Compare commits

..

4 Commits

Author SHA1 Message Date
Greg Johnston
1adddce0ed fix todomvc 2023-04-21 11:10:47 -04:00
Greg Johnston
c8e5d0518a fix todomvc 2023-04-21 11:10:43 -04:00
Greg Johnston
c334c576ab fix example exclusion sets 2023-04-21 11:04:52 -04:00
Greg Johnston
e14b970291 docs: compile error when using csr + ssr etc. (breaks <Suspense/> among others) 2023-04-20 17:00:32 -04:00
1427 changed files with 41603 additions and 127614 deletions

View File

@@ -1,39 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**Leptos Dependencies**
Please copy and paste the Leptos dependencies and features from your `Cargo.toml`.
For example:
```toml
leptos = { version = "0.3", features = ["serde"] }
leptos_axum = { version = "0.3", optional = true }
leptos_meta = { version = "0.3"}
leptos_router = { version = "0.3"}
```
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Additional context**
Add any other context about the problem here.

View File

@@ -1,7 +0,0 @@
contact_links:
- name: Support or Question
url: https://github.com/leptos-rs/leptos/discussions/new?category=q-a
about: Do you need help figuring out how to do something, or want some help troubleshooting a bug? You can ask in our Discussions section.
- name: Discord Discussions
url: https://discord.gg/YdRAhS7eQB
about: For more informal, real-time conversation and support, you can join our Discord server.

View File

@@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@@ -1,54 +0,0 @@
name: autofix.ci
on:
pull_request:
# Running this workflow on main branch pushes requires write permission to apply changes.
# Leave it alone for future uses.
# push:
# branches: ["main"]
permissions:
contents: read
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
env:
CARGO_TERM_COLOR: always
RUST_BACKTRACE: 1
DEBIAN_FRONTEND: noninteractive
jobs:
autofix:
runs-on: ubuntu-latest
timeout-minutes: 30
steps:
- uses: actions/checkout@v4
- uses: actions-rust-lang/setup-rust-toolchain@v1
with: {toolchain: nightly, components: "rustfmt, clippy", target: "wasm32-unknown-unknown", rustflags: ""}
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- name: Install jq
run: sudo apt-get install jq
- run: |
echo "Formatting the workspace"
cargo fmt --all
echo "Running Clippy against each member's features (default features included)"
for member in $(cargo metadata --no-deps --format-version 1 | jq -r '.packages[] | .name'); do
echo "Working on member $member":
echo -e "\tdefault-features/no-features:"
# this will also run on members with no features or default features
cargo clippy --allow-dirty --fix --lib --package "$member"
features=$(cargo metadata --no-deps --format-version 1 | jq -r ".packages[] | select(.name == \"$member\") | .features | keys[]")
for feature in $features; do
if [ "$feature" = "default" ]; then
continue
fi
echo -e "\tfeature $feature"
cargo clippy --allow-dirty --fix --lib --package "$member" --features "$feature"
done
done
- uses: autofix-ci/action@v1.3.1
if: ${{ always() }}
with:
fail-fast: false

45
.github/workflows/check-examples.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Check examples ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all examples
run: cargo make check-examples

45
.github/workflows/check-stable.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Check examples ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- stable
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all examples
run: cargo make --profile=github-actions check-stable

45
.github/workflows/check.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Run `cargo check` ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run cargo check on all libraries
run: cargo make --profile=github-actions check

View File

@@ -1,32 +0,0 @@
name: CI Changed Examples
on:
push:
branches:
- main
- leptos_0.6
- leptos_0.8
pull_request:
branches:
- main
- leptos_0.6
- leptos_0.8
jobs:
get-example-changed:
uses: ./.github/workflows/get-example-changed.yml
get-matrix:
needs: [get-example-changed]
uses: ./.github/workflows/get-changed-examples-matrix.yml
with:
example_changed: ${{ fromJSON(needs.get-example-changed.outputs.example_changed) }}
test:
name: CI
needs: [get-example-changed, get-matrix]
if: needs.get-example-changed.outputs.example_changed == 'true'
strategy:
matrix: ${{ fromJSON(needs.get-matrix.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "ci"
toolchain: stable

View File

@@ -1,29 +0,0 @@
name: CI Examples
on:
push:
branches:
- main
- leptos_0.6
- leptos_0.8
pull_request:
branches:
- main
- leptos_0.6
- leptos_0.8
jobs:
get-leptos-changed:
uses: ./.github/workflows/get-leptos-changed.yml
get-examples-matrix:
uses: ./.github/workflows/get-examples-matrix.yml
test:
name: CI
needs: [get-leptos-changed, get-examples-matrix]
if: needs.get-leptos-changed.outputs.leptos_changed == 'true'
strategy:
matrix: ${{ fromJSON(needs.get-examples-matrix.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "ci"
toolchain: stable

View File

@@ -1,33 +0,0 @@
name: CI semver
on:
push:
branches:
- main
- leptos_0.6
- leptos_0.8
pull_request:
branches:
- main
- leptos_0.6
- leptos_0.8
env:
DEBIAN_FRONTEND: noninteractive
jobs:
get-leptos-changed:
uses: ./.github/workflows/get-leptos-changed.yml
test:
needs: [get-leptos-changed]
if: needs.get-leptos-changed.outputs.leptos_changed == 'true' && github.event.pull_request.labels[0].name != 'breaking'
name: Run semver check (nightly-2024-08-01)
runs-on: ubuntu-latest
steps:
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- name: Checkout
uses: actions/checkout@v4
- name: Semver Checks
uses: obi1kenobi/cargo-semver-checks-action@v2
with:
rust-toolchain: nightly-2024-08-01

View File

@@ -1,29 +0,0 @@
name: CI
on:
push:
branches:
- main
- leptos_0.6
- leptos_0.8
pull_request:
branches:
- main
- leptos_0.6
- leptos_0.8
jobs:
get-leptos-changed:
uses: ./.github/workflows/get-leptos-changed.yml
get-leptos-matrix:
uses: ./.github/workflows/get-leptos-matrix.yml
test:
name: CI
needs: [get-leptos-changed, get-leptos-matrix]
if: needs.get-leptos-changed.outputs.leptos_changed == 'true'
strategy:
matrix: ${{ fromJSON(needs.get-leptos-matrix.outputs.matrix) }}
fail-fast: false
uses: ./.github/workflows/run-cargo-make-task.yml
with:
directory: ${{ matrix.directory }}
cargo_make_task: "ci"
toolchain: nightly-2024-08-01

34
.github/workflows/fmt.yml vendored Normal file
View File

@@ -0,0 +1,34 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Run rustfmt
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Run Rustfmt
run: cargo fmt -- --check

View File

@@ -1,54 +0,0 @@
name: Changed Examples Matrix Call
on:
workflow_call:
inputs:
example_changed:
description: "Example Changed"
required: true
type: boolean
outputs:
matrix:
description: "Matrix"
value: ${{ jobs.get-example-changed.outputs.matrix }}
jobs:
get-example-changed:
name: Get Changed Example Matrix
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get example project directories that changed
id: changed-dirs
uses: tj-actions/changed-files@v45
with:
dir_names: true
dir_names_max_depth: "2"
files: |
examples/**
!examples/cargo-make/**
!examples/gtk/**
!examples/Makefile.toml
!examples/*.md
json: true
quotepath: false
- name: List example project directories that changed
run: echo '${{ steps.changed-dirs.outputs.all_changed_files }}'
- name: Set Matrix
id: set-matrix
run: |
if [ ${{ inputs.example_changed }} == 'true' ]; then
# Create matrix with changed directories
echo "matrix={\"directory\":${{ steps.changed-dirs.outputs.all_changed_files }}}" >> "$GITHUB_OUTPUT"
else
# Create matrix with one item to prevent an empty vector error
echo "matrix={\"directory\":[\"NO_CHANGE\"]}" >> "$GITHUB_OUTPUT"
fi

View File

@@ -1,33 +0,0 @@
name: Examples Changed Call
on:
workflow_call:
outputs:
example_changed:
description: "Example Changed"
value: ${{ jobs.get-example-changed.outputs.example_changed }}
jobs:
get-example-changed:
name: Get Example Changed
runs-on: ubuntu-latest
outputs:
example_changed: ${{ steps.set-example-changed.outputs.example_changed }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get example files that changed
id: changed-files
uses: tj-actions/changed-files@v45
with:
files: |
examples/**
!examples/cargo-make/**
!examples/Makefile.toml
!examples/*.md
- name: List example files that changed
run: echo '${{ steps.changed-files.outputs.all_changed_files }}'
- name: Set example_changed
id: set-example-changed
run: |
echo "example_changed=${{ steps.changed-files.outputs.any_changed }}" >> "$GITHUB_OUTPUT"

View File

@@ -1,36 +0,0 @@
name: Get Examples Matrix Call
on:
workflow_call:
outputs:
matrix:
description: "Matrix"
value: ${{ jobs.create.outputs.matrix }}
jobs:
create:
name: Create Examples Matrix
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
env:
# separate examples using "|" (vertical bar) char like "a|b|c".
# cargo-make should be excluded by default.
EXCLUDED_EXAMPLES: cargo-make
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install jq
run: sudo apt-get install jq
- name: Set Matrix
id: set-matrix
run: |
examples=$(ls -1d examples/*/ |
grep -vE "($EXCLUDED_EXAMPLES)" |
sed 's/\/$//' |
jq -R -s -c 'split("\n")[:-1]')
echo "Example Directories: $examples"
echo "matrix={\"directory\":$examples}" >> "$GITHUB_OUTPUT"
- name: Print Location Info
run: |
echo "Workspace: ${{ github.workspace }}"
pwd
ls | sort -u

View File

@@ -1,35 +0,0 @@
name: Get Leptos Changed Call
on:
workflow_call:
outputs:
leptos_changed:
description: "Leptos Changed"
value: ${{ jobs.create.outputs.leptos_changed }}
jobs:
create:
name: Detect Source Change
runs-on: ubuntu-latest
outputs:
leptos_changed: ${{ steps.set-source-changed.outputs.leptos_changed }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Get source files that changed
id: changed-source
uses: tj-actions/changed-files@v45
with:
files_ignore: |
.*/**/*
cargo-make/**/*
examples/**/*
projects/**/*
benchmarks/**/*
docs/**/*
- name: List source files that changed
run: echo '${{ steps.changed-source.outputs.all_changed_files }}'
- name: Set leptos_changed
id: set-source-changed
run: |
echo "leptos_changed=${{ steps.changed-source.outputs.any_changed }}" >> "$GITHUB_OUTPUT"

View File

@@ -1,32 +0,0 @@
name: Get Leptos Matrix Call
on:
workflow_call:
outputs:
matrix:
description: "Matrix"
value: ${{ jobs.create.outputs.matrix }}
jobs:
create:
name: Create Leptos Matrix
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install jq
run: sudo apt-get install jq
- name: Set Matrix
id: set-matrix
run: |
crates=$(cargo metadata --no-deps --quiet --format-version 1 |
jq -r '.packages[] | select(.name != "workspace") | .manifest_path| rtrimstr("/Cargo.toml")' |
sed "s|$(pwd)/||" |
jq -R -s -c 'split("\n")[:-1]')
echo "Leptos Directories: $crates"
echo "matrix={\"directory\":$crates}" >> "$GITHUB_OUTPUT"
- name: Print Location Info
run: |
echo "Workspace: ${{ github.workspace }}"
pwd
ls | sort -u

View File

@@ -1,7 +1,7 @@
name: Deploy book
on:
push:
paths: ["docs/book/**"]
paths: ['docs/book/**']
branches:
- main
@@ -9,29 +9,29 @@ jobs:
deploy:
runs-on: ubuntu-latest
permissions:
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
contents: write # To push a branch
pull-requests: write # To create a PR from that branch
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install mdbook
run: |
mkdir mdbook
curl -sSL https://github.com/rust-lang/mdBook/releases/download/v0.4.27/mdbook-v0.4.27-x86_64-unknown-linux-gnu.tar.gz | tar -xz --directory=./mdbook
echo `pwd`/mdbook >> $GITHUB_PATH
- name: Deploy GitHub Pages
run: |
cd docs/book
mdbook build
git worktree add gh-pages
git config user.name "Deploy book from CI"
git config user.email ""
cd gh-pages
# Delete the ref to avoid keeping history.
git update-ref -d refs/heads/gh-pages
rm -rf *
mv ../book/* .
git add .
git commit -m "Deploy book $GITHUB_SHA to gh-pages"
git push --force --set-upstream origin gh-pages
- uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Install mdbook
run: |
mkdir mdbook
curl -sSL https://github.com/rust-lang/mdBook/releases/download/v0.4.27/mdbook-v0.4.27-x86_64-unknown-linux-gnu.tar.gz | tar -xz --directory=./mdbook
echo `pwd`/mdbook >> $GITHUB_PATH
- name: Deploy GitHub Pages
run: |
cd docs/book
mdbook build
git worktree add gh-pages
git config user.name "Deploy book from CI"
git config user.email ""
cd gh-pages
# Delete the ref to avoid keeping history.
git update-ref -d refs/heads/gh-pages
rm -rf *
mv ../book/* .
git add .
git commit -m "Deploy book $GITHUB_SHA to gh-pages"
git push --force --set-upstream origin gh-pages

View File

@@ -1,128 +0,0 @@
name: Run Task
on:
workflow_call:
inputs:
directory:
required: true
type: string
cargo_make_task:
required: true
type: string
toolchain:
required: true
type: string
env:
CARGO_TERM_COLOR: always
CARGO_REGISTRIES_CRATES_IO_PROTOCOL: sparse
DEBIAN_FRONTEND: noninteractive
jobs:
test:
name: Run ${{ inputs.cargo_make_task }} (${{ inputs.toolchain }})
runs-on: ubuntu-latest
steps:
- name: Free Disk Space
run: |
echo "Disk space before cleanup:"
df -h
sudo rm -rf /usr/local/.ghcup
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo rm -rf /usr/local/lib/android/sdk/ndk
sudo rm -rf /usr/share/dotnet
sudo rm -rf /opt/ghc
sudo rm -rf /usr/local/share/boost
sudo apt-get clean
echo "Disk space after cleanup:"
df -h
# Setup environment
- name: Install Glib
run: |
sudo apt-get update
sudo apt-get install -y libglib2.0-dev
- uses: actions/checkout@v4
- name: Setup Rust
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ inputs.toolchain }}
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Install binstall
uses: cargo-bins/cargo-binstall@main
- name: Install wasm-bindgen
run: cargo binstall wasm-bindgen-cli --no-confirm
- name: Install cargo-leptos
run: cargo binstall cargo-leptos --no-confirm
- name: Install Trunk
uses: jetli/trunk-action@v0.5.0
with:
version: "latest"
- name: Print Trunk Version
run: trunk --version
- name: Install Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- uses: pnpm/action-setup@v4
name: Install pnpm
id: pnpm-install
with:
version: 8
run_install: false
- name: Get pnpm store directory
id: pnpm-cache
run: |
echo "STORE_PATH=$(pnpm store path)" >> $GITHUB_OUTPUT
- uses: actions/cache@v4
name: Setup pnpm cache
with:
path: ${{ steps.pnpm-cache.outputs.STORE_PATH }}
key: ${{ runner.os }}-pnpm-store-${{ hashFiles('**/pnpm-lock.yaml') }}
restore-keys: |
${{ runner.os }}-pnpm-store-
- name: Maybe install chromedriver
run: |
project_makefile=${{inputs.directory}}/Makefile.toml
webdriver_count=$(cat $project_makefile | grep "cargo-make/webdriver.toml" | wc -l)
if [ $webdriver_count -eq 1 ]; then
if ! command -v chromedriver &>/dev/null; then
echo chromedriver required
sudo apt-get update
sudo apt-get install chromium-chromedriver
else
echo chromedriver is already installed
fi
else
echo chromedriver is not required
fi
- name: Maybe install playwright browser dependencies
run: |
for pw_path in $(find ${{inputs.directory}} -name playwright.config.ts)
do
pw_dir=$(dirname $pw_path)
if [ ! -v $pw_dir ]; then
echo "Playwright required in $pw_dir"
cd $pw_dir
pnpm dlx playwright install --with-deps
else
echo Playwright is not required
fi
done
- name: Install Deno
uses: denoland/setup-deno@v2
with:
deno-version: v1.x
- name: Maybe install gtk-rs dependencies
run: |
if [ ! -z $(echo ${{inputs.directory}} | grep gtk) ]; then
sudo apt-get update
sudo apt-get install -y libglib2.0-dev libgio2.0-cil-dev libgraphene-1.0-dev libcairo2-dev libpango1.0-dev libgtk-4-dev
fi
# Run Cargo Make Task
- name: ${{ inputs.cargo_make_task }}
run: |
cd ${{ inputs.directory }}
cargo make --profile=github-actions ${{ inputs.cargo_make_task }}

45
.github/workflows/test.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test
on:
push:
branches: [main]
pull_request:
branches: [main]
env:
CARGO_TERM_COLOR: always
jobs:
test:
name: Run tests ${{ matrix.os }} (using rustc ${{ matrix.rust }})
runs-on: ${{ matrix.os }}
strategy:
matrix:
rust:
- nightly
os:
- ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Rust
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
override: true
components: rustfmt
- name: Add wasm32-unknown-unknown
run: rustup target add wasm32-unknown-unknown
- name: Setup cargo-make
uses: davidB/rust-cargo-make@v1
- name: Cargo generate-lockfile
run: cargo generate-lockfile
- uses: Swatinem/rust-cache@v2
- name: Run tests with all features
run: cargo make --profile=github-actions test

10
.gitignore vendored
View File

@@ -3,15 +3,7 @@ dist
pkg
comparisons
blob.rs
**/projects/**/Cargo.lock
**/examples/**/Cargo.lock
**/benchmarks/**/Cargo.lock
Cargo.lock
**/*.rs.bk
.DS_Store
.idea
.direnv
.envrc
.vscode
vendor
hash.txt

View File

@@ -1,231 +0,0 @@
# Architecture
The goal of this document is to make it easier for contributors (and anyone
whos interested!) to understand the architecture of the framework.
The whole Leptos framework is built from a series of layers. Each of these layers
depends on the one below it, but each can be used independently from the ones
built on top of it. While running a command like `cargo leptos new --git
leptos-rs/start` pulls in the whole framework, its important to remember that
none of this is magic: each layer of that onion can be stripped away and
reimplemented, configured, or adapted as needed, incrementally.
> Everything that follows will assume you have a good working understanding
> of the framework. There will be explanations of how some parts of it work
> or fit together, but these are not docs. They assume you know what Im
> talking about.
## The Reactive System: `leptos_reactive`
The reactive system allows you to define dynamic values (signals),
the relationships between them (derived signals and memos), and the side effects
that run in response to them (effects).
These concepts are completely independent of the DOM and can be used to drive
any kind of reactive updates. The reactive system is based on the assumption
that data is relatively cheap, and side effects are relatively expensive. Its
goal is to minimize those side effects (like updating the DOM or making a network
requests) as infrequently as possible.
The reactive system is implemented as a single data structure that exists at
runtime. In exchange for giving ownership over a value to the reactive system
(by creating a signal), you receive a `Copy + 'static` identifier for its
location in the reactive system. This enables most of the ergonomics of storing
and sharing state, the use of callback closures without lifetime issues, etc.
This is implemented by storing signals in a slotmap arena. The signal, memo,
and scope types that are exposed to users simply carry around an index into that
slotmap.
> Items owned by the reactive system are dropped when the corresponding reactive
> scope is dropped, i.e., when the component or section of the UI theyre
> created in is removed. In a sense, Leptos implements a “garbage collector”
> in which the lifetime of data is tied to the lifetime of the UI, not Rusts
> lexical scopes.
## The DOM Renderer: `leptos_dom`
The reactive system can be used to drive any kinds of side effects. One very
common side effect is calling an imperative method, for example to update the
DOM.
The entire DOM renderer is built on top of the reactive system. It provides
a builder pattern that can be used to create DOM elements dynamically.
The renderer assumes, as a convention, that dynamic attributes, classes,
styles, and children are defined by being passed a `Fn() -> T`, where their
static equivalents just receive `T`. Theres nothing about this that is
divinely ordained, but its a useful convention because it allows us to use
zero-overhead derived signals as one of several ways to indicate dynamic
content.
`leptos_dom` also contains code for server-side rendering of the same
UI views to HTML, either for out-of-order streaming (`src/ssr.rs`) or
in-order streaming/async rendering (`src/ssr_in_order.rs`).
## The Macros: `leptos_macro`
Its entirely possible to write Leptos code with no macros at all. The
`view` and `component` macros, the most common, can be replaced by
the builder syntax and simple functions (see the `counter_without_macros`
example). But the macros enable a JSX-like syntax for describing views.
This package also contains the `Params` derive macro used for typed
queries and route params in the router.
### Macro-based Optimizations
Leptos 0.0.x was built much more heavily on macros. Taking its cues
from SolidJS, the `view` macro emitted different code for CSR, SSR, and
hydration, optimizing each. The CSR/hydrate versions worked by compiling
the view to an HTML template string, cloning that `<template>`, and
traversing the DOM to set up reactivity. The SSR version worked similarly
by compiling the static parts of the view to strings at compile time,
reducing the amount of work that needed to be done on each request.
Proc macros are hard, and this system was brittle. 0.1 introduced a
more robust renderer, including the builder syntax, and rebuilt the `view`
macro to use that builder syntax instead. It moved the optimized-but-buggy
CSR version of the macro to a more-limited `template` macro.
The `view` macro now separately optimizes SSR to use the same static-string
optimizations, which (by our benchmarks) makes Leptos about 3-4x faster
than similar Rust frontend frameworks in its HTML rendering.
> The optimization is pretty straightforward. Consider the following view:
>
> ```rust
> view! { cx,
> <main class="text-center">
> <div class="flex-col">
> <button>"Click me."</button>
> <p class="italic">"Text."</p>
> </div>
> </main>
> }
> ```
>
> Internally, with the builder this is something like
>
> ```rust
> Element {
> tag: "main",
> attrs: vec![("class", "text-center")],
> children: vec![
> Element {
> tag: "div",
> attrs: vec![("class", "flex-col")],
> children: vec![
> Element {
> tag: "button",
> attrs: vec![],
> children: vec!["Click me"]
> },
> Element {
> tag: "p",
> attrs: vec![("class", "italic")],
> children: vec!["Text"]
> }
> ]
> }
> ]
> }
> ```
>
> This is a _bunch_ of small allocations and separate strings,
> and in early 0.1 versions we used a `SmallVec` for children and
> attributes and actually caused some stack overflows.
>
> But if you look at the view itself you can see that none of this
> will _ever_ change. So we can actually optimize it at compile
> time to a single `&'static str`:
>
> ```rust
> r#"<main class="text-center">
> <div class="flex-col">
> <button>"Click me."</button>
> <p class="italic">"Text."</p>
> </div>
> </main>"#
> ```
## Server Functions (`leptos_server`, `server_fn`, and `server_fn_macro`)
Server functions are a framework-agnostic shorthand for converting
a function, whose body can only be run on the server, into an ad hoc
REST API endpoint, and then generating code on the client to call that
endpoint when you call the function.
These are inspired by Solid/Blings `server$` functions, and theres
similar work being done in a number of other JavaScript frameworks.
RPC is not a new idea, but these kinds of server functions may be.
Specifically, by using web standards (defaulting to `POST`/`GET` requests
with URL-encoded form data) they allow easy graceful degradation and the
use of the `<form>` element.
This function is split across three packages so that `server_fn` and
`server_fn_macro` can be used by other frameworks. `leptos_server`
includes some Leptos-specific reactive functionality (like actions).
## `leptos`
This package is built on and reexports most of the layers already
mentioned, and implements a number of control-flow components (`<Show/>`,
`<ErrorBoundary/>`, `<For/>`, `<Suspense/>`, `<Transition/>`) that use
public APIs of the other packages.
This is the main entrypoint for users, but is relatively light itself.
## `leptos_meta`
This package exists to allow you to work with tags normally found in
the `<head>`, from within your components.
It is implemented as a distinct package, rather than part of
`leptos_dom`, on the principle that “what can be implemented in userland,
should be.” The framework can be used without it, so its not in core.
## `leptos_router`
The router originates as a direct port of `solid-router`, which is the
origin of most of its terminology, architecture, and route-matching logic.
Subsequent developments (like animated routing, and managing route transitions
given the lack of `useTransition` in Leptos) have caused it to diverge
slightly from Solids exact code, but it is still very closely related.
The core principle here is “nested routing,” dividing a single page
into independently-rendered parts. This is described in some detail in the docs.
Like `leptos_meta`, it is implemented as a distinct package, because it
can be replaced with another router or with none. The framework can be used
without it, so its not in core.
## Server Integrations
The server integrations are the most “frameworky” layer of the whole framework.
These **do** assume the use of `leptos`, `leptos_router`, and `leptos_meta`.
They specifically draw routing data from `leptos_router`, and inject the
metadata from `leptos_meta` into the `<head>` appropriately.
But of course, if you one day create `leptos-helmet` and `leptos-better-router`,
you can create new server integrations that plug them into the SSR rendering
methods from `leptos_dom` instead. Everything involved is quite modular.
These packages essentially provide helpers that save the templates and user apps
from including a huge amount of boilerplate to connect the various other packages
correctly. Again, early versions of the framework examples are illustrative here
for reference: they include large amounts of manual SSR route handling, etc.
## `cargo-leptos` helpers
`leptos_config` and `leptos_hot_reload` exist to support two different features
of `cargo-leptos`, namely its configuration and its view-patching/hot-reloading
features.
Its important to say that the main feature `cargo-leptos` remains its ability
to conveniently tie together different build tooling, compiling your app to
WASM for the browser, building the server version, pulling in SASS and
Tailwind, etc. It is an extremely good build tool, not a magic formula. Each
of the examples includes instructions for how to run the examples without
`cargo-leptos`.

