/` or to `/users` youll get the home page or the `<Users/>`. If you go to `/users/3` or `/blahblah` youll get a user profile or your 404 page (`<NotFound/>`). On every navigation, the router determines which `<Route/>` should be matched, and therefore what content should be displayed where the `<Routes/>` component is defined.
Simple enough?

View File

@@ -1,2 +1,172 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/17_nested_routing.html">
<link rel="canonical" href="https://book.leptos.dev/router/17_nested_routing.html">
# Nested Routing
We just defined the following set of routes:
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home /> }/>
<Route path="/users" view=|cx| view! { cx, <Users /> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile /> }/>
<Route path="/*any" view=|cx| view! { cx, <NotFound /> }/>
</Routes>
```
Theres a certain amount of duplication here: `/users` and `/users/:id`. This is fine for a small app, but you can probably already tell it wont scale well. Wouldnt it be nice if we could nest these routes?
Well... you can!
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home /> }/>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
</Route>
<Route path="/*any" view=|cx| view! { cx, <NotFound /> }/>
</Routes>
```
But wait. Weve just subtly changed what our application does.
The next section is one of the most important in this entire routing section of the guide. Read it carefully, and feel free to ask questions if theres anything you dont understand.
# Nested Routes as Layout
Nested routes are a form of layout, not a method of route definition.
Let me put that another way: The goal of defining nested routes is not primarily to avoid repeating yourself when typing out the paths in your route definitions. It is actually to tell the router to display multiple `<Route/>`s on the page at the same time, side by side.
Lets look back at our practical example.
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile /> }/>
</Routes>
```
This means:
- If I go to `/users`, I get the `<Users/>` component.
- If I go to `/users/3`, I get the `<UserProfile/>` component (with the parameter `id` set to `3`; more on that later)
Lets say I use nested routes instead:
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
</Route>
</Routes>
```
This means:
- If I go to `/users/3`, the path matches two `<Route/>`s: `<Users/>` and `<UserProfile/>`.
- If I go to `/users`, the path is not matched.
I actually need to add a fallback route
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
<Route path="" view=|cx| view! { cx, <NoUser /> }/>
</Route>
</Routes>
```
Now:
- If I go to `/users/3`, the path matches `<Users/>` and `<UserProfile/>`.
- If I go to `/users`, the path matches `<Users/>` and `<NoUser/>`.
When I use nested routes, in other words, each **path** can match multiple **routes**: each URL can render the views provided by multiple `<Route/>` components, at the same time, on the same page.
This may be counter-intuitive, but its very powerful, for reasons youll hopefully see in a few minutes.
## Why Nested Routing?
Why bother with this?
Most web applications contain levels of navigation that correspond to different parts of the layout. For example, in an email app you might have a URL like `/contacts/greg`, which shows a list of contacts on the left of the screen, and contact details for Greg on the right of the screen. The contact list and the contact details should always appear on the screen at the same time. If theres no contact selected, maybe you want to show a little instructional text.
You can easily define this with nested routes
```rust
<Routes>
<Route path="/contacts" view=|cx| view! { cx, <ContactList/> }>
<Route path=":id" view=|cx| view! { cx, <ContactInfo/> }/>
<Route path="" view=|cx| view! { cx,
<p>"Select a contact to view more info."</p>
}/>
</Route>
</Routes>
```
You can go even deeper. Say you want to have tabs for each contacts address, email/phone, and your conversations with them. You can add _another_ set of nested routes inside `:id`:
```rust
<Routes>
<Route path="/contacts" view=|cx| view! { cx, <ContactList/> }>
<Route path=":id" view=|cx| view! { cx, <ContactInfo/> }>
<Route path="" view=|cx| view! { cx, <EmailAndPhone/> }/>
<Route path="address" view=|cx| view! { cx, <Address/> }/>
<Route path="messages" view=|cx| view! { cx, <Messages/> }/>
</Route>
<Route path="" view=|cx| view! { cx,
<p>"Select a contact to view more info."</p>
}/>
</Route>
</Routes>
```
> The main page of the [Remix website](https://remix.run/), a React framework from the creators of React Router, has a great visual example if you scroll down, with three levels of nested routing: Sales > Invoices > an invoice.
## `<Outlet/>`
Parent routes do not automatically render their nested routes. After all, they are just components; they dont know exactly where they should render their children, and “just stick at at the end of the parent component” is not a great answer.
Instead, you tell a parent component where to render any nested components with an `<Outlet/>` component. The `<Outlet/>` simply renders one of two things:
- if there is no nested route that has been matched, it shows nothing
- if there is a nested route that has been matched, it shows its `view`
Thats all! But its important to know and to remember, because its a common source of “Why isnt this working?” frustration. If you dont provide an `<Outlet/>`, the nested route wont be displayed.
```rust
#[component]
pub fn ContactList(cx: Scope) -> impl IntoView {
let contacts = todo!();
view! { cx,
<div style="display: flex">
// the contact list
<For each=contacts
key=|contact| contact.id
view=|cx, contact| todo!()
>
// the nested child, if any
// dont forget this!