View File

@@ -2,7 +2,7 @@
_This Code of Conduct is based on the [Rust Code of Conduct](https://www.rust-lang.org/policies/code-of-conduct)
and the [Bevy Code of Conduct](https://raw.githubusercontent.com/bevyengine/bevy/main/CODE_OF_CONDUCT.md),
which are adapted from the [Node.js Policy on Trolling](http://blog.izs.me/post/30036893703/policy-on-trolling)
which are adapted from the [Node.js Policy on Trolling](http://blog.izs.me/post/30036893703/policy-on-trolling)
and the [Contributor Covenant](https://www.contributor-covenant.org)._
## Our Pledge

View File

@@ -1,101 +0,0 @@
# Contributing to Leptos
Thanks for your interesting in contributing to Leptos! This is a truly
community-driven framework, and while we have a central maintainer (@gbj)
large parts of the renderer, reactive system, and server integrations have
all been written by other contributors. Contributions are always welcome.
Participation in this community is governed by a [Code of Conduct](./CODE_OF_CONDUCT.md).
Some of the most active conversations around development take place on our
[Discord server](https://discord.gg/YdRAhS7eQB).
This guide seeks to
- describe some of the frameworks values (in a technical, not an ethical, sense)
- provide a high-level overview of how the pieces of the framework fit together
- orient you to the organization of this repository
## Values
Leptos, as a framework, reflects certain technical values:
- **Expose primitives rather than imposing patterns.** Provide building blocks
that users can combine together to build up more complex behavior, rather than
requiring users follow certain templates, file formats, etc. e.g., components
are defined as functions, rather than a bespoke single-file component format.
The reactive system feeds into the rendering system, rather than being defined
by it.
- **Bottom-up over top-down.** If you envision a users application as a tree
(like an HTML document), push meaning toward the leaves of the tree. e.g., If data
needs to be loaded, load it in a granular primitive (resources) rather than a
route- or page-level data structure.
- **Performance by default.** When possible, users should only pay for what they
use. e.g., we dont make all component props reactive by default. This is
because doing so would force the overhead of a reactive prop onto props that dont
need to be reactive.
- **Full-stack performance.** Performance cant be limited to a single metric,
whether thats a DOM rendering benchmark, WASM binary size, or server response
time. Use methods like HTTP streaming and progressive enhancement to enable
applications to load, become interactive, and respond as quickly as possible.
- **Use safe Rust.** Theres no need for `unsafe` Rust in the framework, and
avoiding it at all costs reduces the maintenance and testing burden significantly.
- **Embrace Rust semantics.** Especially in things like UI templating, use Rust
semantics or extend them in a predictable way with control-flow components
rather than overloading the meaning of Rust terms like `if` or `for` in a
framework-specific way.
- **Enhance ergonomics without obfuscating whats happening.** This is by far
the hardest to achieve. Its often the case that adding additional layers to
improve DX (like a custom build tool and starter templates) comes across as
“too magic” to some people who havent had to build the same things manually.
When possible, make it easier to see how the pieces fit together, without
sacrificing the improved DX.
## Processes
We do not have PR templates or formal processes for approving PRs. But there
are a few guidelines that will make it a better experience for everyone:
- Run `cargo fmt` before submitting your code.
- Keep PRs limited to addressing one feature or one issue, in general. In some
cases (e.g., “reduce allocations in the reactive system”) this may touch a number
of different areas, but is still conceptually one thing.
- If its an unsolicited PR not linked to an open issue, please include a
specific explanation for what its trying to achieve. For example: “When I
was trying to deploy my app under _circumstances X_, I found that the way
_function Y_ was implemented caused _issue Z_. This PR should fix that by
_solution._
- Our CI tests every PR against all the existing examples, sometimes requiring
compilation for both server and client side, etc. Its thorough but slow. If
you want to run CI locally to reduce frustration, you can do that by installing
`cargo-make` and using `cargo make check && cargo make test && cargo make
check-examples`.
## Before Submitting a PR
We have a fairly extensive CI setup that runs both lints (like `rustfmt` and `clippy`)
and tests on PRs. You can run most of these locally if you have `cargo-make` installed.
Note that some of the `rustfmt` settings used require usage of the nightly compiler.
Formatting the code using the stable toolchain may result in a wrong code format and
subsequently CI errors.
Run `cargo +nightly fmt` if you want to keep the stable toolchain active.
You may want to let your IDE automatically use the `+nightly` parameter when a
"format on save" action is used.
If you added an example, make sure to add it to the list in `examples/Makefile.toml`.
From the root directory of the repo, run
- `cargo +nightly fmt`
- `cargo +nightly make check`
- `cargo +nightly make test`
- `cargo +nightly make check-examples`
- `cargo +nightly make --profile=github-actions ci`
If you modified an example:
- `cd examples/your_example`
- `cargo +nightly fmt -- --config-path ../..`
- `cargo +nightly make --profile=github-actions verify-flow`
## Architecture
See [ARCHITECTURE.md](./ARCHITECTURE.md).

4356
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,75 +1,46 @@
[workspace]
resolver = "2"
members = [
# utilities
"oco",
"any_spawner",
"const_str_slice_concat",
"either_of",
"next_tuple",
"oco",
"or_poisoned",
# core
"hydration_context",
"leptos",
"leptos_dom",
"leptos_config",
"leptos_hot_reload",
"leptos_macro",
"leptos_reactive",
"leptos_server",
"reactive_graph",
"reactive_stores",
"reactive_stores_macro",
"server_fn",
"server_fn_macro",
"server_fn/server_fn_macro_default",
"tachys",
# integrations
"integrations/actix",
"integrations/axum",
"integrations/viz",
"integrations/utils",
# libraries
"meta",
"router",
"router_macro",
"any_error",
]
exclude = ["benchmarks", "examples", "projects"]
exclude = ["benchmarks", "examples"]
[workspace.package]
version = "0.7.5"
edition = "2021"
rust-version = "1.76"
version = "0.2.5"
[workspace.dependencies]
throw_error = { path = "./any_error/", version = "0.2.0" }
any_spawner = { path = "./any_spawner/", version = "0.2.0" }
const_str_slice_concat = { path = "./const_str_slice_concat", version = "0.1" }
either_of = { path = "./either_of/", version = "0.1.0" }
hydration_context = { path = "./hydration_context", version = "0.2.0" }
leptos = { path = "./leptos", version = "0.7.5" }
leptos_config = { path = "./leptos_config", version = "0.7.5" }
leptos_dom = { path = "./leptos_dom", version = "0.7.5" }
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.7.5" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.7.5" }
leptos_macro = { path = "./leptos_macro", version = "0.7.5" }
leptos_router = { path = "./router", version = "0.7.5" }
leptos_router_macro = { path = "./router_macro", version = "0.7.5" }
leptos_server = { path = "./leptos_server", version = "0.7.5" }
leptos_meta = { path = "./meta", version = "0.7.5" }
next_tuple = { path = "./next_tuple", version = "0.1.0" }
oco_ref = { path = "./oco", version = "0.2.0" }
or_poisoned = { path = "./or_poisoned", version = "0.1.0" }
reactive_graph = { path = "./reactive_graph", version = "0.1.5" }
reactive_stores = { path = "./reactive_stores", version = "0.1.3" }
reactive_stores_macro = { path = "./reactive_stores_macro", version = "0.1.0" }
server_fn = { path = "./server_fn", version = "0.7.5" }
server_fn_macro = { path = "./server_fn_macro", version = "0.7.5" }
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", version = "0.7.5" }
tachys = { path = "./tachys", version = "0.1.5" }
leptos = { path = "./leptos", default-features = false, version = "0.2.5" }
leptos_dom = { path = "./leptos_dom", default-features = false, version = "0.2.5" }
leptos_hot_reload = { path = "./leptos_hot_reload", version = "0.2.5" }
leptos_macro = { path = "./leptos_macro", default-features = false, version = "0.2.5" }
leptos_reactive = { path = "./leptos_reactive", default-features = false, version = "0.2.5" }
leptos_server = { path = "./leptos_server", default-features = false, version = "0.2.5" }
server_fn = { path = "./server_fn", default-features = false, version = "0.2.5" }
server_fn_macro = { path = "./server_fn_macro", default-features = false, version = "0.2.5" }
server_fn_macro_default = { path = "./server_fn/server_fn_macro_default", default-features = false, version = "0.2.5" }
leptos_config = { path = "./leptos_config", default-features = false, version = "0.2.5" }
leptos_router = { path = "./router", version = "0.2.5" }
leptos_meta = { path = "./meta", default-features = false, version = "0.2.5" }
leptos_integration_utils = { path = "./integrations/utils", version = "0.2.5" }
[profile.release]
codegen-units = 1
@@ -78,9 +49,3 @@ opt-level = 'z'
[workspace.metadata.cargo-all-features]
skip_feature_sets = [["csr", "ssr"], ["csr", "hydrate"], ["ssr", "hydrate"]]
[workspace.lints.rust]
unexpected_cfgs = { level = "warn", check-cfg = [
'cfg(leptos_debuginfo)',
'cfg(erase_components)',
] }

View File

@@ -3,37 +3,80 @@
# cargo install --force cargo-make
############
[env]
CARGO_MAKE_EXTEND_WORKSPACE_MAKEFILE = true
[config]
# make tasks run at the workspace root
default_to_workspace = false
[tasks.check]
clear = true
dependencies = [
"check-all",
"check-wasm",
"check-all-release",
"check-wasm-release",
]
[tasks.check-all]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"
[tasks.check-wasm]
clear = true
dependencies = [{ name = "check-wasm", path = "leptos" }]
[tasks.check-all-release]
command = "cargo"
args = ["+nightly", "check-all-features"]
install_crate = "cargo-all-features"
[tasks.check-wasm-release]
clear = true
dependencies = [{ name = "check-wasm-release", path = "leptos" }]
[tasks.check-examples]
clear = true
dependencies = [
{ name = "check", path = "examples/counter" },
{ name = "check", path = "examples/counter_isomorphic" },
{ name = "check", path = "examples/counters" },
{ name = "check", path = "examples/error_boundary" },
{ name = "check", path = "examples/errors_axum" },
{ name = "check", path = "examples/fetch" },
{ name = "check", path = "examples/hackernews" },
{ name = "check", path = "examples/hackernews_axum" },
{ name = "check", path = "examples/login_with_token_csr_only" },
{ name = "check", path = "examples/parent_child" },
{ name = "check", path = "examples/router" },
{ name = "check", path = "examples/session_auth_axum" },
{ name = "check", path = "examples/ssr_modes" },
{ name = "check", path = "examples/ssr_modes_axum" },
{ name = "check", path = "examples/tailwind" },
{ name = "check", path = "examples/tailwind_csr_trunk" },
{ name = "check", path = "examples/todo_app_sqlite" },
{ name = "check", path = "examples/todo_app_sqlite_axum" },
{ name = "check", path = "examples/todo_app_sqlite_viz" },
{ name = "check", path = "examples/todomvc" },
]
[tasks.check-stable]
workspace = false
clear = true
dependencies = [
{ name = "check", path = "examples/counter_without_macros" },
{ name = "check", path = "examples/counters_stable" },
]
[tasks.ci-examples]
workspace = false
cwd = "examples"
command = "cargo"
args = ["make", "ci-clean"]
[tasks.test]
clear = true
dependencies = ["test-all"]
[tasks.check-examples]
workspace = false
cwd = "examples"
[tasks.test-all]
command = "cargo"
args = ["make", "check-clean"]
args = ["+nightly", "test-all-features"]
install_crate = "cargo-all-features"
[tasks.build-examples]
workspace = false
cwd = "examples"
command = "cargo"
args = ["make", "build-clean"]
[env]
RUSTFLAGS=""
[tasks.clean-examples]
workspace = false
cwd = "examples"
command = "cargo"
args = ["make", "clean"]
[env.github-actions]
RUSTFLAGS="-D warnings"

100
README.md
View File

@@ -5,23 +5,18 @@
[![crates.io](https://img.shields.io/crates/v/leptos.svg)](https://crates.io/crates/leptos)
[![docs.rs](https://docs.rs/leptos/badge.svg)](https://docs.rs/leptos)
![Crates.io MSRV](https://img.shields.io/crates/msrv/leptos)
[![Discord](https://img.shields.io/discord/1031524867910148188?color=%237289DA&label=discord)](https://discord.gg/YdRAhS7eQB)
[![Matrix](https://img.shields.io/badge/Matrix-leptos-grey?logo=matrix&labelColor=white&logoColor=black)](https://matrix.to/#/#leptos:matrix.org)
[Website](https://leptos.dev) | [Book](https://leptos-rs.github.io/leptos/) | [Docs.rs](https://docs.rs/leptos/latest/leptos/) | [Playground](https://codesandbox.io/p/sandbox/leptos-rtfggt?file=%2Fsrc%2Fmain.rs%3A1%2C1) | [Discord](https://discord.gg/YdRAhS7eQB)
You can find a list of useful libraries and example projects at [`awesome-leptos`](https://github.com/leptos-rs/awesome-leptos).
# Leptos
```rust
use leptos::*;
#[component]
pub fn SimpleCounter(initial_value: i32) -> impl IntoView {
pub fn SimpleCounter(cx: Scope, initial_value: i32) -> impl IntoView {
// create a reactive signal with the initial value
let (value, set_value) = create_signal(initial_value);
let (value, set_value) = create_signal(cx, initial_value);
// create event handlers for our buttons
// note that `value` and `set_value` are `Copy`, so it's super easy to move them into closures
@@ -30,42 +25,21 @@ pub fn SimpleCounter(initial_value: i32) -> impl IntoView {
let increment = move |_| set_value.update(|value| *value += 1);
// create user interfaces with the declarative `view!` macro
view! {
view! { cx,
<div>
<button on:click=clear>Clear</button>
<button on:click=decrement>-1</button>
// text nodes can be quoted or unquoted
<button on:click=clear>"Clear"</button>
<button on:click=decrement>"-1"</button>
<span>"Value: " {value} "!"</span>
<button on:click=increment>+1</button>
<button on:click=increment>"+1"</button>
</div>
}
}
// we also support a builder syntax rather than the JSX-like `view` macro
#[component]
pub fn SimpleCounterWithBuilder(initial_value: i32) -> impl IntoView {
use leptos::html::*;
let (value, set_value) = create_signal(initial_value);
let clear = move |_| set_value(0);
let decrement = move |_| set_value.update(|value| *value -= 1);
let increment = move |_| set_value.update(|value| *value += 1);
// the `view` macro above expands to this builder syntax
div().child((
button().on(ev::click, clear).child("Clear"),
button().on(ev::click, decrement).child("-1"),
span().child(("Value: ", value, "!")),
button().on(ev::click, increment).child("+1")
))
}
// Easy to use with Trunk (trunkrs.dev) or with a simple wasm-bindgen setup
pub fn main() {
mount_to_body(|| view! {
<SimpleCounter initial_value=3 />
})
mount_to_body(|cx| view! { cx, <SimpleCounter initial_value=3 /> })
}
```
## About the Framework
@@ -92,7 +66,7 @@ Here are some resources for learning more about Leptos:
## `nightly` Note
Most of the examples assume youre using `nightly` version of Rust and the `nightly` feature of Leptos. To use `nightly` Rust, you can either set your toolchain globally or on per-project basis.
Most of the examples assume youre using `nightly` version of Rust. For this, you can either set your toolchain globally or on per-project basis.
To set `nightly` as a default toolchain for all projects (and add the ability to compile Rust to WebAssembly, if you havent already):
@@ -110,7 +84,13 @@ channel = "nightly"
targets = ["wasm32-unknown-unknown"]
```
The `nightly` feature enables the function call syntax for accessing and setting signals, as opposed to `.get()` and `.set()`. This leads to a consistent mental model in which accessing a reactive value of any kind (a signal, memo, or derived signal) is always represented as a function call. This is only possible with nightly Rust and the `nightly` feature.
If youre on `stable`, note the following:
1. You need to enable the `"stable"` flag in `Cargo.toml`: `leptos = { version = "0.2", features = ["stable"] }`
2. `nightly` enables the function call syntax for accessing and setting signals. If youre using `stable`,
youll just call `.get()`, `.set()`, or `.update()` manually. Check out the
[`counters_stable` example](https://github.com/leptos-rs/leptos/blob/main/examples/counters_stable/src/main.rs)
for examples of the correct API.
## `cargo-leptos`
@@ -129,7 +109,7 @@ Open browser to [http://localhost:3000/](http://localhost:3000/).
### Whats up with the name?
_Leptos_ (λεπτός) is an ancient Greek word meaning “thin, light, refined, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
_Leptos_ (λεπτός) is an ancient Greek word meaning “thin, light, refine, fine-grained.” To me, a classicist and not a dog owner, it evokes the lightweight reactive system that powers the framework. I've since learned the same word is at the root of the medical term “leptospirosis,” a blood infection that affects humans and animals... My bad. No dogs were harmed in the creation of this framework.
### Is it production ready?
@@ -137,7 +117,7 @@ People usually mean one of three things by this question.
1. **Are the APIs stable?** i.e., will I have to rewrite my whole app from Leptos 0.1 to 0.2 to 0.3 to 0.4, or can I write it now and benefit from new features and updates as new versions come?
The APIs are basically settled. Were adding new features, but were very happy with where the type system and patterns have landed. I would not expect major breaking changes to your code to adapt to future releases, in terms of architecture.
The APIs are basically settled. Were adding new features, but were very happy with where the type system and patterns have landed. I would not expect major breaking changes to your code to adapt to future releases. The sorts of breaking changes that we discuss are things like “Oh yeah, that function should probably take `cx` as its argument...” not major changes to the way you write your application.
2. **Are there bugs?**
@@ -151,34 +131,44 @@ There are several people in the community using Leptos right now for internal ap
### Can I use this for native GUI?
Sure! Obviously the `view` macro is for generating DOM nodes but you can use the reactive system to drive any native GUI toolkit that uses the same kind of object-oriented, event-callback-based framework as the DOM pretty easily. The principles are the same:
Sure! Obviously the `view` macro is for generating DOM nodes but you can use the reactive system to drive native any GUI toolkit that uses the same kind of object-oriented, event-callback-based framework as the DOM pretty easily. The principles are the same:
- Use signals, derived signals, and memos to create your reactive system
- Create GUI widgets
- Use event listeners to update signals
- Create effects to update the UI
The 0.7 update originally set out to create a "generic rendering" approach that would allow us to reuse most of the same view logic to do all of the above. Unfortunately, this has had to be shelved for now due to difficulties encountered by the Rust compiler when building larger-scale applications with the number of generics spread throughout the codebase that this required. It's an approach I'm looking forward to exploring again in the future; feel free to reach out if you're interested in this kind of work.
I've put together a [very simple GTK example](https://github.com/leptos-rs/leptos/blob/main/examples/gtk/src/main.rs) so you can see what I mean.
### How is this different from Yew?
### How is this different from Yew/Dioxus?
Yew is the most-used library for Rust web UI development, but there are several differences between Yew and Leptos, in philosophy, approach, and performance.
On the surface level, these libraries may seem similar. Yew is, of course, the most mature Rust library for web UI development and has a huge ecosystem. Dioxus is similar in many ways, being heavily inspired by React. Here are some conceptual differences between Leptos and these frameworks:
- **VDOM vs. fine-grained:** Yew is built on the virtual DOM (VDOM) model: state changes cause components to re-render, generating a new virtual DOM tree. Yew diffs this against the previous VDOM, and applies those patches to the actual DOM. Component functions rerun whenever state changes. Leptos takes an entirely different approach. Components run once, creating (and returning) actual DOM nodes and setting up a reactive system to update those DOM nodes.
- **Performance:** This has huge performance implications: Leptos is simply much faster at both creating and updating the UI than Yew is.
- **Server integration:** Yew was created in an era in which browser-rendered single-page apps (SPAs) were the dominant paradigm. While Leptos supports client-side rendering, it also focuses on integrating with the server side of your application via server functions and multiple modes of serving HTML, including out-of-order streaming.
### How is this different from Dioxus?
Like Leptos, Dioxus is a framework for building UIs using web technologies. However, there are significant differences in approach and features.
- **VDOM vs. fine-grained:** While Dioxus has a performant virtual DOM (VDOM), it still uses coarse-grained/component-scoped reactivity: changing a stateful value reruns the component function and diffs the old UI against the new one. Leptos components use a different mental model, creating (and returning) actual DOM nodes and setting up a reactive system to update those DOM nodes.
- **Web vs. desktop priorities:** Dioxus uses Leptos server functions in its fullstack mode, but does not have the same `<Suspense>`-based support for things like streaming HTML rendering, or share the same focus on holistic web performance. Leptos tends to prioritize holistic web performance (streaming HTML rendering, smaller WASM binary sizes, etc.), whereas Dioxus has an unparalleled experience when building desktop apps, because your application logic runs as a native Rust binary.
- **Performance:** This has huge performance implications: Leptos is simply much faster at both creating and updating the UI than Yew is. (Dioxus has made huge advances in performance with its recent 0.3 release, and is now roughly on par with Leptos.)
- **Mental model:** Adopting fine-grained reactivity also tends to simplify the mental model. There are no surprising component re-renders because there are no re-renders. You can call functions, create timeouts, etc. within the body of your component functions because they wont be re-run. You dont need to think about manual dependency tracking for effects; fine-grained reactivity tracks dependencies automatically.
### How is this different from Sycamore?
Sycamore and Leptos are both heavily influenced by SolidJS. At this point, Leptos has a larger community and ecosystem and is more actively developed. Other differences:
Conceptually, these two frameworks are very similar: because both are built on fine-grained reactivity, most apps will end up looking very similar between the two, and Sycamore or Leptos apps will both look a lot like SolidJS apps, in the same way that Yew or Dioxus can look a lot like React.
- **Templating DSLs:** Sycamore uses a custom templating language for its views, while Leptos uses a JSX-like template format.
- **`'static` signals:** One of Leptoss main innovations was the creation of `Copy + 'static` signals, which have excellent ergonomics. Sycamore is in the process of adopting the same pattern, but this is not yet released.
- **Perseus vs. server functions:** The Perseus metaframework provides an opinionated way to build Sycamore apps that include server functionality. Leptos instead provides primitives like server functions in the core of the framework.
There are some practical differences that make a significant difference:
- **Templating:** Leptos uses a JSX-like template format (built on [syn-rsx](https://github.com/stoically/syn-rsx)) for its `view` macro. Sycamore offers the choice of its own templating DSL or a builder syntax.
- **Server integration:** Leptos provides primitives that encourage HTML streaming and allow for easy async integration and RPC calls, even without WASM enabled, making it easy to opt into integrations between your frontend and backend code without pushing you toward any particular metaframework patterns.
- **Read-write segregation:** Leptos, like Solid, encourages read-write segregation between signal getters and setters, so you end up accessing signals with tuples like `let (count, set_count) = create_signal(cx, 0);` _(If you prefer or if it's more convenient for your API, you can use [`create_rw_signal`](https://docs.rs/leptos/latest/leptos/fn.create_rw_signal.html) to give a unified read/write signal.)_
- **Signals are functions:** In Leptos, you can call a signal to access it rather than calling a specific method (so, `count()` instead of `count.get()`) This creates a more consistent mental model: accessing a reactive value is always a matter of calling a function. For example:
```rust
let (count, set_count) = create_signal(cx, 0); // a signal
let double_count = move || count() * 2; // a derived signal
let memoized_count = create_memo(cx, move |_| count() * 3); // a memo
// all are accessed by calling them
assert_eq!(count(), 0);
assert_eq!(double_count(), 0);
assert_eq!(memoized_count(), 0);
// this function can accept any of those signals
fn do_work_on_signal(my_signal: impl Fn() -> i32) { ... }
```
- **Signals and scopes are `'static`:** Both Leptos and Sycamore ease the pain of moving signals in closures (in particular, event listeners) by making them `Copy`, to avoid the `{ let count = count.clone(); move |_| ... }` that's very familiar in Rust UI code. Sycamore does this by using bump allocation to tie the lifetimes of its signals to its scopes: since references are `Copy`, `&'a Signal<T>` can be moved into a closure. Leptos does this by using arena allocation and passing around indices: types like `ReadSignal<T>`, `WriteSignal<T>`, and `Memo<T>` are actually wrappers for indices into an arena. This means that both scopes and signals are both `Copy` and `'static` in Leptos, which means that they can be moved easily into closures without adding lifetime complexity.

View File

@@ -1,13 +0,0 @@
# Security Policy
## Reporting a Vulnerability
To report a suspected security issue, please contact security@leptos.dev rather than opening
a public issue.
## Supported Versions
The most-recently-released version of the library is supported with security updates.
For example, if a security issue is discovered that affects 0.3.2 and all later releases,
a 0.4.x patch will be released but a new 0.3.x patch release will not be made. You should
plan to update to the latest version to receive any new features or bugfixes of any kind.

40
TODO.md
View File

@@ -1,40 +0,0 @@
- core examples
- [x] counter
- [x] counters
- [x] fetch
- [x] todomvc
- [x] error_boundary
- [x] parent\_child
- [x] on: on components
- [ ] router
- [ ] slots
- [ ] hackernews
- [ ] counter\_isomorphic
- [ ] todo\_app\_sqlite
- other ssr examples
- [ ] error boundary SSR
- reactivity
- Signal wrappers
- SignalDispose implementations on all Copy types
- untracked access warnings
- ErrorBoundary
- [ ] RenderHtml implementation
- [ ] Separate component?
- Suspense/Transition components?
- callbacks
- unsync StoredValue
- SSR
- escaping HTML correctly (attributes + text nodes)
- router
- nested routes
- trailing slashes
- \_meta package (and use in hackernews)
- integrations
- update tests
- hackernews example
- TODOs
- Suspense/Transition/Await components
- nicer routing components
- async routing (waiting for data to load before navigation)
- `<A>` component
- figure out rebuilding issues: list (needs new signal IDs) vs. regular rebuild

View File

@@ -1,13 +0,0 @@
[package]
name = "throw_error"
version = "0.2.0"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Utilities for wrapping, throwing, and catching errors."
rust-version.workspace = true
edition.workspace = true
[dependencies]
pin-project-lite = "0.2.15"

View File

@@ -1 +0,0 @@
extend = { path = "../cargo-make/main.toml" }

View File

@@ -1,2 +0,0 @@
A utility library for wrapping arbitrary errors, and for “throwing” errors in a way
that can be caught by user-defined error hooks.

View File

@@ -1,165 +0,0 @@
#![forbid(unsafe_code)]
#![deny(missing_docs)]
//! A utility library for wrapping arbitrary errors, and for “throwing” errors in a way
//! that can be caught by user-defined error hooks.
use std::{
cell::RefCell,
error,
fmt::{self, Display},
future::Future,
mem, ops,
pin::Pin,
sync::Arc,
task::{Context, Poll},
};
/* Wrapper Types */
/// This is a result type into which any error can be converted.
///
/// Results are stored as [`Error`].
pub type Result<T, E = Error> = core::result::Result<T, E>;
/// A generic wrapper for any error.
#[derive(Debug, Clone)]
#[repr(transparent)]
pub struct Error(Arc<dyn error::Error + Send + Sync>);
impl Error {
/// Converts the wrapper into the inner reference-counted error.
pub fn into_inner(self) -> Arc<dyn error::Error + Send + Sync> {
Arc::clone(&self.0)
}
}
impl ops::Deref for Error {
type Target = Arc<dyn error::Error + Send + Sync>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> From<T> for Error
where
T: error::Error + Send + Sync + 'static,
{
fn from(value: T) -> Self {
Error(Arc::new(value))
}
}
/// Implements behavior that allows for global or scoped error handling.
///
/// This allows for both "throwing" errors to register them, and "clearing" errors when they are no
/// longer valid. This is useful for something like a user interface, in which an error can be
/// "thrown" on some invalid user input, and later "cleared" if the user corrects the input.
/// Keeping a unique identifier for each error allows the UI to be updated accordingly.
pub trait ErrorHook: Send + Sync {
/// Handles the given error, returning a unique identifier.
fn throw(&self, error: Error) -> ErrorId;
/// Clears the error associated with the given identifier.
fn clear(&self, id: &ErrorId);
}
/// A unique identifier for an error. This is returned when you call [`throw`], which calls a
/// global error handler.
#[derive(Debug, PartialEq, Eq, Hash, Clone, Default)]
pub struct ErrorId(usize);
impl Display for ErrorId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(&self.0, f)
}
}
impl From<usize> for ErrorId {
fn from(value: usize) -> Self {
Self(value)
}
}
thread_local! {
static ERROR_HOOK: RefCell<Option<Arc<dyn ErrorHook>>> = RefCell::new(None);
}
/// Resets the error hook to its previous state when dropped.
pub struct ResetErrorHookOnDrop(Option<Arc<dyn ErrorHook>>);
impl Drop for ResetErrorHookOnDrop {
fn drop(&mut self) {
ERROR_HOOK.with_borrow_mut(|this| *this = self.0.take())
}
}
/// Returns the current error hook.
pub fn get_error_hook() -> Option<Arc<dyn ErrorHook>> {
ERROR_HOOK.with_borrow(Clone::clone)
}
/// Sets the current thread-local error hook, which will be invoked when [`throw`] is called.
pub fn set_error_hook(hook: Arc<dyn ErrorHook>) -> ResetErrorHookOnDrop {
ResetErrorHookOnDrop(
ERROR_HOOK.with_borrow_mut(|this| mem::replace(this, Some(hook))),
)
}
/// Invokes the error hook set by [`set_error_hook`] with the given error.
pub fn throw(error: impl Into<Error>) -> ErrorId {
ERROR_HOOK
.with_borrow(|hook| hook.as_ref().map(|hook| hook.throw(error.into())))
.unwrap_or_default()
}
/// Clears the given error from the current error hook.
pub fn clear(id: &ErrorId) {
ERROR_HOOK
.with_borrow(|hook| hook.as_ref().map(|hook| hook.clear(id)))
.unwrap_or_default()
}
pin_project_lite::pin_project! {
/// A [`Future`] that reads the error hook that is set when it is created, and sets this as the
/// current error hook whenever it is polled.
pub struct ErrorHookFuture<Fut> {
hook: Option<Arc<dyn ErrorHook>>,
#[pin]
inner: Fut
}
}
impl<Fut> ErrorHookFuture<Fut> {
/// Reads the current hook and wraps the given [`Future`], returning a new `Future` that will
/// set the error hook whenever it is polled.
pub fn new(inner: Fut) -> Self {
Self {
hook: ERROR_HOOK.with_borrow(Clone::clone),
inner,
}
}
}
impl<Fut> Future for ErrorHookFuture<Fut>
where
Fut: Future,
{
type Output = Fut::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let _hook = this
.hook
.as_ref()
.map(|hook| set_error_hook(Arc::clone(hook)));
this.inner.poll(cx)
}
}

View File

@@ -1,36 +0,0 @@
[package]
name = "any_spawner"
version = "0.2.1"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Spawn asynchronous tasks in an executor-independent way."
edition.workspace = true
[dependencies]
async-executor = { version = "1.13.1", optional = true }
futures = "0.3.31"
glib = { version = "0.20.6", optional = true }
thiserror = "2.0"
tokio = { version = "1.41", optional = true, default-features = false, features = [
"rt",
] }
tracing = { version = "0.1.41", optional = true }
wasm-bindgen-futures = { version = "0.4.47", optional = true }
[features]
async-executor = ["dep:async-executor"]
tracing = ["dep:tracing"]
tokio = ["dep:tokio"]
glib = ["dep:glib"]
wasm-bindgen = ["dep:wasm-bindgen-futures"]
futures-executor = ["futures/thread-pool", "futures/executor"]
[package.metadata.docs.rs]
all-features = true
rustdoc-args = ["--cfg", "docsrs"]
[package.metadata.cargo-all-features]
denylist = ["tracing"]

View File

@@ -1 +0,0 @@
extend = { path = "../cargo-make/main.toml" }

View File

@@ -1,26 +0,0 @@
This crate makes it easier to write asynchronous code that is executor-agnostic, by providing a
utility that can be used to spawn tasks in a variety of executors.
It only supports single executor per program, but that executor can be set at runtime, anywhere
in your crate (or an application that depends on it).
This can be extended to support any executor or runtime that supports spawning [`Future`]s.
This is a least common denominator implementation in many ways. Limitations include:
- setting an executor is a one-time, global action
- no "join handle" or other result is returned from the spawn
- the `Future` must output `()`
```rust
use any_spawner::Executor;
Executor::init_futures_executor()
.expect("executor should only be initialized once");
// spawn a thread-safe Future
Executor::spawn(async { /* ... */ });
// spawn a Future that is !Send
Executor::spawn_local(async { /* ... */ });
```

View File

@@ -1,361 +0,0 @@
//! This crate makes it easier to write asynchronous code that is executor-agnostic, by providing a
//! utility that can be used to spawn tasks in a variety of executors.
//!
//! It only supports single executor per program, but that executor can be set at runtime, anywhere
//! in your crate (or an application that depends on it).
//!
//! This can be extended to support any executor or runtime that supports spawning [`Future`]s.
//!
//! This is a least common denominator implementation in many ways. Limitations include:
//! - setting an executor is a one-time, global action
//! - no "join handle" or other result is returned from the spawn
//! - the `Future` must output `()`
//!
//! ```rust
//! use any_spawner::Executor;
//!
//! // make sure an Executor has been initialized with one of the init_ functions
//!
//! # if false {
//! // spawn a thread-safe Future
//! Executor::spawn(async { /* ... */ });
//!
//! // spawn a Future that is !Send
//! Executor::spawn_local(async { /* ... */ });
//! # }
//! ```
#![forbid(unsafe_code)]
#![deny(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg))]
use std::{future::Future, pin::Pin, sync::OnceLock};
use thiserror::Error;
/// A future that has been pinned.
pub type PinnedFuture<T> = Pin<Box<dyn Future<Output = T> + Send>>;
/// A future that has been pinned.
pub type PinnedLocalFuture<T> = Pin<Box<dyn Future<Output = T>>>;
static SPAWN: OnceLock<fn(PinnedFuture<()>)> = OnceLock::new();
static SPAWN_LOCAL: OnceLock<fn(PinnedLocalFuture<()>)> = OnceLock::new();
static POLL_LOCAL: OnceLock<fn()> = OnceLock::new();
/// Errors that can occur when using the executor.
#[derive(Error, Debug)]
pub enum ExecutorError {
/// The executor has already been set.
#[error("Executor has already been set.")]
AlreadySet,
}
/// A global async executor that can spawn tasks.
pub struct Executor;
impl Executor {
/// Spawns a thread-safe [`Future`].
/// ```rust
/// use any_spawner::Executor;
/// # if false {
/// // spawn a thread-safe Future
/// Executor::spawn(async { /* ... */ });
/// # }
/// ```
#[track_caller]
pub fn spawn(fut: impl Future<Output = ()> + Send + 'static) {
if let Some(spawner) = SPAWN.get() {
spawner(Box::pin(fut))
} else {
#[cfg(all(debug_assertions, feature = "tracing"))]
tracing::error!(
"At {}, tried to spawn a Future with Executor::spawn() before \
the Executor had been set.",
std::panic::Location::caller()
);
#[cfg(all(debug_assertions, not(feature = "tracing")))]
panic!(
"At {}, tried to spawn a Future with Executor::spawn() before \
the Executor had been set.",