<Outlet/>
</div>
}
}
```
## Nested Routing and Performance
All of this is nice, conceptually, but again—whats the big deal?
Performance.
In a fine-grained reactive library like Leptos, its always important to do the least amount of rendering work you can. Because were working with real DOM nodes and not diffing a virtual DOM, we want to “rerender” components as infrequently as possible. Nested routing makes this extremely easy.
Imagine my contact list example. If I navigate from Greg to Alice to Bob and back to Greg, the contact information needs to change on each navigation. But the `<ContactList/>` should never be rerendered. Not only does this save on rendering performance, it also maintains state in the UI. For example, if I have a search bar at the top of `<ContactList/>`, navigating from Greg to Alice to Bob wont clear the search.
In fact, in this case, we dont even need to rerender the `<Contact/>` component when moving between contacts. The router will just reactively update the `:id` parameter as we navigate, allowing us to make fine-grained updates. As we navigate between contacts, well update single text nodes to change the contacts name, address, and so on, without doing _any_ additional rerendering.
> This sandbox includes a couple features (like nested routing) discussed in this section and the previous one, and a couple well cover in the rest of this chapter. The router is such an integrated system that it makes sense to provide a single example, so dont be surprised if theres anything you dont understand.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,79 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/18_params_and_queries.html">
<link rel="canonical" href="https://book.leptos.dev/router/18_params_and_queries.html">
# Params and Queries
Static paths are useful for distinguishing between different pages, but almost every application wants to pass data through the URL at some point.
There are two ways you can do this:
1. named route **params** like `id` in `/users/:id`
2. named route **queries** like `q` in `/search?q=Foo`
Because of the way URLs are built, you can access the query from _any_ `<Route/>` view. You can access route params from the `<Route/>` that defines them or any of its nested children.
Accessing params and queries is pretty simple with a couple of hooks:
- [`use_query`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query.html) or [`use_query_map`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query_map.html)
- [`use_params`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_params.html) or [`use_params_map`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query_map.html)
Each of these comes with a typed option (`use_query` and `use_params`) and an untyped option (`use_query_map` and `use_params_map`).
The untyped versions hold a simple key-value map. To use the typed versions, derive the [`Params`](https://docs.rs/leptos_router/0.2.3/leptos_router/trait.Params.html) trait on a struct.
> `Params` is a very lightweight trait to convert a flat key-value map of strings into a struct by applying `FromStr` to each field. Because of the flat structure of route params and URL queries, its significantly less flexible than something like `serde`; it also adds much less weight to your binary.
```rust
use leptos::*;
use leptos_router::*;
#[derive(Params)]
struct ContactParams {
id: usize
}
#[derive(Params)]
struct ContactSearch {
q: String
}
```
> Note: The `Params` derive macro is located at `leptos::Params`, and the `Params` trait is at `leptos_router::Params`. If you avoid using glob imports like `use leptos::*;`, make sure youre importing the right one for the derive macro.
Now we can use them in a component. Imagine a URL that has both params and a query, like `/contacts/:id?q=Search`.
The typed versions return `Memo<Result<T, _>>`. Its a Memo so it reacts to changes in the URL. Its a `Result` because the params or query need to be parsed from the URL, and may or may not be valid.
```rust
let params = use_params::<ContactParams>(cx);
let query = use_query::<ContactSearch>(cx);
// id: || -> usize
let id = move || {
params.with(|params| {
params
.map(|params| params.id)
.unwrap_or_default()
})
};
```
The untyped versions return `Memo<ParamsMap>`. Again, its memo to react to changes in the URL. [`ParamsMap`](https://docs.rs/leptos_router/0.2.3/leptos_router/struct.ParamsMap.html) behaves a lot like any other map type, with a `.get()` method that returns `Option<&String>`.
```rust
let params = use_params_map(cx);
let query = use_query_map(cx);
// id: || -> Option<String>
let id = move || {
params.with(|params| params.get("id").cloned())
};
```
This can get a little messy: deriving a signal that wraps an `Option<_>` or `Result<_>` can involve a couple steps. But its worth doing this for two reasons:
1. Its correct, i.e., it forces you to consider the cases, “What if the user doesnt pass a value for this query field? What if they pass an invalid value?”
2. Its performant. Specifically, when you navigate between different paths that match the same `<Route/>` with only params or the query changing, you can get fine-grained updates to different parts of your app without rerendering. For example, navigating between different contacts in our contact-list example does a targeted update to the name field (and eventually contact info) without needing to replacing or rerender the wrapping `<Contact/>`. This is what fine-grained reactivity is for.
> This is the same example from the previous section. The router is such an integrated system that it makes sense to provide a single example highlighting multiple features, even if we havent explain them all yet.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,23 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/19_a.html">
<link rel="canonical" href="https://book.leptos.dev/router/19_a.html">
# The `<A/>` Component
Client-side navigation works perfectly fine with ordinary HTML `<a>` elements. The router adds a listener that handles every click on a `<a>` element and tries to handle it on the client side, i.e., without doing another round trip to the server to request HTML. This is what enables the snappy “single-page app” navigations youre probably familiar with from most modern web apps.