std::panic::Location::caller()
);
}
}
/// Spawns a [`Future`] that cannot be sent across threads.
/// ```rust
/// use any_spawner::Executor;
///
/// # if false {
/// // spawn a thread-safe Future
/// Executor::spawn_local(async { /* ... */ });
/// # }
/// ```
#[track_caller]
pub fn spawn_local(fut: impl Future<Output = ()> + 'static) {
if let Some(spawner) = SPAWN_LOCAL.get() {
spawner(Box::pin(fut))
} else {
#[cfg(all(debug_assertions, feature = "tracing"))]
tracing::error!(
"At {}, tried to spawn a Future with Executor::spawn_local() \
before the Executor had been set.",
std::panic::Location::caller()
);
#[cfg(all(debug_assertions, not(feature = "tracing")))]
panic!(
"At {}, tried to spawn a Future with Executor::spawn_local() \
before the Executor had been set.",
std::panic::Location::caller()
);
}
}
/// Waits until the next "tick" of the current async executor.
pub async fn tick() {
let (tx, rx) = futures::channel::oneshot::channel();
Executor::spawn(async move {
_ = tx.send(());
});
_ = rx.await;
}
/// Polls the current async executor.
/// Not all async executors support polling, so this function may not do anything.
pub fn poll_local() {
if let Some(poller) = POLL_LOCAL.get() {
poller()
}
}
}
impl Executor {
/// Globally sets the [`tokio`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if an executor has already been set.
///
/// Requires the `tokio` feature to be activated on this crate.
#[cfg(feature = "tokio")]
#[cfg_attr(docsrs, doc(cfg(feature = "tokio")))]
pub fn init_tokio() -> Result<(), ExecutorError> {
SPAWN
.set(|fut| {
tokio::spawn(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
tokio::task::spawn_local(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Globally sets the [`wasm-bindgen-futures`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if an executor has already been set.
///
/// Requires the `wasm-bindgen` feature to be activated on this crate.
#[cfg(feature = "wasm-bindgen")]
#[cfg_attr(docsrs, doc(cfg(feature = "wasm-bindgen")))]
pub fn init_wasm_bindgen() -> Result<(), ExecutorError> {
SPAWN
.set(|fut| {
wasm_bindgen_futures::spawn_local(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
wasm_bindgen_futures::spawn_local(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Globally sets the [`glib`] runtime as the executor used to spawn tasks.
///
/// Returns `Err(_)` if an executor has already been set.
///
/// Requires the `glib` feature to be activated on this crate.
#[cfg(feature = "glib")]
#[cfg_attr(docsrs, doc(cfg(feature = "glib")))]
pub fn init_glib() -> Result<(), ExecutorError> {
SPAWN
.set(|fut| {
let main_context = glib::MainContext::default();
main_context.spawn(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
let main_context = glib::MainContext::default();
main_context.spawn_local(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Globally sets the [`futures`] executor as the executor used to spawn tasks,
/// lazily creating a thread pool to spawn tasks into.
///
/// Returns `Err(_)` if an executor has already been set.
///
/// Requires the `futures-executor` feature to be activated on this crate.
#[cfg(feature = "futures-executor")]
#[cfg_attr(docsrs, doc(cfg(feature = "futures-executor")))]
pub fn init_futures_executor() -> Result<(), ExecutorError> {
use futures::{
executor::{LocalPool, LocalSpawner, ThreadPool},
task::{LocalSpawnExt, SpawnExt},
};
use std::cell::RefCell;
static THREAD_POOL: OnceLock<ThreadPool> = OnceLock::new();
thread_local! {
static LOCAL_POOL: RefCell<LocalPool> = RefCell::new(LocalPool::new());
static SPAWNER: LocalSpawner = LOCAL_POOL.with(|pool| pool.borrow().spawner());
}
fn get_thread_pool() -> &'static ThreadPool {
THREAD_POOL.get_or_init(|| {
ThreadPool::new()
.expect("could not create futures executor ThreadPool")
})
}
SPAWN
.set(|fut| {
get_thread_pool()
.spawn(fut)
.expect("failed to spawn future");
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
SPAWNER.with(|spawner| {
spawner.spawn_local(fut).expect("failed to spawn future");
});
})
.map_err(|_| ExecutorError::AlreadySet)?;
POLL_LOCAL
.set(|| {
LOCAL_POOL.with(|pool| {
if let Ok(mut pool) = pool.try_borrow_mut() {
pool.run_until_stalled();
}
// If we couldn't borrow_mut, we're in a nested call to poll, so we don't need to do anything.
});
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Globally sets the [`async_executor`] executor as the executor used to spawn tasks,
/// lazily creating a thread pool to spawn tasks into.
///
/// Returns `Err(_)` if an executor has already been set.
///
/// Requires the `async-executor` feature to be activated on this crate.
#[cfg(feature = "async-executor")]
#[cfg_attr(docsrs, doc(cfg(feature = "async-executor")))]
pub fn init_async_executor() -> Result<(), ExecutorError> {
use async_executor::{Executor, LocalExecutor};
static THREAD_POOL: OnceLock<Executor> = OnceLock::new();
thread_local! {
static LOCAL_POOL: LocalExecutor<'static> = const { LocalExecutor::new() };
}
fn get_thread_pool() -> &'static Executor<'static> {
THREAD_POOL.get_or_init(Executor::new)
}
SPAWN
.set(|fut| {
get_thread_pool().spawn(fut).detach();
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
LOCAL_POOL.with(|pool| pool.spawn(fut).detach());
})
.map_err(|_| ExecutorError::AlreadySet)?;
POLL_LOCAL
.set(|| {
LOCAL_POOL.with(|pool| pool.try_tick());
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Globally sets a custom executor as the executor used to spawn tasks.
///
/// Returns `Err(_)` if an executor has already been set.
pub fn init_custom_executor(
custom_executor: impl CustomExecutor + Send + Sync + 'static,
) -> Result<(), ExecutorError> {
static EXECUTOR: OnceLock<Box<dyn CustomExecutor + Send + Sync>> =
OnceLock::new();
EXECUTOR
.set(Box::new(custom_executor))
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN
.set(|fut| {
EXECUTOR.get().unwrap().spawn(fut);
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| EXECUTOR.get().unwrap().spawn_local(fut))
.map_err(|_| ExecutorError::AlreadySet)?;
POLL_LOCAL
.set(|| EXECUTOR.get().unwrap().poll_local())
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
/// Locally sets a custom executor as the executor used to spawn tasks
/// in the current thread.
///
/// Returns `Err(_)` if an executor has already been set.
pub fn init_local_custom_executor(
custom_executor: impl CustomExecutor + 'static,
) -> Result<(), ExecutorError> {
thread_local! {
static EXECUTOR: OnceLock<Box<dyn CustomExecutor>> = OnceLock::new();
}
EXECUTOR.with(|this| {
this.set(Box::new(custom_executor))
.map_err(|_| ExecutorError::AlreadySet)
})?;
SPAWN
.set(|fut| {
EXECUTOR.with(|this| this.get().unwrap().spawn(fut));
})
.map_err(|_| ExecutorError::AlreadySet)?;
SPAWN_LOCAL
.set(|fut| {
EXECUTOR.with(|this| this.get().unwrap().spawn_local(fut));
})
.map_err(|_| ExecutorError::AlreadySet)?;
POLL_LOCAL
.set(|| {
EXECUTOR.with(|this| this.get().unwrap().poll_local());
})
.map_err(|_| ExecutorError::AlreadySet)?;
Ok(())
}
}
/// A trait for custom executors.
/// Custom executors can be used to integrate with any executor that supports spawning futures.
///
/// All methods can be called recursively.
pub trait CustomExecutor {
/// Spawns a future, usually on a thread pool.
fn spawn(&self, fut: PinnedFuture<()>);
/// Spawns a local future. May require calling `poll_local` to make progress.
fn spawn_local(&self, fut: PinnedLocalFuture<()>);
/// Polls the executor, if it supports polling.
fn poll_local(&self);
}

View File

@@ -1,55 +0,0 @@
#[cfg(feature = "futures-executor")]
use any_spawner::{CustomExecutor, Executor, PinnedFuture, PinnedLocalFuture};
#[cfg(feature = "futures-executor")]
#[test]
fn can_create_custom_executor() {
use futures::{
executor::{LocalPool, LocalSpawner},
task::LocalSpawnExt,
};
use std::{
cell::RefCell,
sync::{
atomic::{AtomicUsize, Ordering},
Arc,
},
};
thread_local! {
static LOCAL_POOL: RefCell<LocalPool> = RefCell::new(LocalPool::new());
static SPAWNER: LocalSpawner = LOCAL_POOL.with(|pool| pool.borrow().spawner());
}
struct CustomFutureExecutor;
impl CustomExecutor for CustomFutureExecutor {
fn spawn(&self, _fut: PinnedFuture<()>) {
panic!("not supported in this test");
}
fn spawn_local(&self, fut: PinnedLocalFuture<()>) {
SPAWNER.with(|spawner| {
spawner.spawn_local(fut).expect("failed to spawn future");
});
}
fn poll_local(&self) {
LOCAL_POOL.with(|pool| {
if let Ok(mut pool) = pool.try_borrow_mut() {
pool.run_until_stalled();
}
// If we couldn't borrow_mut, we're in a nested call to poll, so we don't need to do anything.
});
}
}
Executor::init_custom_executor(CustomFutureExecutor)
.expect("couldn't set executor");
let counter = Arc::new(AtomicUsize::new(0));
let counter_clone = Arc::clone(&counter);
Executor::spawn_local(async move {
counter_clone.store(1, Ordering::Release);
});
Executor::poll_local();
assert_eq!(counter.load(Ordering::Acquire), 1);
}

View File

@@ -1,38 +0,0 @@
#[cfg(feature = "futures-executor")]
use any_spawner::Executor;
// All tests in this file use the same executor.
#[cfg(feature = "futures-executor")]
#[test]
fn can_spawn_local_future() {
use std::rc::Rc;
let _ = Executor::init_futures_executor();
let rc = Rc::new(());
Executor::spawn_local(async {
_ = rc;
});
Executor::spawn(async {});
}
#[cfg(feature = "futures-executor")]
#[test]
fn can_make_local_progress() {
use std::sync::{
atomic::{AtomicUsize, Ordering},
Arc,
};
let _ = Executor::init_futures_executor();
let counter = Arc::new(AtomicUsize::new(0));
Executor::spawn_local({
let counter = Arc::clone(&counter);
async move {
assert_eq!(counter.fetch_add(1, Ordering::AcqRel), 0);
Executor::spawn_local(async {
// Should not crash
});
}
});
Executor::poll_local();
assert_eq!(counter.load(Ordering::Acquire), 1);
}

View File

@@ -2,36 +2,26 @@
name = "benchmarks"
version = "0.1.0"
edition = "2021"
# std::sync::LazyLock is stabilized in Rust version 1.80.0
rust-version = "1.80.0"
[dependencies]
l0410 = { package = "leptos", version = "0.4.10", features = [
"nightly",
"ssr",
] }
leptos = { path = "../leptos", features = ["ssr", "nightly"] }
leptos_reactive = { path = "../leptos_reactive", features = ["ssr", "nightly"] }
tachydom = { git = "https://github.com/gbj/tachys", features = [
"nightly",
"leptos",
] }
tachy_maccy = { git = "https://github.com/gbj/tachys", features = ["nightly"] }
sycamore = { version = "0.8.0", features = ["ssr"] }
yew = { version = "0.20.0", features = ["ssr"] }
tokio-test = "0.4.0"
miniserde = "0.1.0"
gloo = "0.8.0"
uuid = { version = "1.0", features = ["serde", "v4", "wasm-bindgen"] }
wasm-bindgen = "0.2.0"
lazy_static = "1.0"
log = "0.4.0"
strum = "0.24.0"
strum_macros = "0.24.0"
serde = { version = "1.0", features = ["derive", "rc"] }
serde_json = "1.0"
tera = "1.0"
l021 = { package = "leptos", version = "0.2.1" }
leptos = { path = "../leptos", default-features = false, features = ["ssr"] }
sycamore = { version = "0.8", features = ["ssr"] }
yew = { git = "https://github.com/yewstack/yew", features = ["ssr"] }
tokio-test = "0.4"
miniserde = "0.1"
gloo = "0.8"
uuid = { version = "1", features = ["serde", "v4", "wasm-bindgen"] }
wasm-bindgen = "0.2"
lazy_static = "1"
log = "0.4"
strum = "0.24"
strum_macros = "0.24"
serde = { version = "1", features = ["derive", "rc"] }
serde_json = "1"
tera = "1"
reactive-signals = "0.1.0-alpha.4"
[dependencies.web-sys]
version = "0.3.0"
version = "0.3"
features = ["Window", "Document", "HtmlElement", "HtmlInputElement"]

View File

@@ -2,6 +2,6 @@
extern crate test;
mod reactive;
mod ssr;
//åmod reactive;
//mod ssr;
mod todomvc;

View File

@@ -6,122 +6,13 @@ fn leptos_deep_creation(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let signal = create_rw_signal(0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
let prev = memos.last().copied();
if let Some(prev) = prev {
memos.push(create_memo(move |_| prev.get() + 1));
} else {
memos.push(create_memo(move |_| signal.get() + 1));
}
}
});
runtime.dispose();
}
#[bench]
fn leptos_deep_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let signal = create_rw_signal(0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(move |_| prev.get() + 1));
} else {
memos.push(create_memo(move |_| signal.get() + 1));
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_down(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let sigs = (0..1000).map(|n| create_signal(n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo =
create_memo(move |_| reads.iter().map(|r| r.get()).sum::<i32>());
assert_eq!(memo(), 499500);
});
runtime.dispose();
}
#[bench]
fn leptos_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let sig = create_rw_signal(0);
let memos = (0..1000)
.map(|_| create_memo(move |_| sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let sigs = (0..1000).map(|n| create_signal(n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo =
create_memo(move |_| reads.iter().map(|r| r.get()).sum::<i32>());
assert_eq!(memo(), 499500);
create_isomorphic_effect({
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
writes[1].update(|n| *n += 1);
writes[10].update(|n| *n += 1);
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo(), 499503);
});
runtime.dispose();
}
#[bench]
fn l0410_deep_creation(b: &mut Bencher) {
use l0410::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
let prev = memos.last().copied();
if let Some(prev) = prev {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
@@ -135,8 +26,8 @@ fn l0410_deep_creation(b: &mut Bencher) {
}
#[bench]
fn l0410_deep_update(b: &mut Bencher) {
use l0410::*;
fn leptos_deep_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
@@ -160,8 +51,238 @@ fn l0410_deep_update(b: &mut Bencher) {
}
#[bench]
fn l0410_narrowing_down(b: &mut Bencher) {
use l0410::*;
fn leptos_narrowing_down(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let sigs =
(0..1000).map(|n| create_signal(cx, n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo(), 499500);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let sig = create_rw_signal(cx, 0);
let memos = (0..1000)
.map(|_| create_memo(cx, move |_| sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_narrowing_update(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let acc = Rc::new(Cell::new(0));
let sigs =
(0..1000).map(|n| create_signal(cx, n)).collect::<Vec<_>>();
let reads = sigs.iter().map(|(r, _)| *r).collect::<Vec<_>>();
let writes = sigs.iter().map(|(_, w)| *w).collect::<Vec<_>>();
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo(), 499500);
create_isomorphic_effect(cx, {
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
writes[1].update(|n| *n += 1);
writes[10].update(|n| *n += 1);
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo(), 499503);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn leptos_scope_creation_and_disposal(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let disposers = (0..1000)
.map(|_| {
create_scope(runtime, {
let acc = Rc::clone(&acc);
move |cx| {
let (r, w) = create_signal(cx, 0);
create_isomorphic_effect(cx, {
move |_| {
acc.set(r());
}
});
w.update(|n| *n += 1);
}
})
})
.collect::<Vec<_>>();
for disposer in disposers {
disposer.dispose();
}
});
runtime.dispose();
}
#[bench]
fn rs_deep_update(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let sc = ClientRuntime::new_root_scope();
b.iter(|| {
let signal = signal!(sc, 0);
let mut memos = Vec::<Signal<Func<i32>, ClientRuntime>>::new();
for i in 0..1000usize {
let prev = memos.get(i.saturating_sub(1)).copied();
if let Some(prev) = prev {
memos.push(signal!(sc, move || prev.get() + 1))
} else {
memos.push(signal!(sc, move || signal.get() + 1))
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
});
}
#[bench]
fn rs_fanning_out(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let cx = ClientRuntime::new_root_scope();
b.iter(|| {
let sig = signal!(cx, 0);
let memos = (0..1000)
.map(|_| signal!(cx, move || sig.get()))
.collect::<Vec<_>>();
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 0);
sig.set(1);
assert_eq!(memos.iter().map(|m| m.get()).sum::<i32>(), 1000);
});
}
#[bench]
fn rs_narrowing_update(b: &mut Bencher) {
use reactive_signals::{Scope, Signal, signal, runtimes::ClientRuntime, types::Func};
let cx = ClientRuntime::new_root_scope();
b.iter(|| {
let acc = Rc::new(Cell::new(0));
let sigs =
(0..1000).map(|n| signal!(cx, n)).collect::<Vec<_>>();
let memo = signal!(cx, {
let sigs = sigs.clone();
move || {
sigs.iter().map(|r| r.get()).sum::<i32>()
}
});
assert_eq!(memo.get(), 499500);
signal!(cx, {
let acc = Rc::clone(&acc);
move || {
acc.set(memo.get());
}
});
assert_eq!(acc.get(), 499500);
sigs[1].update(|n| *n += 1);
sigs[10].update(|n| *n += 1);
sigs[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo.get(), 499503);
});
}
#[bench]
fn l021_deep_creation(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
}
}
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn l021_deep_update(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
create_scope(runtime, |cx| {
let signal = create_rw_signal(cx, 0);
let mut memos = Vec::<Memo<usize>>::new();
for _ in 0..1000usize {
if let Some(prev) = memos.last().copied() {
memos.push(create_memo(cx, move |_| prev.get() + 1));
} else {
memos.push(create_memo(cx, move |_| signal.get() + 1));
}
}
signal.set(1);
assert_eq!(memos[999].get(), 1001);
})
.dispose()
});
runtime.dispose();
}
#[bench]
fn l021_narrowing_down(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -183,8 +304,8 @@ fn l0410_narrowing_down(b: &mut Bencher) {
}
#[bench]
fn l0410_fanning_out(b: &mut Bencher) {
use l0410::*;
fn l021_fanning_out(b: &mut Bencher) {
use leptos::*;
let runtime = create_runtime();
b.iter(|| {
@@ -203,8 +324,8 @@ fn l0410_fanning_out(b: &mut Bencher) {
runtime.dispose();
}
#[bench]
fn l0410_narrowing_update(b: &mut Bencher) {
use l0410::*;
fn l021_narrowing_update(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -217,11 +338,11 @@ fn l0410_narrowing_update(b: &mut Bencher) {
let memo = create_memo(cx, move |_| {
reads.iter().map(|r| r.get()).sum::<i32>()
});
assert_eq!(memo.get(), 499500);
assert_eq!(memo(), 499500);
create_isomorphic_effect(cx, {
let acc = Rc::clone(&acc);
move |_| {
acc.set(memo.get());
acc.set(memo());
}
});
assert_eq!(acc.get(), 499500);
@@ -231,7 +352,7 @@ fn l0410_narrowing_update(b: &mut Bencher) {
writes[100].update(|n| *n += 1);
assert_eq!(acc.get(), 499503);
assert_eq!(memo.get(), 499503);
assert_eq!(memo(), 499503);
})
.dispose()
});
@@ -240,8 +361,8 @@ fn l0410_narrowing_update(b: &mut Bencher) {
}
#[bench]
fn l0410_scope_creation_and_disposal(b: &mut Bencher) {
use l0410::*;
fn l021_scope_creation_and_disposal(b: &mut Bencher) {
use l021::*;
let runtime = create_runtime();
b.iter(|| {
@@ -254,7 +375,7 @@ fn l0410_scope_creation_and_disposal(b: &mut Bencher) {
let (r, w) = create_signal(cx, 0);
create_isomorphic_effect(cx, {
move |_| {
acc.set(r.get());
acc.set(r());
}
});
w.update(|n| *n += 1);

View File

@@ -2,14 +2,15 @@ use test::Bencher;
#[bench]
fn leptos_ssr_bench(b: &mut Bencher) {
use leptos::*;
let r = create_runtime();
b.iter(|| {
leptos::leptos_dom::HydrationCtx::reset_id();
use leptos::*;
leptos_dom::HydrationCtx::reset_id();
_ = create_scope(create_runtime(), |cx| {
#[component]
fn Counter(initial: i32) -> impl IntoView {
let (value, set_value) = create_signal(initial);
fn Counter(cx: Scope, initial: i32) -> impl IntoView {
let (value, set_value) = create_signal(cx, initial);
view! {
cx,
<div>
<button on:click=move |_| set_value.update(|value| *value -= 1)>"-1"</button>
<span>"Value: " {move || value().to_string()} "!"</span>
@@ -18,7 +19,8 @@ fn leptos_ssr_bench(b: &mut Bencher) {
}
}
let rendered = view! {
let rendered = view! {
cx,
<main>
<h1>"Welcome to our benchmark page."</h1>
<p>"Here's some introductory text."</p>
@@ -26,53 +28,14 @@ fn leptos_ssr_bench(b: &mut Bencher) {
<Counter initial=2/>
<Counter initial=3/>
</main>
}.into_view().render_to_string();
}.into_view(cx).render_to_string(cx);
assert_eq!(
rendered,
"<main data-hk=\"0-0-0-1\"><h1 data-hk=\"0-0-0-2\">Welcome to our benchmark page.</h1><p data-hk=\"0-0-0-3\">Here&#x27;s some introductory text.</p><div data-hk=\"0-0-0-5\"><button data-hk=\"0-0-0-6\">-1</button><span data-hk=\"0-0-0-7\">Value: <!>1<!--hk=0-0-0-8-->!</span><button data-hk=\"0-0-0-9\">+1</button></div><!--hk=0-0-0-4--><div data-hk=\"0-0-0-11\"><button data-hk=\"0-0-0-12\">-1</button><span data-hk=\"0-0-0-13\">Value: <!>2<!--hk=0-0-0-14-->!</span><button data-hk=\"0-0-0-15\">+1</button></div><!--hk=0-0-0-10--><div data-hk=\"0-0-0-17\"><button data-hk=\"0-0-0-18\">-1</button><span data-hk=\"0-0-0-19\">Value: <!>3<!--hk=0-0-0-20-->!</span><button data-hk=\"0-0-0-21\">+1</button></div><!--hk=0-0-0-16--></main>" );
"<main id=\"_0-1\"><h1 id=\"_0-2\">Welcome to our benchmark page.</h1><p id=\"_0-3\">Here&#x27;s some introductory text.</p><div id=\"_0-3-1\"><button id=\"_0-3-2\">-1</button><span id=\"_0-3-3\">Value: <!>1<!--hk=_0-3-4-->!</span><button id=\"_0-3-5\">+1</button></div><!--hk=_0-3-0--><div id=\"_0-3-5-1\"><button id=\"_0-3-5-2\">-1</button><span id=\"_0-3-5-3\">Value: <!>2<!--hk=_0-3-5-4-->!</span><button id=\"_0-3-5-5\">+1</button></div><!--hk=_0-3-5-0--><div id=\"_0-3-5-5-1\"><button id=\"_0-3-5-5-2\">-1</button><span id=\"_0-3-5-5-3\">Value: <!>3<!--hk=_0-3-5-5-4-->!</span><button id=\"_0-3-5-5-5\">+1</button></div><!--hk=_0-3-5-5-0--></main>"
);
});
});
r.dispose();
}
#[bench]
fn tachys_ssr_bench(b: &mut Bencher) {
use leptos::{create_runtime, create_signal, SignalGet, SignalUpdate};
use tachy_maccy::view;
use tachydom::view::{Render, RenderHtml};
use tachydom::html::element::ElementChild;
use tachydom::html::attribute::global::ClassAttribute;
use tachydom::html::attribute::global::GlobalAttributes;
use tachydom::html::attribute::global::OnAttribute;
use tachydom::renderer::dom::Dom;
let rt = create_runtime();
b.iter(|| {
fn counter(initial: i32) -> impl Render<Dom> + RenderHtml<Dom> {
let (value, set_value) = create_signal(initial);
view! {
<div>
<button on:click=move |_| set_value.update(|value| *value -= 1)>"-1"</button>
<span>"Value: " {move || value().to_string()} "!"</span>
<button on:click=move |_| set_value.update(|value| *value += 1)>"+1"</button>
</div>
}
}
let rendered = view! {
<main>
<h1>"Welcome to our benchmark page."</h1>
<p>"Here's some introductory text."</p>
{counter(1)}
{counter(2)}
{counter(3)}
</main>
}.to_html();
assert_eq!(
rendered,
"<main><h1>Welcome to our benchmark page.</h1><p>Here's some introductory text.</p><div><button>-1</button><span>Value: <!>1<!>!</span><button>+1</button></div><div><button>-1</button><span>Value: <!>2<!>!</span><button>+1</button></div><div><button>-1</button><span>Value: <!>3<!>!</span><button>+1</button></div></main>"
);
});
rt.dispose();
}
#[bench]
@@ -92,13 +55,13 @@ fn tera_ssr_bench(b: &mut Bencher) {
{% endfor %}
</main>"#;
static LazyCell<TERA>: Tera = LazyLock::new(|| {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
};
}
#[derive(Serialize, Deserialize)]
struct Counter {

View File

@@ -1,7 +1,7 @@
pub use leptos::*;
use miniserde::*;
use wasm_bindgen::JsCast;
use web_sys::HtmlInputElement;
use wasm_bindgen::JsCast;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Todos(pub Vec<Todo>);
@@ -9,13 +9,13 @@ pub struct Todos(pub Vec<Todo>);
const STORAGE_KEY: &str = "todos-leptos";
impl Todos {
pub fn new() -> Self {
pub fn new(cx: Scope) -> Self {
Self(vec![])
}
pub fn new_with_1000() -> Self {
pub fn new_with_1000(cx: Scope) -> Self {
let todos = (0..1000)
.map(|id| Todo::new(id, format!("Todo #{id}")))
.map(|id| Todo::new(cx, id, format!("Todo #{id}")))
.collect();
Self(todos)
}
@@ -72,17 +72,13 @@ pub struct Todo {
}
impl Todo {
pub fn new(id: usize, title: String) -> Self {
Self::new_with_completed(id, title, false)
pub fn new(cx: Scope, id: usize, title: String) -> Self {
Self::new_with_completed(cx, id, title, false)
}
pub fn new_with_completed(
id: usize,
title: String,
completed: bool,
) -> Self {
let (title, set_title) = create_signal(title);
let (completed, set_completed) = create_signal(completed);
pub fn new_with_completed(cx: Scope, id: usize, title: String, completed: bool) -> Self {
let (title, set_title) = create_signal(cx, title);
let (completed, set_completed) = create_signal(cx, completed);
Self {
id,
title,
@@ -102,7 +98,7 @@ const ESCAPE_KEY: u32 = 27;
const ENTER_KEY: u32 = 13;
#[component]
pub fn TodoMVC(todos: Todos) -> impl IntoView {
pub fn TodoMVC(cx: Scope, todos: Todos) -> impl IntoView {
let mut next_id = todos
.0
.iter()
@@ -111,10 +107,10 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
.map(|last| last + 1)
.unwrap_or(0);
let (todos, set_todos) = create_signal(todos);
provide_context(set_todos);
let (todos, set_todos) = create_signal(cx, todos);
provide_context(cx, set_todos);
let (mode, set_mode) = create_signal(Mode::All);
let (mode, set_mode) = create_signal(cx, Mode::All);
let add_todo = move |ev: web_sys::KeyboardEvent| {
let target = event_target::<HtmlInputElement>(&ev);
@@ -124,7 +120,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
let title = event_target_value(&ev);
let title = title.trim();
if !title.is_empty() {
let new = Todo::new(next_id, title.to_string());
let new = Todo::new(cx, next_id, title.to_string());
set_todos.update(|t| t.add(new));
next_id += 1;
target.set_value("");
@@ -132,7 +128,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
}
};
let filtered_todos = create_memo::<Vec<Todo>>(move |_| {
let filtered_todos = create_memo::<Vec<Todo>>(cx, move |_| {
todos.with(|todos| match mode.get() {
Mode::All => todos.0.to_vec(),
Mode::Active => todos
@@ -152,7 +148,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
// effect to serialize to JSON
// this does reactive reads, so it will automatically serialize on any relevant change
create_effect(move |_| {
create_effect(cx, move |_| {
if let Ok(Some(storage)) = window().local_storage() {
let objs = todos
.get()
@@ -167,7 +163,7 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
}
});
view! {
view! { cx,
<main>
<section class="todoapp">
<header class="header">
@@ -192,8 +188,8 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
<For
each=filtered_todos
key=|todo| todo.id
children=move |todo: Todo| {
view! { <Todo todo=todo.clone()/> }
view=move |cx, todo: Todo| {
view! { cx, <Todo todo=todo.clone()/> }
}
/>
</ul>
@@ -240,14 +236,14 @@ pub fn TodoMVC(todos: Todos) -> impl IntoView {
<p>"Part of " <a href="http://todomvc.com">"TodoMVC"</a></p>
</footer>
</main>
}.into_view()
}.into_view(cx)
}
#[component]
pub fn Todo(todo: Todo) -> impl IntoView {
let (editing, set_editing) = create_signal(false);
let set_todos = use_context::<WriteSignal<Todos>>().unwrap();
//let input = NodeRef::new();
pub fn Todo(cx: Scope, todo: Todo) -> impl IntoView {
let (editing, set_editing) = create_signal(cx, false);
let set_todos = use_context::<WriteSignal<Todos>>(cx).unwrap();
//let input = NodeRef::new(cx);
let save = move |value: &str| {
let value = value.trim();
@@ -259,7 +255,7 @@ pub fn Todo(todo: Todo) -> impl IntoView {
set_editing(false);
};
view! {
view! { cx,
<li class="todo" class:editing=editing class:completed=move || (todo.completed)()>
<div class="view">
<input class="toggle" type="checkbox" prop:checked=move || (todo.completed)()/>
@@ -272,7 +268,7 @@ pub fn Todo(todo: Todo) -> impl IntoView {
{move || {
editing()
.then(|| {
view! {
view! { cx,
<input
class="edit"
class:hidden=move || !(editing)()
@@ -323,8 +319,8 @@ pub struct TodoSerialized {
}
impl TodoSerialized {
pub fn into_todo(self, ) -> Todo {
Todo::new_with_completed(self.id, self.title, self.completed)
pub fn into_todo(self, cx: Scope) -> Todo {
Todo::new_with_completed(cx, self.id, self.title, self.completed)
}
}

View File

@@ -2,7 +2,6 @@ use test::Bencher;
mod leptos;
mod sycamore;
mod tachys;
mod tera;
mod yew;
@@ -13,34 +12,18 @@ fn leptos_todomvc_ssr(b: &mut Bencher) {
b.iter(|| {
use crate::todomvc::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
view! { <TodoMVC todos=Todos::new()/> }
let html = ::leptos::ssr::render_to_string(|cx| {
view! { cx, <TodoMVC todos=Todos::new(cx)/> }
});
assert!(html.len() > 1);
});
runtime.dispose();
}
#[bench]
fn tachys_todomvc_ssr(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::tachys::*;
use tachydom::view::{Render, RenderHtml};
let rendered = TodoMVC(Todos::new()).to_html();
assert_eq!(
rendered,
"<main><section class=\"todoapp\"><header class=\"header\"><h1>todos</h1><input placeholder=\"What needs to be done?\" autofocus class=\"new-todo\"></header><section class=\"main hidden\"><input id=\"toggle-all\" type=\"checkbox\" class=\"toggle-all\"><label for=\"toggle-all\">Mark all as complete</label><ul class=\"todo-list\"></ul></section><footer class=\"footer hidden\"><span class=\"todo-count\"><strong>0</strong><!> items<!> left</span><ul class=\"filters\"><li><a href=\"#/\" class=\"selected selected\">All</a></li><li><a href=\"#/active\" class=\"\">Active</a></li><li><a href=\"#/completed\" class=\"\">Completed</a></li></ul><button class=\"clear-completed hidden hidden\">Clear completed</button></footer></section><footer class=\"info\"><p>Double-click to edit a todo</p><p>Created by <a href=\"http://todomvc.com\">Greg Johnston</a></p><p>Part of <a href=\"http://todomvc.com\">TodoMVC</a></p></footer></main>" );
});
runtime.dispose();
}
#[bench]
fn sycamore_todomvc_ssr(b: &mut Bencher) {
use self::sycamore::*;
use ::sycamore::{prelude::*, *};
use ::sycamore::prelude::*;
use ::sycamore::*;
b.iter(|| {
_ = create_scope(|cx| {
@@ -59,7 +42,8 @@ fn sycamore_todomvc_ssr(b: &mut Bencher) {
#[bench]
fn yew_todomvc_ssr(b: &mut Bencher) {
use self::yew::*;
use ::yew::{prelude::*, ServerRenderer};
use ::yew::prelude::*;
use ::yew::ServerRenderer;
b.iter(|| {
tokio_test::block_on(async {
@@ -76,33 +60,21 @@ fn leptos_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::leptos::*;
use ::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
let html = ::leptos::ssr::render_to_string(|cx| {
view! {
<TodoMVC todos=Todos::new_with_1000()/>
cx,
<TodoMVC todos=Todos::new_with_1000(cx)/>
}
});
assert!(html.len() > 1);
});
}
#[bench]
fn tachys_todomvc_ssr_with_1000(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::tachys::*;
use tachydom::view::{Render, RenderHtml};
let rendered = TodoMVC(Todos::new_with_1000()).to_html();
assert!(rendered.len() > 20_000)
});
runtime.dispose();
}
#[bench]
fn sycamore_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::sycamore::*;
use ::sycamore::{prelude::*, *};
use ::sycamore::prelude::*;
use ::sycamore::*;
b.iter(|| {
_ = create_scope(|cx| {
@@ -121,7 +93,8 @@ fn sycamore_todomvc_ssr_with_1000(b: &mut Bencher) {
#[bench]
fn yew_todomvc_ssr_with_1000(b: &mut Bencher) {
use self::yew::*;
use ::yew::{prelude::*, ServerRenderer};
use ::yew::prelude::*;
use ::yew::ServerRenderer;
b.iter(|| {
tokio_test::block_on(async {
@@ -130,19 +103,4 @@ fn yew_todomvc_ssr_with_1000(b: &mut Bencher) {
assert!(rendered.len() > 1);
});
});
}
#[bench]
fn tera_todomvc_ssr(b: &mut Bencher) {
use ::leptos::*;
let runtime = create_runtime();
b.iter(|| {
use crate::todomvc::leptos::*;
let html = ::leptos::ssr::render_to_string(|| {
view! { <TodoMVC todos=Todos::new()/> }
});
assert!(html.len() > 1);
});
runtime.dispose();
}
}

View File

@@ -1,333 +0,0 @@
pub use leptos_reactive::*;
use miniserde::*;
use tachy_maccy::view;
use tachydom::{
html::{
attribute::global::{ClassAttribute, GlobalAttributes, OnAttribute},
element::ElementChild,
},
renderer::dom::Dom,
view::{keyed::keyed, Render, RenderHtml},
};
use wasm_bindgen::JsCast;
use web_sys::HtmlInputElement;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Todos(pub Vec<Todo>);
const STORAGE_KEY: &str = "todos-leptos";
impl Todos {
pub fn new() -> Self {
Self(vec![])
}
pub fn new_with_1000() -> Self {
let todos = (0..1000)
.map(|id| Todo::new(id, format!("Todo #{id}")))
.collect();
Self(todos)
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn add(&mut self, todo: Todo) {
self.0.push(todo);
}
pub fn remove(&mut self, id: usize) {
self.0.retain(|todo| todo.id != id);
}
pub fn remaining(&self) -> usize {
self.0.iter().filter(|todo| !(todo.completed)()).count()
}
pub fn completed(&self) -> usize {
self.0.iter().filter(|todo| (todo.completed)()).count()
}
pub fn toggle_all(&self) {
// if all are complete, mark them all active instead
if self.remaining() == 0 {
for todo in &self.0 {
if todo.completed.get() {
(todo.set_completed)(false);
}
}
}
// otherwise, mark them all complete
else {
for todo in &self.0 {
(todo.set_completed)(true);
}
}
}
fn clear_completed(&mut self) {
self.0.retain(|todo| !todo.completed.get());
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct Todo {
pub id: usize,
pub title: ReadSignal<String>,
pub set_title: WriteSignal<String>,
pub completed: ReadSignal<bool>,
pub set_completed: WriteSignal<bool>,
}
impl Todo {
pub fn new(id: usize, title: String) -> Self {
Self::new_with_completed(id, title, false)
}
pub fn new_with_completed(
id: usize,
title: String,
completed: bool,
) -> Self {
let (title, set_title) = create_signal(title);
let (completed, set_completed) = create_signal(completed);
Self {
id,
title,
set_title,
completed,
set_completed,
}
}
pub fn toggle(&self) {
self.set_completed
.update(|completed| *completed = !*completed);
}
}
const ESCAPE_KEY: u32 = 27;
const ENTER_KEY: u32 = 13;
pub fn TodoMVC(todos: Todos) -> impl Render<Dom> + RenderHtml<Dom> {
let mut next_id = todos
.0
.iter()
.map(|todo| todo.id)
.max()
.map(|last| last + 1)
.unwrap_or(0);
let (todos, set_todos) = create_signal(todos);
provide_context(set_todos);
let (mode, set_mode) = create_signal(Mode::All);
let add_todo = move |ev: web_sys::KeyboardEvent| {
todo!()
/* let target = event_target::<HtmlInputElement>(&ev);
ev.stop_propagation();
let key_code = ev.unchecked_ref::<web_sys::KeyboardEvent>().key_code();
if key_code == ENTER_KEY {
let title = event_target_value(&ev);
let title = title.trim();
if !title.is_empty() {
let new = Todo::new(next_id, title.to_string());
set_todos.update(|t| t.add(new));
next_id += 1;
target.set_value("");
}
} */
};
let filtered_todos = create_memo::<Vec<Todo>>(move |_| {
todos.with(|todos| match mode.get() {
Mode::All => todos.0.to_vec(),
Mode::Active => todos
.0
.iter()
.filter(|todo| !todo.completed.get())
.cloned()
.collect(),
Mode::Completed => todos
.0
.iter()
.filter(|todo| todo.completed.get())
.cloned()
.collect(),
})
});
// effect to serialize to JSON
// this does reactive reads, so it will automatically serialize on any relevant change
create_effect(move |_| {
()
/* if let Ok(Some(storage)) = window().local_storage() {
let objs = todos
.get()
.0
.iter()
.map(TodoSerialized::from)
.collect::<Vec<_>>();
let json = json::to_string(&objs);
if storage.set_item(STORAGE_KEY, &json).is_err() {
log::error!("error while trying to set item in localStorage");
}
} */
});
view! {
<main>
<section class="todoapp">
<header class="header">
<h1>"todos"</h1>
<input
class="new-todo"
placeholder="What needs to be done?"
autofocus
/>
</header>
<section class="main" class:hidden=move || todos.with(|t| t.is_empty())>
<input
id="toggle-all"
class="toggle-all"
r#type="checkbox"
//prop:checked=move || todos.with(|t| t.remaining() > 0)
on:input=move |_| set_todos.update(|t| t.toggle_all())
/>
<label r#for="toggle-all">"Mark all as complete"</label>
<ul class="todo-list">
{move || {
keyed(filtered_todos.get(), |todo| todo.id, Todo)
}}
</ul>
</section>
<footer class="footer" class:hidden=move || todos.with(|t| t.is_empty())>
<span class="todo-count">
<strong>{move || todos.with(|t| t.remaining().to_string())}</strong>
{move || if todos.with(|t| t.remaining()) == 1 { " item" } else { " items" }}
" left"
</span>
<ul class="filters">
<li>
<a
href="#/"
class="selected"
class:selected=move || mode() == Mode::All
>
"All"
</a>
</li>
<li>
<a href="#/active" class:selected=move || mode() == Mode::Active>
"Active"
</a>
</li>
<li>
<a href="#/completed" class:selected=move || mode() == Mode::Completed>
"Completed"
</a>
</li>
</ul>
<button
class="clear-completed hidden"
class:hidden=move || todos.with(|t| t.completed() == 0)
on:click=move |_| set_todos.update(|t| t.clear_completed())
>
"Clear completed"
</button>
</footer>
</section>
<footer class="info">
<p>"Double-click to edit a todo"</p>
<p>"Created by " <a href="http://todomvc.com">"Greg Johnston"</a></p>
<p>"Part of " <a href="http://todomvc.com">"TodoMVC"</a></p>
</footer>
</main>
}
}
pub fn Todo(todo: Todo) -> impl Render<Dom> + RenderHtml<Dom> {
let (editing, set_editing) = create_signal(false);
let set_todos = use_context::<WriteSignal<Todos>>().unwrap();
//let input = NodeRef::new();
let save = move |value: &str| {
let value = value.trim();
if value.is_empty() {
set_todos.update(|t| t.remove(todo.id));
} else {
(todo.set_title)(value.to_string());
}
set_editing(false);
};
view! {
<li class="todo" class:editing=editing class:completed=move || (todo.completed)()>
/* <div class="view">
<input class="toggle" r#type="checkbox"/>
<label on:dblclick=move |_| set_editing(true)>{move || todo.title.get()}</label>
<button
class="destroy"
on:click=move |_| set_todos.update(|t| t.remove(todo.id))
></button>
</div>
{move || {
editing()
.then(|| {
view! {
<input
class="edit"
class:hidden=move || !(editing)()
/>
}
})
}} */
</li>
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Mode {
Active,
Completed,
All,
}
impl Default for Mode {
fn default() -> Self {
Mode::All
}
}
pub fn route(hash: &str) -> Mode {
match hash {
"/active" => Mode::Active,
"/completed" => Mode::Completed,
_ => Mode::All,
}
}
#[derive(Serialize, Deserialize)]
pub struct TodoSerialized {
pub id: usize,
pub title: String,
pub completed: bool,
}
impl TodoSerialized {
pub fn into_todo(self) -> Todo {
Todo::new_with_completed(self.id, self.title, self.completed)
}
}
impl From<&Todo> for TodoSerialized {
fn from(todo: &Todo) -> Self {
Self {
id: todo.id,
title: todo.title.get(),
completed: (todo.completed)(),
}
}
}

View File

@@ -55,7 +55,7 @@ static TEMPLATE: &str = r#"<main>
{% else %}
<li><a href="/">All</a></li>
{% endif %}
{% if mode_active %}
<li><a href="/active" class="selected">Active</a></li>
{% else %}
@@ -87,17 +87,17 @@ static TEMPLATE: &str = r#"<main>
</main>"#;
#[bench]
fn tera_todomvc_ssr(b: &mut Bencher) {
fn tera_todomvc(b: &mut Bencher) {
use serde::{Deserialize, Serialize};
use tera::*;
static LazyLock<TERA>: Tera = LazyLock( || {
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
};
}
#[derive(Serialize, Deserialize)]
struct Todo {
@@ -127,17 +127,17 @@ fn tera_todomvc_ssr(b: &mut Bencher) {
}
#[bench]
fn tera_todomvc_ssr_1000(b: &mut Bencher) {
fn tera_todomvc_1000(b: &mut Bencher) {
use serde::{Deserialize, Serialize};
use tera::*;
static TERA: LazyLock<Tera> = LazyLock::new(|| {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
});
lazy_static::lazy_static! {
static ref TERA: Tera = {
let mut tera = Tera::default();
tera.add_raw_templates(vec![("template.html", TEMPLATE)]).unwrap();
tera
};
}
#[derive(Serialize, Deserialize)]
struct Todo {
@@ -174,4 +174,4 @@ fn tera_todomvc_ssr_1000(b: &mut Bencher) {
let _ = TERA.render("template.html", &ctx).unwrap();
});
}
}

View File

@@ -1,7 +0,0 @@
[tasks.check]
alias = "check-all"
[tasks.check-all]
command = "cargo"
args = ["check-all-features"]
install_crate = "cargo-all-features"

View File

@@ -1,18 +0,0 @@
[tasks.lint]
dependencies = ["check-format-flow", "clippy-each-feature"]
[tasks.check-format]
env = { LEPTOS_PROJECT_DIRECTORY = "../" }
args = ["fmt", "--", "--check", "--config-path", "${LEPTOS_PROJECT_DIRECTORY}"]
[tasks.clippy-each-feature]
dependencies = ["install-clippy"]
command = "cargo"
args = [
"clippy",
"--all-features",
"--no-deps",
"--",
"-D",
"clippy::print_stdout",
]

View File

@@ -1,15 +0,0 @@
extend = [
{ path = "./check.toml" },
{ path = "./lint.toml" },
{ path = "./test.toml" },
]
[env]
RUSTFLAGS = ""
LEPTOS_OUTPUT_NAME = "ci" # allows examples to check/build without cargo-leptos
[env.github-actions]
RUSTFLAGS = "-D warnings"
[tasks.ci]
dependencies = ["lint", "test"]

View File

@@ -1,7 +0,0 @@
[tasks.test]
alias = "test-all"
[tasks.test-all]
command = "cargo"
args = ["test-all-features"]
install_crate = "cargo-all-features"

View File

@@ -1,12 +0,0 @@
[package]
name = "const_str_slice_concat"
version = "0.1.0"
authors = ["Greg Johnston"]
license = "MIT"
readme = "../README.md"
repository = "https://github.com/leptos-rs/leptos"
description = "Utilities for const concatenation of string slices."
rust-version.workspace = true
edition.workspace = true
[dependencies]

View File

@@ -1 +0,0 @@
extend = { path = "../cargo-make/main.toml" }

View File

@@ -1,139 +0,0 @@
#![no_std]
#![forbid(unsafe_code)]
#![deny(missing_docs)]
//! Utilities for const concatenation of string slices.
pub(crate) const MAX_TEMPLATE_SIZE: usize = 4096;
/// Converts a zero-terminated buffer of bytes into a UTF-8 string.
pub const fn str_from_buffer(buf: &[u8; MAX_TEMPLATE_SIZE]) -> &str {
match core::ffi::CStr::from_bytes_until_nul(buf) {
Ok(cstr) => match cstr.to_str() {
Ok(str) => str,
Err(_) => panic!("TEMPLATE FAILURE"),
},
Err(_) => panic!("TEMPLATE FAILURE"),
}
}
/// Concatenates any number of static strings into a single array.
// credit to Rainer Stropek, "Constant fun," Rust Linz, June 2022
pub const fn const_concat(
strs: &'static [&'static str],
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable refernces in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
remaining = tail;
}
buffer
}
/// Converts a zero-terminated buffer of bytes into a UTF-8 string with the given prefix.
pub const fn const_concat_with_prefix(
strs: &'static [&'static str],
prefix: &'static str,
suffix: &'static str,
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable refernces in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
remaining = tail;
}
if buffer[0] == 0 {
buffer
} else {
let mut new_buf = [0; MAX_TEMPLATE_SIZE];
let prefix = prefix.as_bytes();
let suffix = suffix.as_bytes();
let mut position = 0;
let mut i = 0;
while i < prefix.len() {
new_buf[position] = prefix[i];
position += 1;
i += 1;
}
i = 0;
while i < buffer.len() {
if buffer[i] == 0 {
break;
}
new_buf[position] = buffer[i];
position += 1;
i += 1;
}
i = 0;
while i < suffix.len() {
new_buf[position] = suffix[i];
position += 1;
i += 1;
}
new_buf
}
}
/// Converts any number of strings into a UTF-8 string, separated by the given string.
pub const fn const_concat_with_separator(
strs: &[&str],
separator: &'static str,
) -> [u8; MAX_TEMPLATE_SIZE] {
let mut buffer = [0; MAX_TEMPLATE_SIZE];
let mut position = 0;
let mut remaining = strs;
while let [current, tail @ ..] = remaining {
let x = current.as_bytes();
let mut i = 0;
// have it iterate over bytes manually, because, again,
// no mutable refernces in const fns
while i < x.len() {
buffer[position] = x[i];
position += 1;
i += 1;
}
if !x.is_empty() {
let mut position = 0;
let separator = separator.as_bytes();
while i < separator.len() {
buffer[position] = separator[i];
position += 1;
i += 1;
}
}
remaining = tail;
}
buffer
}

View File

@@ -9,10 +9,10 @@ This document is intended as a running list of common issues, with example code
**Issue**: Sometimes you want to update a reactive signal in a way that depends on another signal.
```rust
let (a, set_a) = create_signal(0);
let (b, set_b) = create_signal(false);
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, false);
create_effect(move |_| {
create_effect(cx, move |_| {
if a() > 5 {
set_b(true);
}
@@ -24,56 +24,10 @@ This creates an inefficient chain of updates, and can easily lead to infinite lo
**Solution**: Follow the rule, _What can be derived, should be derived._ In this case, this has the benefit of massively reducing the code size, too!
```rust
let (a, set_a) = create_signal(0);
let (a, set_a) = create_signal(cx, 0);
let b = move || a () > 5;
```
### Nested signal updates/reads triggering panic
Sometimes you have nested signals: for example, hash-map that can change over time, each of whose values can also change over time:
```rust
#[component]
pub fn App() -> impl IntoView {
let resources = create_rw_signal(HashMap::new());
let update = move |id: usize| {
resources.update(|resources| {
resources
.entry(id)
.or_insert_with(|| create_rw_signal(0))
.update(|amount| *amount += 1)
})
};
view! {
<div>
<pre>{move || format!("{:#?}", resources.get().into_iter().map(|(id, resource)| (id, resource.get())).collect::<Vec<_>>())}</pre>
<button on:click=move |_| update(1)>"+"</button>
</div>
}
}
```
Clicking the button twice will cause a panic, because of the nested signal _read_. Calling the `update` function on `resources` immediately takes out a mutable borrow on `resources`, then updates the `resource` signal—which re-runs the effect that reads from the signals, which tries to immutably access `resources` and panics. It's the nested update here which causes a problem, because the inner update triggers and effect that tries to read both signals while the outer is still updating.
You can fix this fairly easily by using the [`batch()`](https://docs.rs/leptos/latest/leptos/fn.batch.html) method:
```rust
let update = move |id: usize| {
batch(move || {
resources.update(|resources| {
resources
.entry(id)
.or_insert_with(|| create_rw_signal(0))
.update(|amount| *amount += 1)
})
});
};
```
This delays running any effects until after both updates are made, preventing the conflict entirely without requiring any other restructuring.
## Templates and the DOM
### `<input value=...>` doesn't update or stops updating
@@ -83,11 +37,11 @@ Many DOM attributes can be updated either by setting an attribute on the DOM nod
This means that in practice, attributes like `value` or `checked` on an `<input/>` element only update the _default_ value for the `<input/>`. If you want to reactively update the value, you should use `prop:value` instead to set the `value` property.
```rust
let (a, set_a) = create_signal("Starting value".to_string());
let (a, set_a) = create_signal(cx, "Starting value".to_string());
let on_input = move |ev| set_a(event_target_value(&ev));
view! {
cx,
// ❌ reactivity doesn't work as expected: typing only updates the default
// of each input, so if you start typing in the second input, it won't
// update the first one
@@ -97,11 +51,11 @@ view! {
```
```rust
let (a, set_a) = create_signal("Starting value".to_string());
let (a, set_a) = create_signal(cx, "Starting value".to_string());
let on_input = move |ev| set_a(event_target_value(&ev));
view! {
cx,
// ✅ works as intended by setting the value *property*
<input prop:value=a on:input=on_input />
<input prop:value=a on:input=on_input />

View File

@@ -1,3 +1,14 @@
The Leptos book is now available at [https://book.leptos.dev](https://book.leptos.dev).
This project contains the core of a new introductory guide to Leptos.
The source code for the book has moved to [https://github.com/leptos-rs/book](https://github.com/leptos-rs/book). Please open issues or make PRs in that repository.
It is built using `mdbook`. You can view a local copy by installing `mdbook`
```bash
cargo install mdbook
```
and run the book with
```
mdbook serve
```
It should be available at `http://localhost:3000`.

View File

@@ -1,10 +0,0 @@
[output.html]
additional-css = ["./mdbook-admonish.css"]
[output.html.playground]
runnable = false
[preprocessor]
[preprocessor.admonish]
command = "mdbook-admonish"
assets_version = "3.0.1" # do not edit: managed by `mdbook-admonish install`

View File

@@ -1,345 +0,0 @@
@charset "UTF-8";
:root {
--md-admonition-icon--admonish-note: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M20.71 7.04c.39-.39.39-1.04 0-1.41l-2.34-2.34c-.37-.39-1.02-.39-1.41 0l-1.84 1.83 3.75 3.75M3 17.25V21h3.75L17.81 9.93l-3.75-3.75L3 17.25z'/></svg>");
--md-admonition-icon--admonish-abstract: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M17 9H7V7h10m0 6H7v-2h10m-3 6H7v-2h7M12 3a1 1 0 0 1 1 1 1 1 0 0 1-1 1 1 1 0 0 1-1-1 1 1 0 0 1 1-1m7 0h-4.18C14.4 1.84 13.3 1 12 1c-1.3 0-2.4.84-2.82 2H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2V5a2 2 0 0 0-2-2z'/></svg>");
--md-admonition-icon--admonish-info: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M13 9h-2V7h2m0 10h-2v-6h2m-1-9A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10A10 10 0 0 0 12 2z'/></svg>");
--md-admonition-icon--admonish-tip: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M17.66 11.2c-.23-.3-.51-.56-.77-.82-.67-.6-1.43-1.03-2.07-1.66C13.33 7.26 13 4.85 13.95 3c-.95.23-1.78.75-2.49 1.32-2.59 2.08-3.61 5.75-2.39 8.9.04.1.08.2.08.33 0 .22-.15.42-.35.5-.23.1-.47.04-.66-.12a.58.58 0 0 1-.14-.17c-1.13-1.43-1.31-3.48-.55-5.12C5.78 10 4.87 12.3 5 14.47c.06.5.12 1 .29 1.5.14.6.41 1.2.71 1.73 1.08 1.73 2.95 2.97 4.96 3.22 2.14.27 4.43-.12 6.07-1.6 1.83-1.66 2.47-4.32 1.53-6.6l-.13-.26c-.21-.46-.77-1.26-.77-1.26m-3.16 6.3c-.28.24-.74.5-1.1.6-1.12.4-2.24-.16-2.9-.82 1.19-.28 1.9-1.16 2.11-2.05.17-.8-.15-1.46-.28-2.23-.12-.74-.1-1.37.17-2.06.19.38.39.76.63 1.06.77 1 1.98 1.44 2.24 2.8.04.14.06.28.06.43.03.82-.33 1.72-.93 2.27z'/></svg>");
--md-admonition-icon--admonish-success: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='m9 20.42-6.21-6.21 2.83-2.83L9 14.77l9.88-9.89 2.83 2.83L9 20.42z'/></svg>");
--md-admonition-icon--admonish-question: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='m15.07 11.25-.9.92C13.45 12.89 13 13.5 13 15h-2v-.5c0-1.11.45-2.11 1.17-2.83l1.24-1.26c.37-.36.59-.86.59-1.41a2 2 0 0 0-2-2 2 2 0 0 0-2 2H8a4 4 0 0 1 4-4 4 4 0 0 1 4 4 3.2 3.2 0 0 1-.93 2.25M13 19h-2v-2h2M12 2A10 10 0 0 0 2 12a10 10 0 0 0 10 10 10 10 0 0 0 10-10c0-5.53-4.5-10-10-10z'/></svg>");
--md-admonition-icon--admonish-warning: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M13 14h-2V9h2m0 9h-2v-2h2M1 21h22L12 2 1 21z'/></svg>");
--md-admonition-icon--admonish-failure: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M20 6.91 17.09 4 12 9.09 6.91 4 4 6.91 9.09 12 4 17.09 6.91 20 12 14.91 17.09 20 20 17.09 14.91 12 20 6.91z'/></svg>");