The router will bail out of handling an `<a>` click under a number of situations
- the click event has had `prevent_default()` called on it
- the <kbd>Meta</kbd>, <kbd>Alt</kbd>, <kbd>Ctrl</kbd>, or <kbd>Shift</kbd> keys were held during click
- the `<a>` has a `target` or `download` attribute, or `rel="external"`
- the link has a different origin from the current location
In other words, the router will only try to do a client-side navigation when its pretty sure it can handle it, and it will upgrade every `<a>` element to get this special behavior.
The router also provides an [`<A>`](https://docs.rs/leptos_router/latest/leptos_router/fn.A.html) component, which does two additional things:
1. Correctly resolves relative nested routes. Relative routing with ordinary `<a>` tags can be tricky. For example, if you have a route like `/post/:id`, `<A href="1">` will generate the correct relative route, but `<a href="1">` likely will not (depending on where it appears in your view.) `<A/>` resolves routes relative to the path of the nested route within which it appears.
2. Sets the `aria-current` attribute to `page` if this link is the active link (i.e., its a link to the page youre on). This is helpful for accessibility and for styling. For example, if you want to set the link a different color if its a link to the page youre currently on, you can match this attribute with a CSS selector.
> Once again, this is the same example. Check out the relative `<A/>` components, and take a look at the CSS in `index.html` to see the ARIA-based styling.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,67 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/20_form.html">
<link rel="canonical" href="https://book.leptos.dev/router/20_form.html">
# The `<Form/>` Component
Links and forms sometimes seem completely unrelated. But in fact, they work in very similar ways.
In plain HTML, there are three ways to navigate to another page:
1. An `<a>` element that links to another page. Navigates to the URL in its `href` attribute with the `GET` HTTP method.
2. A `<form method="GET">`. Navigates to the URL in its `action` attribute with the `GET` HTTP method and the form data from its inputs encoded in the URL query string.
3. A `<form method="POST">`. Navigates to the URL in its `action` attribute with the `POST` HTTP method and the form data from its inputs encoded in the body of the request.
Since we have a client-side router, we can do client-side link navigations without reloading the page, i.e., without a full round-trip to the server and back. It makes sense that we can do client-side form navigations in the same way.
The router provides a [`<Form>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Form.html) component, which works like the HTML `<form>` element, but uses client-side navigations instead of full page reloads. `<Form/>` works with both `GET` and `POST` requests. With `method="GET"`, it will navigate to the URL encoded in the form data. With `method="POST"` it will make a `POST` request and handle the servers response.
`<Form/>` provides the basis for some components like `<ActionForm/>` and `<MultiActionForm/>` that well see in later chapters. But it also enables some powerful patterns of its own.
For example, imagine that you want to create a search field that updates search results in real time as the user searches, without a page reload, but that also stores the search in the URL so a user can copy and paste it to share results with someone else.
It turns out that the patterns weve learned so far make this easy to implement.
```rust
async fn fetch_results() {
// some async function to fetch our search results
}
#[component]
pub fn FormExample(cx: Scope) -> impl IntoView {
// reactive access to URL query strings
let query = use_query_map(cx);
// search stored as ?q=
let search = move || query().get("q").cloned().unwrap_or_default();
// a resource driven by the search string
let search_results = create_resource(cx, search, fetch_results);
view! { cx,
<Form method="GET" action="">
<input type="search" name="search" value=search/>
<input type="submit"/>
</Form>
<Transition fallback=move || ()>
/* render search results */
</Transition>
}
}
```
Whenever you click `Submit`, the `<Form/>` will “navigate” to `?q={search}`. But because this navigation is done on the client side, theres no page flicker or reload. The URL query string changes, which triggers `search` to update. Because `search` is the source signal for the `search_results` resource, this triggers `search_results` to reload its resource. The `<Transition/>` continues displaying the current search results until the new ones have loaded. When they are complete, it switches to displaying the new result.
This is a great pattern. The data flow is extremely clear: all data flows from the URL to the resource into the UI. The current state of the application is stored in the URL, which means you can refresh the page or text the link to a friend and it will show exactly what youre expecting. And once we introduce server rendering, this pattern will prove to be really fault-tolerant, too: because it uses a `<form>` element and URLs under the hood, it actually works really well without even loading your WASM on the client.
We can actually take it a step further and do something kind of clever:
```rust
view! { cx,
<Form method="GET" action="">
<input type="search" name="search" value=search
oninput="this.form.requestSubmit()"
/>
</Form>
}
```
Youll notice that this version drops the `Submit` button. Instead, we add an `oninput` attribute to the input. Note that this is _not_ `on:input`, which would listen for the `input` event and run some Rust code. Without the colon, `oninput` is the plain HTML attribute. So the string is actually a JavaScript string. `this.form` gives us the form the input is attached to. `requestSubmit()` fires the `submit` event on the `<form>`, which is caught by `<Form/>` just as if we had clicked a `Submit` button. Now the form will “navigate” on every keystroke or input to keep the URL (and therefore the search) perfectly in sync with the users input as they type.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-forked-hrrt3h?file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/16-router-forked-hrrt3h?file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

Some files were not shown because too many files have changed in this diff Show More