--md-admonition-icon--admonish-danger: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M11 15H6l7-14v8h5l-7 14v-8z'/></svg>");
--md-admonition-icon--admonish-bug: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M14 12h-4v-2h4m0 6h-4v-2h4m6-6h-2.81a5.985 5.985 0 0 0-1.82-1.96L17 4.41 15.59 3l-2.17 2.17a6.002 6.002 0 0 0-2.83 0L8.41 3 7 4.41l1.62 1.63C7.88 6.55 7.26 7.22 6.81 8H4v2h2.09c-.05.33-.09.66-.09 1v1H4v2h2v1c0 .34.04.67.09 1H4v2h2.81c1.04 1.79 2.97 3 5.19 3s4.15-1.21 5.19-3H20v-2h-2.09c.05-.33.09-.66.09-1v-1h2v-2h-2v-1c0-.34-.04-.67-.09-1H20V8z'/></svg>");
--md-admonition-icon--admonish-example: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M7 13v-2h14v2H7m0 6v-2h14v2H7M7 7V5h14v2H7M3 8V5H2V4h2v4H3m-1 9v-1h3v4H2v-1h2v-.5H3v-1h1V17H2m2.25-7a.75.75 0 0 1 .75.75c0 .2-.08.39-.21.52L3.12 13H5v1H2v-.92L4 11H2v-1h2.25z'/></svg>");
--md-admonition-icon--admonish-quote: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M14 17h3l2-4V7h-6v6h3M6 17h3l2-4V7H5v6h3l-2 4z'/></svg>");
--md-details-icon: url("data:image/svg+xml;charset=utf-8,<svg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24'><path d='M8.59 16.58 13.17 12 8.59 7.41 10 6l6 6-6 6-1.41-1.42Z'/></svg>");
}
:is(.admonition) {
display: flow-root;
margin: 1.5625em 0;
padding: 0 1.2rem;
color: var(--fg);
page-break-inside: avoid;
background-color: var(--bg);
border: 0 solid black;
border-inline-start-width: 0.4rem;
border-radius: 0.2rem;
box-shadow: 0 0.2rem 1rem rgba(0, 0, 0, 0.05), 0 0 0.1rem rgba(0, 0, 0, 0.1);
}
@media print {
:is(.admonition) {
box-shadow: none;
}
}
:is(.admonition) > * {
box-sizing: border-box;
}
:is(.admonition) :is(.admonition) {
margin-top: 1em;
margin-bottom: 1em;
}
:is(.admonition) > .tabbed-set:only-child {
margin-top: 0;
}
html :is(.admonition) > :last-child {
margin-bottom: 1.2rem;
}
a.admonition-anchor-link {
display: none;
position: absolute;
left: -1.2rem;
padding-right: 1rem;
}
a.admonition-anchor-link:link, a.admonition-anchor-link:visited {
color: var(--fg);
}
a.admonition-anchor-link:link:hover, a.admonition-anchor-link:visited:hover {
text-decoration: none;
}
a.admonition-anchor-link::before {
content: "§";
}
:is(.admonition-title, summary.admonition-title) {
position: relative;
min-height: 4rem;
margin-block: 0;
margin-inline: -1.6rem -1.2rem;
padding-block: 0.8rem;
padding-inline: 4.4rem 1.2rem;
font-weight: 700;
background-color: rgba(68, 138, 255, 0.1);
print-color-adjust: exact;
-webkit-print-color-adjust: exact;
display: flex;
}
:is(.admonition-title, summary.admonition-title) p {
margin: 0;
}
html :is(.admonition-title, summary.admonition-title):last-child {
margin-bottom: 0;
}
:is(.admonition-title, summary.admonition-title)::before {
position: absolute;
top: 0.625em;
inset-inline-start: 1.6rem;
width: 2rem;
height: 2rem;
background-color: #448aff;
print-color-adjust: exact;
-webkit-print-color-adjust: exact;
mask-image: url('data:image/svg+xml;charset=utf-8,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"></svg>');
-webkit-mask-image: url('data:image/svg+xml;charset=utf-8,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"></svg>');
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-size: contain;
content: "";
}
:is(.admonition-title, summary.admonition-title):hover a.admonition-anchor-link {
display: initial;
}
details.admonition > summary.admonition-title::after {
position: absolute;
top: 0.625em;
inset-inline-end: 1.6rem;
height: 2rem;
width: 2rem;
background-color: currentcolor;
mask-image: var(--md-details-icon);
-webkit-mask-image: var(--md-details-icon);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-size: contain;
content: "";
transform: rotate(0deg);
transition: transform 0.25s;
}
details[open].admonition > summary.admonition-title::after {
transform: rotate(90deg);
}
:is(.admonition):is(.admonish-note) {
border-color: #448aff;
}
:is(.admonish-note) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(68, 138, 255, 0.1);
}
:is(.admonish-note) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #448aff;
mask-image: var(--md-admonition-icon--admonish-note);
-webkit-mask-image: var(--md-admonition-icon--admonish-note);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-abstract, .admonish-summary, .admonish-tldr) {
border-color: #00b0ff;
}
:is(.admonish-abstract, .admonish-summary, .admonish-tldr) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 176, 255, 0.1);
}
:is(.admonish-abstract, .admonish-summary, .admonish-tldr) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00b0ff;
mask-image: var(--md-admonition-icon--admonish-abstract);
-webkit-mask-image: var(--md-admonition-icon--admonish-abstract);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-info, .admonish-todo) {
border-color: #00b8d4;
}
:is(.admonish-info, .admonish-todo) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 184, 212, 0.1);
}
:is(.admonish-info, .admonish-todo) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00b8d4;
mask-image: var(--md-admonition-icon--admonish-info);
-webkit-mask-image: var(--md-admonition-icon--admonish-info);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-tip, .admonish-hint, .admonish-important) {
border-color: #00bfa5;
}
:is(.admonish-tip, .admonish-hint, .admonish-important) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 191, 165, 0.1);
}
:is(.admonish-tip, .admonish-hint, .admonish-important) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00bfa5;
mask-image: var(--md-admonition-icon--admonish-tip);
-webkit-mask-image: var(--md-admonition-icon--admonish-tip);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-success, .admonish-check, .admonish-done) {
border-color: #00c853;
}
:is(.admonish-success, .admonish-check, .admonish-done) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(0, 200, 83, 0.1);
}
:is(.admonish-success, .admonish-check, .admonish-done) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #00c853;
mask-image: var(--md-admonition-icon--admonish-success);
-webkit-mask-image: var(--md-admonition-icon--admonish-success);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-question, .admonish-help, .admonish-faq) {
border-color: #64dd17;
}
:is(.admonish-question, .admonish-help, .admonish-faq) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(100, 221, 23, 0.1);
}
:is(.admonish-question, .admonish-help, .admonish-faq) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #64dd17;
mask-image: var(--md-admonition-icon--admonish-question);
-webkit-mask-image: var(--md-admonition-icon--admonish-question);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-warning, .admonish-caution, .admonish-attention) {
border-color: #ff9100;
}
:is(.admonish-warning, .admonish-caution, .admonish-attention) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 145, 0, 0.1);
}
:is(.admonish-warning, .admonish-caution, .admonish-attention) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff9100;
mask-image: var(--md-admonition-icon--admonish-warning);
-webkit-mask-image: var(--md-admonition-icon--admonish-warning);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-failure, .admonish-fail, .admonish-missing) {
border-color: #ff5252;
}
:is(.admonish-failure, .admonish-fail, .admonish-missing) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 82, 82, 0.1);
}
:is(.admonish-failure, .admonish-fail, .admonish-missing) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff5252;
mask-image: var(--md-admonition-icon--admonish-failure);
-webkit-mask-image: var(--md-admonition-icon--admonish-failure);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-danger, .admonish-error) {
border-color: #ff1744;
}
:is(.admonish-danger, .admonish-error) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(255, 23, 68, 0.1);
}
:is(.admonish-danger, .admonish-error) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #ff1744;
mask-image: var(--md-admonition-icon--admonish-danger);
-webkit-mask-image: var(--md-admonition-icon--admonish-danger);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-bug) {
border-color: #f50057;
}
:is(.admonish-bug) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(245, 0, 87, 0.1);
}
:is(.admonish-bug) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #f50057;
mask-image: var(--md-admonition-icon--admonish-bug);
-webkit-mask-image: var(--md-admonition-icon--admonish-bug);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-example) {
border-color: #7c4dff;
}
:is(.admonish-example) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(124, 77, 255, 0.1);
}
:is(.admonish-example) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #7c4dff;
mask-image: var(--md-admonition-icon--admonish-example);
-webkit-mask-image: var(--md-admonition-icon--admonish-example);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
:is(.admonition):is(.admonish-quote, .admonish-cite) {
border-color: #9e9e9e;
}
:is(.admonish-quote, .admonish-cite) > :is(.admonition-title, summary.admonition-title) {
background-color: rgba(158, 158, 158, 0.1);
}
:is(.admonish-quote, .admonish-cite) > :is(.admonition-title, summary.admonition-title)::before {
background-color: #9e9e9e;
mask-image: var(--md-admonition-icon--admonish-quote);
-webkit-mask-image: var(--md-admonition-icon--admonish-quote);
mask-repeat: no-repeat;
-webkit-mask-repeat: no-repeat;
mask-size: contain;
-webkit-mask-repeat: no-repeat;
}
.navy :is(.admonition) {
background-color: var(--sidebar-bg);
}
.ayu :is(.admonition),
.coal :is(.admonition) {
background-color: var(--theme-hover);
}
.rust :is(.admonition) {
background-color: var(--sidebar-bg);
color: var(--sidebar-fg);
}
.rust .admonition-anchor-link:link, .rust .admonition-anchor-link:visited {
color: var(--sidebar-fg);
}

View File

@@ -1,2 +1,20 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/">
<link rel="canonical" href="https://book.leptos.dev/">
# Introduction
This book is intended as an introduction to the [Leptos](https://github.com/leptos-rs/leptos) Web framework.
It will walk through the fundamental concepts you need to build applications,
beginning with a simple application rendered in the browser, and building toward a
full-stack application with server-side rendering and hydration.
The guide doesnt assume you know anything about fine-grained reactivity or the
details of modern Web frameworks. It does assume you are familiar with the Rust
programming language, HTML, CSS, and the DOM and basic Web APIs.
Leptos is most similar to frameworks like [Solid](https://www.solidjs.com) (JavaScript)
and [Sycamore](https://sycamore-rs.netlify.app/) (Rust). There are some similarities
to other frameworks like React (JavaScript), Svelte (JavaScript), Yew (Rust), and
Dioxus (Rust), so knowledge of one of those frameworks may also make it easier to
understand Leptos.
You can find more detailed docs for each part of the API at [Docs.rs](https://docs.rs/leptos/latest/leptos/).
**The guide is a work in progress.**

View File

@@ -0,0 +1,70 @@
# Getting Started
There are two basic paths to getting started with Leptos:
1. Client-side rendering with [Trunk](https://trunkrs.dev/)
2. Full-stack rendering with [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos)
For the early examples, it will be easiest to begin with Trunk. Well introduce
`cargo-leptos` a little later in this series.
If you dont already have it installed, you can install Trunk by running
```bash
cargo install trunk
```
Create a basic Rust binary project
```bash
cargo init leptos-tutorial
```
> We recommend using `nightly` Rust, as it enables [a few nice features](https://github.com/leptos-rs/leptos#nightly-note). To use `nightly` Rust with WebAssembly, you can run
>
> ```bash
> rustup toolchain install nightly
> rustup default nightly
> rustup target add wasm32-unknown-unknown
> ```
`cd` into your new `leptos-tutorial` project and add `leptos` as a dependency
```bash
cargo add leptos
```
Create a simple `index.html` in the root of the `leptos-tutorial` directory
```html
<!DOCTYPE html>
<html>
<head></head>
<body></body>
</html>
```
And add a simple “Hello, world!” to your `main.rs`
```rust
use leptos::*;
fn main() {
mount_to_body(|cx| view! { cx, <p>"Hello, world!"</p> })
}
```
Your directory structure should now look something like this
```
leptos_tutorial
├── src
│ └── main.rs
├── Cargo.toml
├── index.html
```
Now run `trunk serve --open` from the root of the `leptos-tutorial` directory.
Trunk should automatically compile your app and open it in your default browser.
If you make edits to `main.rs`, Trunk will recompile your source code and
live-reload the page.

View File

@@ -0,0 +1,112 @@
# Responding to Changes with `create_effect`
Believe it or not, weve made it this far without having mentioned half of the reactive system: effects.
Leptos is built on a fine-grained reactive system, which means that individual reactive values (“signals,” sometimes known as observables) trigger rerunning the code that reacts to them (“effects,” sometimes known as observers). These two halves of the reactive system are inter-dependent. Without effects, signals can change within the reactive system but never be observed in a way that interacts with the outside world. Without signals, effects run once but never again, as theres no observable value to subscribe to.
[`create_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_effect.html) takes a function as its argument. It immediately runs the function. If you access any reactive signal inside that function, it registers the fact that the effect depends on that signal with the reactive runtime. Whenever one of the signals that the effect depends on changes, the effect runs again.
```rust
let (a, set_a) = create_signal(cx, 0);
let (b, set_b) = create_signal(cx, 0);
create_effect(cx, move |_| {
// immediately prints "Value: 0" and subscribes to `a`
log::debug!("Value: {}", a());
});
```
The effect function is called with an argument containing whatever value it returned the last time it ran. On the initial run, this is `None`.
By default, effects **do not run on the server**. This means you can call browser-specific APIs within the effect function without causing issues. If you need an effect to run on the server, use [`create_isomorphic_effect`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_isomorphic_effect.html).
## Autotracking and Dynamic Dependencies
If youre familiar with a framework like React, you might notice one key difference. React and similar frameworks typically require you to pass a “dependency array,” an explicit set of variables that determine when the effect should rerun.
Because Leptos comes from the tradition of synchronous reactive programming, we dont need this explicit dependency list. Instead, we automatically track dependencies depending on which signals are accessed within the effect.
This has two effects (no pun intended). Dependencies are
1. **Automatic**: You dont need to maintain a dependency list, or worry about what should or shouldnt be included. The framework simply tracks which signals might cause the effect to rerun, and handles it for you.
2. **Dynamic**: The dependency list is cleared and updated every time the effect runs. If your effect contains a conditional (for example), only signals that are used in the current branch are tracked. This means that effects rerun the absolute minimum number of times.
> If this sounds like magic, and if you want a deep dive into how automatic dependency tracking works, [check out this video](https://www.youtube.com/watch?v=GWB3vTWeLd4). (Apologies for the low volume!)
## Effects as Zero-Cost-ish Abstraction
While theyre not a “zero-cost abstraction” in the most technical sense—they require some additional memory use, exist at runtime, etc.—at a higher level, from the perspective of whatever expensive API calls or other work youre doing within them, effects are a zero-cost abstraction. They rerun the absolute minimum number of times necessary, given how youve described them.
Imagine that Im creating some kind of chat software, and I want people to be able to display their full name, or just their first name, and to notify the server whenever their name changes:
```rust
let (first, set_first) = create_signal(cx, String::new());
let (last, set_last) = create_signal(cx, String::new());
let (use_last, set_use_last) = create_signal(cx, true);
// this will add the name to the log
// any time one of the source signals changes
create_effect(cx, move |_| {
log(
cx,
if use_last() {
format!("{} {}", first(), last())
} else {
first()
},
)
});
```
If `use_last` is `true`, effect should rerun whenever `first`, `last`, or `use_last` changes. But if I toggle `use_last` to `false`, a change in `last` will never cause the full name to change. In fact, `last` will be removed from the dependency list until `use_last` toggles again. This saves us from sending multiple unnecessary requests to the API if I change `last` multiple times while `use_last` is still `false`.
## To `create_effect`, or not to `create_effect`?
Effects are intended to run _side-effects_ of the system, not to synchronize state _within_ the system. In other words: dont write to signals within effects.
If you need to define a signal that depends on the value of other signals, use a derived signal or [`create_memo`](https://docs.rs/leptos_reactive/latest/leptos_reactive/fn.create_memo.html).
If you need to synchronize some reactive value with the non-reactive world outside—like a web API, the console, the filesystem, or the DOM—create an effect.
> If youre curious for more information about when you should and shouldnt use `create_effect`, [check out this video](https://www.youtube.com/watch?v=aQOFJQ2JkvQ) for a more in-depth consideration!
## Effects and Rendering
Weve managed to get this far without mentioning effects because theyre built into the Leptos DOM renderer. Weve seen that you can create a signal and pass it into the `view` macro, and it will update the relevant DOM node whenever the signal changes:
```rust
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<p>{count}</p>
}
```
This works because the framework essentially creates an effect wrapping this update. You can imagine Leptos translating this view into something like this:
```rust
let (count, set_count) = create_signal(cx, 0);
// create a DOM element
let p = create_element("p");
// create an effect to reactively update the text
create_effect(cx, move |prev_value| {
// first, access the signals value and convert it to a string
let text = count().to_string();
// if this is different from the previous value, update the node
if prev_value != Some(text) {
p.set_text_content(&text);
}
// return this value so we can memoize the next update
text
});
```
Every time `count` is updated, this effect wil rerun. This is what allows reactive, fine-grained updates to the DOM.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/serene-thompson-40974n?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,174 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/15_global_state.html">
<link rel="canonical" href="https://book.leptos.dev/15_global_state.html">
# Global State Management
So far, we've only been working with local state in components
We've only seen how to communicate between parent and child components
But there are also more general ways to manage global state
The three best approaches to global state are
1. Using the router to drive global state via the URL
2. Passing signals through context
3. Creating a global state struct and creating lenses into it with `create_slice`
## Option #1: URL as Global State
The next few sections of the tutorial will be about the router.
So for now, we'll just look at options #2 and #3.
## Option #2: Passing Signals through Context
In virtual DOM libraries like React, using the Context API to manage global
state is a bad idea: because the entire app exists in a tree, changing
some value provided high up in the tree can cause the whole app to render.
In fine-grained reactive libraries like Leptos, this is simply not the case.
You can create a signal in the root of your app and pass it down to other
components using provide_context(). Changing it will only cause rerendering
in the specific places it is actually used, not the whole app.
We start by creating a signal in the root of the app and providing it to
all its children and descendants using `provide_context`.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
// here we create a signal in the root that can be consumed
// anywhere in the app.
let (count, set_count) = create_signal(cx, 0);
// we'll pass the setter to specific components,
// but provide the count itself to the whole app via context
provide_context(cx, count);
view! { cx,
// SetterButton is allowed to modify the count
<SetterButton set_count/>
// These consumers can only read from it
// But we could give them write access by passing `set_count` if we wanted
<FancyMath/>
<ListItems/>
}
}
```
`<SetterButton/>` is the kind of counter weve written several times now.
(See the sandbox below if you dont understand what I mean.)
`<FancyMath/>` and `<ListItems/>` both consume the signal were providing via
`use_context` and do something with it.
```rust
/// A component that does some "fancy" math with the global count
#[component]
fn FancyMath(cx: Scope) -> impl IntoView {
// here we consume the global count signal with `use_context`
let count = use_context::<ReadSignal<u32>>(cx)
// we know we just provided this in the parent component
.expect("there to be a `count` signal provided");
let is_even = move || count() & 1 == 0;
view! { cx,
<div class="consumer blue">
"The number "
<strong>{count}</strong>
{move || if is_even() {
" is"
} else {
" is not"
}}
" even."
</div>
}
}
```
This kind of “provide a signal in a parent, consume it in a child” should be familiar
from the chapter on [parent-child interactions](./view/08_parent_child.md). The same
pattern you use to communicate between parents and children works for grandparents and
grandchildren, or any ancestors and descendants: in other words, between “global” state
in the root component of your app and any other components anywhere else in the app.
Because of the fine-grained nature of updates, this is usually all you need. However,
in some cases with more complex state changes, you may want to use a slightly more
structured approach to global state.
## Option #3: Create a Global State Struct
You can use this approach to build a single global data structure
that holds the state for your whole app, and then access it by
taking fine-grained slices using
[`create_slice`](https://docs.rs/leptos/latest/leptos/fn.create_slice.html)
or [`create_memo`](https://docs.rs/leptos/latest/leptos/fn.create_memo.html),
so that changing one part of the state doesn't cause parts of your
app that depend on other parts of the state to change.
You can begin by defining a simple state struct:
```rust
#[derive(Default, Clone, Debug)]
struct GlobalState {
count: u32,
name: String,
}
```
Provide it in the root of your app so its available everywhere.
```rust
#[component]
fn App(cx: Scope) -> impl IntoView {
// we'll provide a single signal that holds the whole state
// each component will be responsible for creating its own "lens" into it
let state = create_rw_signal(cx, GlobalState::default());
provide_context(cx, state);
// ...
}
```
Then child components can access “slices” of that state with fine-grained
updates via `create_slice`. Each slice signal only updates when the particular
piece of the larger struct it accesses updates. This means you can create a single
root signal, and then take independent, fine-grained slices of it in different
components, each of which can update without notifying the others of changes.
```rust
/// A component that updates the count in the global state.
#[component]
fn GlobalStateCounter(cx: Scope) -> impl IntoView {
let state = use_context::<RwSignal<GlobalState>>(cx).expect("state to have been provided");
// `create_slice` lets us create a "lens" into the data
let (count, set_count) = create_slice(
cx,
// we take a slice *from* `state`
state,
// our getter returns a "slice" of the data
|state| state.count,
// our setter describes how to mutate that slice, given a new value
|state, n| state.count = n,
);
view! { cx,
<div class="consumer blue">
<button
on:click=move |_| {
set_count(count() + 1);
}
>
"Increment Global Count"
</button>
<br/>
<span>"Count is: " {count}</span>
</div>
}
}
```
Clicking this button only updates `state.count`, so if we create another slice
somewhere else that only takes `state.name`, clicking the button wont cause
that other slice to update. This allows you to combine the benefits of a top-down
data flow and of fine-grained reactive updates.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/1-basic-component-forked-8bte19?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh">

View File

@@ -1,32 +1,25 @@
# Summary
- [Introduction](./01_introduction.md)
- [Getting Started](./getting_started/README.md)
- [Leptos DX](./getting_started/leptos_dx.md)
- [The Leptos Community and leptos-* Crates](./getting_started/community_crates.md)
- [Part 1: Building User Interfaces](./view/README.md)
- [Getting Started](./02_getting_started.md)
- [Building User Interfaces](./view/README.md)
- [A Basic Component](./view/01_basic_component.md)
- [Dynamic Attributes](./view/02_dynamic_attributes.md)
- [Components and Props](./view/03_components.md)
- [Iteration](./view/04_iteration.md)
- [Iterating over More Complex Data](./view/04b_iteration.md)
- [Forms and Inputs](./view/05_forms.md)
- [Control Flow](./view/06_control_flow.md)
- [Error Handling](./view/07_errors.md)
- [Parent-Child Communication](./view/08_parent_child.md)
- [Passing Children to Components](./view/09_component_children.md)
- [No Macros: The View Builder Syntax](./view/builder.md)
- [Reactivity](./reactivity/README.md)
- [Working with Signals](./reactivity/working_with_signals.md)
- [Responding to Changes with `create_effect`](./reactivity/14_create_effect.md)
- [Interlude: Reactivity and Functions](./reactivity/interlude_functions.md)
- [Interlude: Reactivity and Functions](./interlude_functions.md)
- [Testing](./testing.md)
- [Async](./async/README.md)
- [Loading Data with Resources](./async/10_resources.md)
- [Suspense](./async/11_suspense.md)
- [Transition](./async/12_transition.md)
- [Actions](./async/13_actions.md)
- [Interlude: Projecting Children](./interlude_projecting_children.md)
- [Responding to Changes with `create_effect`](./14_create_effect.md)
- [Global State Management](./15_global_state.md)
- [Router](./router/README.md)
- [Defining `<Routes/>`](./router/16_routes.md)
@@ -35,22 +28,22 @@
- [`<A/>`](./router/19_a.md)
- [`<Form/>`](./router/20_form.md)
- [Interlude: Styling](./interlude_styling.md)
- [Metadata](./metadata.md)
- [Client-Side Rendering: Wrapping Up](./csr_wrapping_up.md)
- [Part 2: Server Side Rendering](./ssr/README.md)
- [`cargo-leptos`](./ssr/21_cargo_leptos.md)
- [The Life of a Page Load](./ssr/22_life_cycle.md)
- [Async Rendering and SSR “Modes”](./ssr/23_ssr_modes.md)
- [Hydration Bugs](./ssr/24_hydration_bugs.md)
- [Working with the Server](./server/README.md)
- [Server Functions](./server/25_server_functions.md)
- [Extractors](./server/26_extractors.md)
- [Responses and Redirects](./server/27_response.md)
- [Progressive Enhancement and Graceful Degradation](./progressive_enhancement/README.md)
- [`<ActionForm/>`s](./progressive_enhancement/action_form.md)
- [Deployment](./deployment/README.md)
- [Optimizing WASM Binary Size](./deployment/binary_size.md)
- [Guide: Islands](./islands.md)
- [Appendix: How Does the Reactive System Work?](./appendix_reactive_graph.md)
- [Metadata]()
- [Server Side Rendering](./ssr/README.md)
- [`cargo-leptos`]()
- [The Life of a Page Load](./ssr/21_life_cycle.md)
- [Async Rendering and SSR “Modes”](./ssr/22_ssr_modes.md)
- [Hydration Footguns]()
- [Request/Response]()
- [Extractors]()
- [Axum]()
- [Actix]()
- [Headers]()
- [Cookies]()
- [Server Functions]()
- [Actions]()
- [Forms]()
- [`<ActionForm/>`s]()
- [Turning off WebAssembly]()
- [Advanced Reactivity]()
- [Appendix: Optimizing WASM Binary Size]()

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/appendix_reactive_graph.html">
<link rel="canonical" href="https://book.leptos.dev/appendix_reactive_graph.html">

View File

@@ -1,2 +1,55 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/10_resources.html">
<link rel="canonical" href="https://book.leptos.dev/async/10_resources.html">
# Loading Data with Resources
A [Resource](https://docs.rs/leptos/latest/leptos/struct.Resource.html) is a reactive data structure that reflects the current state of an asynchronous task, allowing you to integrate asynchronous `Future`s into the synchronous reactive system. Rather than waiting for its data to load with `.await`, you transform the `Future` into a signal that returns `Some(T)` if it has resolved, and `None` if its still pending.
You do this by using the [`create_resource`](https://docs.rs/leptos/latest/leptos/fn.create_resource.html) function. This takes two arguments (other than the ubiquitous `cx`):
1. a source signal, which will generate a new `Future` whenever it changes
2. a fetcher function, which takes the data from that signal and returns a `Future`
Heres an example
```rust
// our source signal: some synchronous, local state
let (count, set_count) = create_signal(cx, 0);
// our resource
let async_data = create_resource(cx,
count,
// every time `count` changes, this will run
|value| async move {
log!("loading data from API");
load_data(value).await
},
);
```
To create a resource that simply runs once, you can pass a non-reactive, empty source signal:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
```
To access the value you can use `.read(cx)` or `.with(cx, |data| /* */)`. These work just like `.get()` and `.with()` on a signal—`read` clones the value and returns it, `with` applies a closure to it—but with two differences
1. For any `Resource<_, T>`, they always return `Option<T>`, not `T`: because its always possible that your resource is still loading.
2. They take a `Scope` argument. Youll see why in the next chapter, on `<Suspense/>`.
So, you can show the current state of a resource in your view:
```rust
let once = create_resource(cx, || (), |_| async move { load_data().await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
Resources also provide a `refetch()` method that allows you to manually reload the data (for example, in response to a button click) and a `loading()` method that returns a `ReadSignal<bool>` indicating whether the resource is currently loading or not.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-4z0qt3?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,74 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/11_suspense.html">
<link rel="canonical" href="https://book.leptos.dev/async/11_suspense.html">
# `<Suspense/>`
In the previous chapter, we showed how you can create a simple loading screen to show some fallback while a resource is loading.
```rust
let (count, set_count) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match once.read(cx) {
None => view! { cx, <p>"Loading..."</p> }.into_view(cx),
Some(data) => view! { cx, <ShowData data/> }.into_view(cx)
}}
}
```
But what if we have two resources, and want to wait for both of them?
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
{move || match (a.read(cx), b.read(cx)) {
(Some(a), Some(b)) => view! { cx,
<ShowA a/>
<ShowA b/>
}.into_view(cx),
_ => view! { cx, <p>"Loading..."</p> }.into_view(cx)
}}
}
```
Thats not _so_ bad, but its kind of annoying. What if we could invert the flow of control?
The [`<Suspense/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html) component lets us do exactly that. You give it a `fallback` prop and children, one or more of which usually involves reading from a resource. Reading from a resource “under” a `<Suspense/>` (i.e., in one of its children) registers that resource with the `<Suspense/>`. If its still waiting for resources to load, it shows the `fallback`. When theyve all loaded, it shows the children.
```rust
let (count, set_count) = create_signal(cx, 0);
let (count2, set_count2) = create_signal(cx, 0);
let a = create_resource(cx, count, |count| async move { load_a(count).await });
let b = create_resource(cx, count2, |count| async move { load_b(count).await });
view! { cx,
<h1>"My Data"</h1>
<Suspense
fallback=move || view! { cx, <p>"Loading..."</p> }
>
<h2>"My Data"</h2>
<h3>"A"</h3>
{move || {
a.read(cx)
.map(|a| view! { cx, <ShowA a/> })
}}
<h3>"B"</h3>
{move || {
b.read(cx)
.map(|b| view! { cx, <ShowB b/> })
}}
</Suspense>
}
```
Every time one of the resources is reloading, the `"Loading..."` fallback will show again.
This inversion of the flow of control makes it easier to add or remove individual resources, as you dont need to handle the matching yourself. It also unlocks some massive performance improvements during server-side rendering, which well talk about during a later chapter.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/11-suspense-907niv?file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/11-suspense-907niv?file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,11 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/12_transition.html">
<link rel="canonical" href="https://book.leptos.dev/async/12_transition.html">
# `<Transition/>`
Youll notice in the `<Suspense/>` example that if you keep reloading the data, it keeps flickering back to `"Loading..."`. Sometimes this is fine. For other times, theres [`<Transition/>`](https://docs.rs/leptos/latest/leptos/fn.Suspense.html).
`<Transition/>` behaves exactly the same as `<Suspense/>`, but instead of falling back every time, it only shows the fallback the first time. On all subsequent loads, it continues showing the old data until the new data are ready. This can be really handy to prevent the flickering effect, and to allow users to continue interacting with your application.
This example shows how you can create a simple tabbed contact list with `<Transition/>`. When you select a new tab, it continues showing the current contact until the new data loads. This can be a much better user experience than constantly falling back to a loading message.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/12-transition-sn38sd?selection=%5B%7B%22endColumn%22%3A15%2C%22endLineNumber%22%3A2%2C%22startColumn%22%3A15%2C%22startLineNumber%22%3A2%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,96 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/13_action.html">
<link rel="canonical" href="https://book.leptos.dev/async/13_action.html">
# Mutating Data with Actions
Weve talked about how to load `async` data with resources. Resources immediately load data and work closely with `<Suspense/>` and `<Transition/>` components to show whether data is loading in your app. But what if you just want to call some arbitrary `async` function and keep track of what its doing?
Well, you could always use [`spawn_local`](https://docs.rs/leptos/latest/leptos/fn.spawn_local.html). This allows you to just spawn an `async` task in a synchronous environment by handing the `Future` off to the browser (or, on the server, Tokio or whatever other runtime youre using). But how do you know if its still pending? Well, you could just set a signal to show whether its loading, and another one to show the result...
All of this is true. Or you could use the final `async` primitive: [`create_action`](https://docs.rs/leptos/latest/leptos/fn.create_action.html).
Actions and resources seem similar, but they represent fundamentally different things. If youre trying to load data by running an `async` function, either once or when some other value changes, you probably want to use `create_resource`. If youre trying to occasionally run an `async` function in response to something like a user clicking a button, you probably want to use `create_action`.
Say we have some `async` function we want to run.
```rust
async fn add_todo(new_title: &str) -> Uuid {
/* do some stuff on the server to add a new todo */
}
```
`create_action` takes a reactive `Scope` and an `async` function that takes a reference to a single argument, which you could think of as its “input type.”
> The input is always a single type. If you want to pass in multiple arguments, you can do it with a struct or tuple.
>
> ```rust
> // if there's a single argument, just use that
> let action1 = create_action(cx, |input: &String| {
> let input = input.clone();
> async move { todo!() }
> });
>
> // if there are no arguments, use the unit type `()`
> let action2 = create_action(cx, |input: &()| async { todo!() });
>
> // if there are multiple arguments, use a tuple
> let action3 = create_action(cx,
> |input: &(usize, String)| async { todo!() }
> );
> ```
>
> Because the action function takes a reference but the `Future` needs to have a `'static` lifetime, youll usually need to clone the value to pass it into the `Future`. This is admittedly awkward but it unlocks some powerful features like optimistic UI. Well see a little more about that in future chapters.
So in this case, all we need to do to create an action is
```rust
let add_todo = create_action(cx, |input: &String| {
let input = input.to_owned();
async move { add_todo(&input).await }
});
```
Rather than calling `add_todo` directly, well call it with `.dispatch()`, as in
```rust
add_todo.dispatch("Some value".to_string());
```
You can do this from an event listener, a timeout, or anywhere; because `.dispatch()` isnt an `async` function, it can be called from a synchronous context.
Actions provide access to a few signals that synchronize between the asynchronous action youre calling and the synchronous reactive system:
```rust
let submitted = add_todo.input(); // RwSignal<Option<String>>
let pending = add_todo.pending(); // ReadSignal<bool>
let todo_id = add_todo.value(); // RwSignal<Option<Uuid>>
```
This makes it easy to track the current state of your request, show a loading indicator, or do “optimistic UI” based on the assumption that the submission will succeed.
```rust
let input_ref = create_node_ref::<Input>(cx);
view! { cx,
<form
on:submit=move |ev| {
ev.prevent_default(); // don't reload the page...
let input = input_ref.get().expect("input to exist");
add_todo.dispatch(input.value());
}
>
<label>
"What do you need to do?"
<input type="text"
node_ref=input_ref
/>
</label>
<button type="submit">"Add Todo"</button>
</form>
// use our loading state
<p>{move || pending().then("Loading...")}</p>
}
```
Now, theres a chance this all seems a little over-complicated, or maybe too restricted. I wanted to include actions here, alongside resources, as the missing piece of the puzzle. In a real Leptos app, youll actually most often use actions alongside server functions, [`create_server_action`](https://docs.rs/leptos/latest/leptos/fn.create_server_action.html), and the [`<ActionForm/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.ActionForm.html) component to create really powerful progressively-enhanced forms. So if this primitive seems useless to you... Dont worry! Maybe it will make sense later. (Or check out our [`todo_app_sqlite`](https://github.com/leptos-rs/leptos/blob/main/examples/todo_app_sqlite/src/todo.rs) example now.)
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/10-async-resources-forked-hgpfp0?selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A4%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A4%7D%5D&file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,9 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/async/index.html">
<link rel="canonical" href="https://book.leptos.dev/async/index.html">
# Working with `async`
So far weve only been working with synchronous users interfaces: You provide some input,
the app immediately process it and updates the interface. This is great, but is a tiny
subset of what web applications do. In particular, most web apps have to deal with some kind
of asynchronous data loading, usually loading something from an API.
Asynchronous data is notoriously hard to integrate with the synchronous parts of your code.
In this chapter, well see how Leptos helps smooth out that process for you.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/csr_wrapping_up.html">
<link rel="canonical" href="https://book.leptos.dev/csr_wrapping_up.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/deployment/index.html">
<link rel="canonical" href="https://book.leptos.dev/deployment/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/deployment/binary_size.html">
<link rel="canonical" href="https://book.leptos.dev/deployment/binary_size.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/index.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/community_crates.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/community_crates.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/getting_started/leptos_dx.html">
<link rel="canonical" href="https://book.leptos.dev/getting_started/leptos_dx.html">

View File

@@ -0,0 +1,76 @@
# Interlude: Reactivity and Functions
One of our core contributors said to me recently: “I never used closures this often
until I started using Leptos.” And its true. Closures are at the heart of any Leptos
application. It sometimes looks a little silly:
```rust
// a signal holds a value, and can be updated
let (count, set_count) = create_signal(cx, 0);
// a derived signal is a function that accesses other signals
let double_count = move || count() * 2;
let count_is_odd = move || count() & 1 == 1;
let text = move || if count_is_odd() {
"odd"
} else {
"even"
};
// an effect automatically tracks the signals it depends on
// and reruns when they change
create_effect(cx, move |_| {
log!("text = {}", text());
});
view! { cx,
<p>{move || text().to_uppercase()}</p>
}
```
Closures, closures everywhere!
But why?
## Functions and UI Frameworks
Functions are at the heart of every UI framework. And this makes perfect sense. Creating a user interface is basically divided into two phases:
1. initial rendering
2. updates
In a web framework, the framework does some kind of initial rendering. Then it hands control back over to the browser. When certain events fire (like a mouse click) or asynchronous tasks finish (like an HTTP request finishing), the browser wakes the framework back up to update something. The framework runs some kind of code to update your user interface, and goes back asleep until the browser wakes it up again.
The key phrase here is “runs some kind of code.” The natural way to “run some kind of code” at an arbitrary point in time—in Rust or in any other programming language—is to call a function. And in fact every UI framework is based on rerunning some kind of function over and over:
1. virtual DOM (VDOM) frameworks like React, Yew, or Dioxus rerun a component or render function over and over, to generate a virtual DOM tree that can be reconciled with the previous result to patch the DOM
2. compiled frameworks like Angular and Svelte divide your component templates into “create” and “update” functions, rerunning the update function when they detect a change to the components state
3. in fine-grained reactive frameworks like SolidJS, Sycamore, or Leptos, _you_ define the functions that rerun
Thats what all our components are doing.
Take our typical `<SimpleCounter/>` example in its simplest form:
```rust
#[component]
pub fn SimpleCounter(cx: Scope) -> impl IntoView {
let (value, set_value) = create_signal(cx, 0);
let increment = move |_| set_value.update(|value| *value += 1);
view! { cx,
<button on:click=increment>
{value}
</button>
}
}
```
The `SimpleCounter` function itself runs once. The `value` signal is created once. The framework hands off the `increment` function to the browser as an event listener. When you click the button, the browser calls `increment`, which updates `value` via `set_value`. And that updates the single text node represented in our view by `{value}`.
Closures are key to reactivity. They provide the framework with the ability to rerun the smallest possible unit of your application in responsive to a change.
So remember two things:
1. Your component function is a setup function, not a render function: it only runs once.
2. For values in your view template to be reactive, they must be functions: either signals (which implement the `Fn` traits) or closures.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/interlude_projecting_children.html">
<link rel="canonical" href="https://book.leptos.dev/interlude_projecting_children.html">

View File

@@ -1,2 +1,112 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/interlude_styling.html">
<link rel="canonical" href="https://book.leptos.dev/interlude_styling.html">
# Interlude: Styling
Anyone creating a website or application soon runs into the question of styling. For a small app, a single CSS file is probably plenty to style your user interface. But as an application grows, many developers find that plain CSS becomes increasingly hard to manage.
Some frontend frameworks (like Angular, Vue, and Svelte) provide built-in ways to scope your CSS to particular components, making it easier to manage styles across a whole application without styles meant to modify one small component having a global effect. Other frameworks (like React or Solid) dont provide built-in CSS scoping, but rely on libraries in the ecosystem to do it for them. Leptos is in this latter camp: the framework itself has no opinions about CSS at all, but provides a few tools and primitives that allow others to build styling libraries.
Here are a few different approaches to styling your Leptos app, other than plain CSS.
## TailwindCSS: Utility-first CSS
[TailwindCSS](https://tailwindcss.com/) is a popular utility-first CSS library. It allows you to style your application by using inline utility classes, with a custom CLI tool that scans your files for Tailwind class names and bundles the necessary CSS.
This allows you to write components like this:
```rust
#[component]
fn Home(cx: Scope) -> impl IntoView {
let (count, set_count) = create_signal(cx, 0);
view! { cx,
<main class="my-0 mx-auto max-w-3xl text-center">
<h2 class="p-6 text-4xl">"Welcome to Leptos with Tailwind"</h2>
<p class="px-10 pb-10 text-left">"Tailwind will scan your Rust files for Tailwind class names and compile them into a CSS file."</p>
<button
class="bg-sky-600 hover:bg-sky-700 px-5 py-3 text-white rounded-lg"
on:click=move |_| set_count.update(|count| *count += 1)
>
{move || if count() == 0 {
"Click me!".to_string()
} else {
count().to_string()
}}
</button>
</main>
}
}
```
It can be a little complicated to set up the Tailwind integration at first, but you can check out our two examples of how to use Tailwind with a [client-side-rendered `trunk` application](https://github.com/leptos-rs/leptos/tree/main/examples/tailwind_csr_trunk) or with a [server-rendered `cargo-leptos` application](https://github.com/leptos-rs/leptos/tree/main/examples/tailwind). `cargo-leptos` also has some [built-in Tailwind support](https://github.com/leptos-rs/cargo-leptos#site-parameters) that you can use as an alternative to Tailwinds CLI.
## Stylers: Compile-time CSS Extraction
[Stylers](https://github.com/abishekatp/stylers) is a compile-time scoped CSS library that lets you declare scoped CSS in the body of your component. Stylers will extract this CSS at compile time into CSS files that you can then import into your app, which means that it doesnt add anything to the WASM binary size of your application.
This allows you to write components like this:
```rust
use stylers::style;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
let styler_class = style! { "App",
#two{
color: blue;
}
div.one{
color: red;
content: raw_str(r#"\hello"#);
font: "1.3em/1.2" Arial, Helvetica, sans-serif;
}
div {
border: 1px solid black;
margin: 25px 50px 75px 100px;
background-color: lightblue;
}
h2 {
color: purple;
}
@media only screen and (max-width: 1000px) {
h3 {
background-color: lightblue;
color: blue
}
}
};
view! { cx, class = styler_class,
<div class="one">
<h1 id="two">"Hello"</h1>
<h2>"World"</h2>
<h2>"and"</h2>
<h3>"friends!"</h3>
</div>
}
}
```
## Styled: Runtime CSS Scoping
[Styled](https://github.com/eboody/styled) is a runtime scoped CSS library that integrates well with Leptos. It lets you declare scoped CSS in the body of your component function, and then applies those styles at runtime.
```rust
use styled::style;
#[component]
pub fn MyComponent(cx: Scope) -> impl IntoView {
let styles = style!(
div {
background-color: red;
color: white;
}
);
styled::view! { cx, styles,
<div>"This text should be red with white text."</div>
}
}
```
## Contributions Welcome
Leptos no opinions on how you style your website or app, but were very happy to provide support to any tools youre trying to create to make it easier. If youre working on a CSS or styling approach that youd like to add to this list, please let us know!

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/islands.html">
<link rel="canonical" href="https://book.leptos.dev/islands.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/metadata.html">
<link rel="canonical" href="https://book.leptos.dev/metadata.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/progressive_enhancement/index.html">
<link rel="canonical" href="https://book.leptos.dev/progressive_enhancement/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/progressive_enhancement/action_form.html">
<link rel="canonical" href="https://book.leptos.dev/progressive_enhancement/action_form.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/14_create_effect.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/14_create_effect.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/index.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/interlude_functions.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/interlude_functions.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/reactivity/working_with_signals.html">
<link rel="canonical" href="https://book.leptos.dev/reactivity/working_with_signals.html">

View File

@@ -1,2 +1,101 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/16_routes.html">
<link rel="canonical" href="https://book.leptos.dev/router/16_routes.html">
# Defining Routes
## Getting Started
Its easy to get started with the router.
First things first, make sure youve added the `leptos_router` package to your dependencies.
> Its important that the router is a separate package from `leptos` itself. This means that everything in the router can be defined in user-land code. If you want to create your own router, or use no router, youre completely free to do that!
And import the relevant types from the router, either with something like
```rust
use leptos_router::{Route, RouteProps, Router, RouterProps, Routes, RoutesProps};
```
or simply
```rust
use leptos_router::*;
```
## Providing the `<Router/>`
Routing behavior is provided by the [`<Router/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Router.html) component. This should usually be somewhere near the root of your application, the rest of the app.
> You shouldnt try to use multiple `<Router/>`s in your app. Remember that the router drives global state: if you have multiple routers, which ones decides what to do when the URL changes?
Lets start with a simple `<App/>` component using the router:
```rust
use leptos::*;
use leptos_router::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
view! {
<Router>
<nav>
/* ... */
</nav>
<main>
/* ... */
</main>
</Router>
}
}
```
## Defining `<Routes/>`
The [`<Routes/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Routes.html) component is where you define all the routes to which a user can navigate in your application. Each possible route is defined by a [`<Route/>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Route.html) component.
You should place the `<Routes/>` component at the location within your app where you want routes to be rendered. Everything outside `<Routes/>` will be present on every page, so you can leave things like a navigation bar or menu outside the `<Routes/>`.
```rust
use leptos::*;
use leptos_router::*;
#[component]
pub fn App(cx: Scope) -> impl IntoView {
view! {
<Router>
<nav>
/* ... */
</nav>
<main>
// all our routes will appear inside <main>
<Routes>
/* ... */
</Routes>
</main>
</Router>
}
}
```
Individual routes are defined by providing children to `<Routes/>` with the `<Route/>` component. `<Route/>` takes a `path` and a `view`. When the current location matches `path`, the `view` will be created and displayed.
The `path` can include
- a static path (`/users`),
- dynamic, named parameters beginning with a colon (`/:id`),
- and/or a wildcard beginning with an asterisk (`/user/*any`)
The `view` is a function that takes a `Scope` and returns a view.
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home/> }/>
<Route path="/users" view=|cx| view! { cx, <Users/> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile/> }/>
<Route path="/*any" view=|cx| view! { cx, <NotFound/> }/>
</Routes>
```
> The router scores each route to see how good a match it is, so you can define your routes in any order.
Now if you navigate to `/` or to `/users` youll get the home page or the `<Users/>`. If you go to `/users/3` or `/blahblah` youll get a user profile or your 404 page (`<NotFound/>`). On every navigation, the router determines which `<Route/>` should be matched, and therefore what content should be displayed where the `<Routes/>` component is defined.
Simple enough?

View File

@@ -1,2 +1,172 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/17_nested_routing.html">
<link rel="canonical" href="https://book.leptos.dev/router/17_nested_routing.html">
# Nested Routing
We just defined the following set of routes:
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home /> }/>
<Route path="/users" view=|cx| view! { cx, <Users /> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile /> }/>
<Route path="/*any" view=|cx| view! { cx, <NotFound /> }/>
</Routes>
```
Theres a certain amount of duplication here: `/users` and `/users/:id`. This is fine for a small app, but you can probably already tell it wont scale well. Wouldnt it be nice if we could nest these routes?
Well... you can!
```rust
<Routes>
<Route path="/" view=|cx| view! { cx, <Home /> }/>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
</Route>
<Route path="/*any" view=|cx| view! { cx, <NotFound /> }/>
</Routes>
```
But wait. Weve just subtly changed what our application does.
The next section is one of the most important in this entire routing section of the guide. Read it carefully, and feel free to ask questions if theres anything you dont understand.
# Nested Routes as Layout
Nested routes are a form of layout, not a method of route definition.
Let me put that another way: The goal of defining nested routes is not primarily to avoid repeating yourself when typing out the paths in your route definitions. It is actually to tell the router to display multiple `<Route/>`s on the page at the same time, side by side.
Lets look back at our practical example.
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }/>
<Route path="/users/:id" view=|cx| view! { cx, <UserProfile /> }/>
</Routes>
```
This means:
- If I go to `/users`, I get the `<Users/>` component.
- If I go to `/users/3`, I get the `<UserProfile/>` component (with the parameter `id` set to `3`; more on that later)
Lets say I use nested routes instead:
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
</Route>
</Routes>
```
This means:
- If I go to `/users/3`, the path matches two `<Route/>`s: `<Users/>` and `<UserProfile/>`.
- If I go to `/users`, the path is not matched.
I actually need to add a fallback route
```rust
<Routes>
<Route path="/users" view=|cx| view! { cx, <Users /> }>
<Route path=":id" view=|cx| view! { cx, <UserProfile /> }/>
<Route path="" view=|cx| view! { cx, <NoUser /> }/>
</Route>
</Routes>
```
Now:
- If I go to `/users/3`, the path matches `<Users/>` and `<UserProfile/>`.
- If I go to `/users`, the path matches `<Users/>` and `<NoUser/>`.
When I use nested routes, in other words, each **path** can match multiple **routes**: each URL can render the views provided by multiple `<Route/>` components, at the same time, on the same page.
This may be counter-intuitive, but its very powerful, for reasons youll hopefully see in a few minutes.
## Why Nested Routing?
Why bother with this?
Most web applications contain levels of navigation that correspond to different parts of the layout. For example, in an email app you might have a URL like `/contacts/greg`, which shows a list of contacts on the left of the screen, and contact details for Greg on the right of the screen. The contact list and the contact details should always appear on the screen at the same time. If theres no contact selected, maybe you want to show a little instructional text.
You can easily define this with nested routes
```rust
<Routes>
<Route path="/contacts" view=|cx| view! { cx, <ContactList/> }>
<Route path=":id" view=|cx| view! { cx, <ContactInfo/> }/>
<Route path="" view=|cx| view! { cx,
<p>"Select a contact to view more info."</p>
}/>
</Route>
</Routes>
```
You can go even deeper. Say you want to have tabs for each contacts address, email/phone, and your conversations with them. You can add _another_ set of nested routes inside `:id`:
```rust
<Routes>
<Route path="/contacts" view=|cx| view! { cx, <ContactList/> }>
<Route path=":id" view=|cx| view! { cx, <ContactInfo/> }>
<Route path="" view=|cx| view! { cx, <EmailAndPhone/> }/>
<Route path="address" view=|cx| view! { cx, <Address/> }/>
<Route path="messages" view=|cx| view! { cx, <Messages/> }/>
</Route>
<Route path="" view=|cx| view! { cx,
<p>"Select a contact to view more info."</p>
}/>
</Route>
</Routes>
```
> The main page of the [Remix website](https://remix.run/), a React framework from the creators of React Router, has a great visual example if you scroll down, with three levels of nested routing: Sales > Invoices > an invoice.
## `<Outlet/>`
Parent routes do not automatically render their nested routes. After all, they are just components; they dont know exactly where they should render their children, and “just stick at at the end of the parent component” is not a great answer.
Instead, you tell a parent component where to render any nested components with an `<Outlet/>` component. The `<Outlet/>` simply renders one of two things:
- if there is no nested route that has been matched, it shows nothing
- if there is a nested route that has been matched, it shows its `view`
Thats all! But its important to know and to remember, because its a common source of “Why isnt this working?” frustration. If you dont provide an `<Outlet/>`, the nested route wont be displayed.
```rust
#[component]
pub fn ContactList(cx: Scope) -> impl IntoView {
let contacts = todo!();
view! { cx,
<div style="display: flex">
// the contact list
<For each=contacts
key=|contact| contact.id
view=|cx, contact| todo!()
>
// the nested child, if any
// dont forget this!
<Outlet/>
</div>
}
}
```
## Nested Routing and Performance
All of this is nice, conceptually, but again—whats the big deal?
Performance.
In a fine-grained reactive library like Leptos, its always important to do the least amount of rendering work you can. Because were working with real DOM nodes and not diffing a virtual DOM, we want to “rerender” components as infrequently as possible. Nested routing makes this extremely easy.
Imagine my contact list example. If I navigate from Greg to Alice to Bob and back to Greg, the contact information needs to change on each navigation. But the `<ContactList/>` should never be rerendered. Not only does this save on rendering performance, it also maintains state in the UI. For example, if I have a search bar at the top of `<ContactList/>`, navigating from Greg to Alice to Bob wont clear the search.
In fact, in this case, we dont even need to rerender the `<Contact/>` component when moving between contacts. The router will just reactively update the `:id` parameter as we navigate, allowing us to make fine-grained updates. As we navigate between contacts, well update single text nodes to change the contacts name, address, and so on, without doing _any_ additional rerendering.
> This sandbox includes a couple features (like nested routing) discussed in this section and the previous one, and a couple well cover in the rest of this chapter. The router is such an integrated system that it makes sense to provide a single example, so dont be surprised if theres anything you dont understand.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,79 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/18_params_and_queries.html">
<link rel="canonical" href="https://book.leptos.dev/router/18_params_and_queries.html">
# Params and Queries
Static paths are useful for distinguishing between different pages, but almost every application wants to pass data through the URL at some point.
There are two ways you can do this:
1. named route **params** like `id` in `/users/:id`
2. named route **queries** like `q` in `/search?q=Foo`
Because of the way URLs are built, you can access the query from _any_ `<Route/>` view. You can access route params from the `<Route/>` that defines them or any of its nested children.
Accessing params and queries is pretty simple with a couple of hooks:
- [`use_query`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query.html) or [`use_query_map`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query_map.html)
- [`use_params`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_params.html) or [`use_params_map`](https://docs.rs/leptos_router/latest/leptos_router/fn.use_query_map.html)
Each of these comes with a typed option (`use_query` and `use_params`) and an untyped option (`use_query_map` and `use_params_map`).
The untyped versions hold a simple key-value map. To use the typed versions, derive the [`Params`](https://docs.rs/leptos_router/0.2.3/leptos_router/trait.Params.html) trait on a struct.
> `Params` is a very lightweight trait to convert a flat key-value map of strings into a struct by applying `FromStr` to each field. Because of the flat structure of route params and URL queries, its significantly less flexible than something like `serde`; it also adds much less weight to your binary.
```rust
use leptos::*;
use leptos_router::*;
#[derive(Params)]
struct ContactParams {
id: usize
}
#[derive(Params)]
struct ContactSearch {
q: String
}
```
> Note: The `Params` derive macro is located at `leptos::Params`, and the `Params` trait is at `leptos_router::Params`. If you avoid using glob imports like `use leptos::*;`, make sure youre importing the right one for the derive macro.
Now we can use them in a component. Imagine a URL that has both params and a query, like `/contacts/:id?q=Search`.
The typed versions return `Memo<Result<T>, _>`. Its a Memo so it reacts to changes in the URL. Its a `Result` because the params or query need to be parsed from the URL, and may or may not be valid.
```rust
let params = use_params::<ContactParams>(cx);
let query = use_query::<ContactSearch>(cx);
// id: || -> usize
let id = move || {
params.with(|params| {
params
.map(|params| params.id)
.unwrap_or_default()
})
};
```
The untyped versions return `Memo<ParamsMap>`. Again, its memo to react to changes in the URL. [`ParamsMap`](https://docs.rs/leptos_router/0.2.3/leptos_router/struct.ParamsMap.html) behaves a lot like any other map type, with a `.get()` method that returns `Option<&String>`.
```rust
let params = use_params_map(cx);
let query = use_query_map(cx);
// id: || -> Option<String>
let id = move || {
params.with(|params| params.get("id").cloned())
};
```
This can get a little messy: deriving a signal that wraps an `Option<_>` or `Result<_>` can involve a couple steps. But its worth doing this for two reasons:
1. Its correct, i.e., it forces you to consider the cases, “What if the user doesnt pass a value for this query field? What if they pass an invalid value?”
2. Its performant. Specifically, when you navigate between different paths that match the same `<Route/>` with only params or the query changing, you can get fine-grained updates to different parts of your app without rerendering. For example, navigating between different contacts in our contact-list example does a targeted update to the name field (and eventually contact info) without needing to replacing or rerender the wrapping `<Contact/>`. This is what fine-grained reactivity is for.
> This is the same example from the previous section. The router is such an integrated system that it makes sense to provide a single example highlighting multiple features, even if we havent explain them all yet.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,23 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/19_a.html">
<link rel="canonical" href="https://book.leptos.dev/router/19_a.html">
# The `<A/>` Component
Client-side navigation works perfectly fine with ordinary HTML `<a>` elements. The router adds a listener that handles every click on a `<a>` element and tries to handle it on the client side, i.e., without doing another round trip to the server to request HTML. This is what enables the snappy “single-page app” navigations youre probably familiar with from most modern web apps.
The router will bail out of handling an `<a>` click under a number of situations
- the click event has had `prevent_default()` called on it
- the <kbd>Meta</kbd>, <kbd>Alt</kbd>, <kbd>Ctrl</kbd>, or <kbd>Shift</kbd> keys were held during click
- the `<a>` has a `target` or `download` attribute, or `rel="external"`
- the link has a different origin from the current location
In other words, the router will only try to do a client-side navigation when its pretty sure it can handle it, and it will upgrade every `<a>` element to get this special behavior.
The router also provides an [`<A>`](https://docs.rs/leptos_router/latest/leptos_router/fn.A.html) component, which does two additional things:
1. Correctly resolves relative nested routes. Relative routing with ordinary `<a>` tags can be tricky. For example, if you have a route like `/post/:id`, `<A href="1">` will generate the correct relative route, but `<a href="1">` likely will not (depending on where it appears in your view.) `<A/>` resolves routes relative to the path of the nested route within which it appears.
2. Sets the `aria-current` attribute to `page` if this link is the active link (i.e., its a link to the page youre on). This is helpful for accessibility and for styling. For example, if you want to set the link a different color if its a link to the page youre currently on, you can match this attribute with a CSS selector.
> Once again, this is the same example. Check out the relative `<A/>` components, and take a look at the CSS in `index.html` to see the ARIA-based styling.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D)
<iframe src="https://codesandbox.io/p/sandbox/16-router-fy4tjv?file=%2Fsrc%2Fmain.rs&selection=%5B%7B%22endColumn%22%3A1%2C%22endLineNumber%22%3A3%2C%22startColumn%22%3A1%2C%22startLineNumber%22%3A3%7D%5D" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,69 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/20_form.html">
<link rel="canonical" href="https://book.leptos.dev/router/20_form.html">
# The `<Form/>` Component
Links and forms sometimes seem completely unrelated. But in fact, they work in very similar ways.
In plain HTML, there are three ways to navigate to another page:
1. An `<a>` element that links to another page. Navigates to the URL in its `href` attribute with the `GET` HTTP method.
2. A `<form method="GET">`. Navigates to the URL in its `action` attribute with the `GET` HTTP method and the form data from its inputs encoded in the URL query string.
3. A `<form method="POST">`. Navigates to the URL in its `action` attribute with the `POST` HTTP method and the form data from its inputs encoded in the body of the request.
Since we have a client-side router, we can do client-side link navigations without reloading the page, i.e., without a full round-trip to the server and back. It makes sense that we can do client-side form navigations in the same way.
The router provides a [`<Form>`](https://docs.rs/leptos_router/latest/leptos_router/fn.Form.html) component, which works like the HTML `<form>` element, but uses client-side navigations instead of full page reloads. `<Form/>` works with both `GET` and `POST` requests. With `method="GET"`, it will navigate to the URL encoded in the form data. With `method="POST"` it will make a `POST` request and handle the servers response.
`<Form/>` provides the basis for some components like `<ActionForm/>` and `<MultiActionForm/>` that well see in later chapters. But it also enables some powerful patterns of its own.
For example, imagine that you want to create a search field that updates search results in real time as the user searches, without a page reload, but that also stores the search in the URL so a user can copy and paste it to share results with someone else.
It turns out that the patterns weve learned so far make this easy to implement.
```rust
async fn fetch_results() {
// some async function to fetch our search results
}
#[component]
pub fn Search(cx: Scope) -> impl IntoView {
#[component]
pub fn FormExample(cx: Scope) -> impl IntoView {
// reactive access to URL query strings
let query = use_query_map(cx);
// search stored as ?q=
let search = move || query().get("q").cloned().unwrap_or_default();
// a resource driven by the search string
let search_results = create_resource(cx, search, fetch_results);
view! { cx,
<Form method="GET" action="">
<input type="search" name="search" value=search/>
<input type="submit"/>
</Form>
<Transition fallback=move || ()>
/* render search results */
</Transition>
}
}
```
Whenever you click `Submit`, the `<Form/>` will “navigate” to `?q={search}`. But because this navigation is done on the client side, theres no page flicker or reload. The URL query string changes, which triggers `search` to update. Because `search` is the source signal for the `search_results` resource, this triggers `search_results` to reload its resource. The `<Transition/>` continues displaying the current search results until the new ones have loaded. When they are complete, it switches to displaying the new result.
This is a great pattern. The data flow is extremely clear: all data flows from the URL to the resource into the UI. The current state of the application is stored in the URL, which means you can refresh the page or text the link to a friend and it will show exactly what youre expecting. And once we introduce server rendering, this pattern will prove to be really fault-tolerant, too: because it uses a `<form>` element and URLs under the hood, it actually works really well without even loading your WASM on the client.
We can actually take it a step further and do something kind of clever:
```rust
view! { cx,
<Form method="GET" action="">
<input type="search" name="search" value=search
oninput="this.form.requestSubmit()"
/>
</Form>
}
```
Youll notice that this version drops the `Submit` button. Instead, we add an `oninput` attribute to the input. Note that this is _not_ `on:input`, which would listen for the `input` event and run some Rust code. Without the colon, `oninput` is the plain HTML attribute. So the string is actually a JavaScript string. `this.form` gives us the form the input is attached to. `requestSubmit()` fires the `submit` event on the `<form>`, which is caught by `<Form/>` just as if we had clicked a `Submit` button. Now the form will “navigate” on every keystroke or input to keep the URL (and therefore the search) perfectly in sync with the users input as they type.
[Click to open CodeSandbox.](https://codesandbox.io/p/sandbox/16-router-forked-hrrt3h?file=%2Fsrc%2Fmain.rs)
<iframe src="https://codesandbox.io/p/sandbox/16-router-forked-hrrt3h?file=%2Fsrc%2Fmain.rs" width="100%" height="1000px" style="max-height: 100vh"></iframe>

View File

@@ -1,2 +1,23 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/router/index.html">
<link rel="canonical" href="https://book.leptos.dev/router/index.html">
# Routing
## The Basics
Routing drives most websites. A router is the answer to the question, “Given this URL, what should appear on the page?”
A URL consists of many parts. For example, the URL `https://leptos.dev/blog/search?q=Search#results` consists of
- a _scheme_: `https`
- a _domain_: `leptos.dev`
- a **path**: `/blog/search`
- a **query** (or **search**): `?q=Search`
- a _hash_: `#results`
The Leptos Router works with the path and query (`/blog/search?q=Search`). Given this piece of the URL, what should the app render on the page?
## The Philosophy
In most cases, the path should drive what is displayed on the page. From the users perspective, for most applications, most major changes in the state of the app should be reflected in the URL. If you copy and paste the URL and open it in another tab, you should find yourself more or less in the same place.
In this sense, the router is really at the heart of the global state management for your application. More than anything else, it drives what is displayed on the page.
The router handles most of this work for you by mapping the current location to particular components.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/server/25_server_functions.html">
<link rel="canonical" href="https://book.leptos.dev/server/25_server_functions.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/server/26_extractors.html">
<link rel="canonical" href="https://book.leptos.dev/server/26_extractors.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/server/27_response.html">
<link rel="canonical" href="https://book.leptos.dev/server/27_response.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/server/index.html">
<link rel="canonical" href="https://book.leptos.dev/server/index.html">

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/ssr/21_cargo_leptos.html">
<link rel="canonical" href="https://book.leptos.dev/ssr/21_cargo_leptos.html">

View File

@@ -0,0 +1,43 @@
# The Life of a Page Load
Before we get into the weeds it might be helpful to have a higher-level overview. What exactly happens between the moment you type in the URL of a server-rendered Leptos app, and the moment you click a button and a counter increases?
Im assuming some basic knowledge of how the Internet works here, and wont get into the weeds about HTTP or whatever. Instead, Ill try to show how different parts of the Leptos APIs map onto each part of the process.
This description also starts from the premise that your app is being compiled for two separate targets:
1. A server version, often running on Actix or Axum, compiled with the Leptos `ssr` feature
2. A browser version, compiled to WebAssembly (WASM) with the Leptos `hydrate` feature
The [`cargo-leptos`](https://github.com/leptos-rs/cargo-leptos) build tool exists to coordinate the process of compiling your app for these two different targets.
## On the Server
- Your browser makes a `GET` request for that URL to your server. At this point, the browser knows almost nothing about the page thats going to be rendered. (The question “How does the browser know where to ask for the page?” is an interesting one, but out of the scope of this tutorial!)
- The server receives that request, and checks whether it has a way to handle a `GET` request at that path. This is what the `.leptos_routes()` methods in [`leptos_axum`](https://docs.rs/leptos_axum/0.2.5/leptos_axum/trait.LeptosRoutes.html) and [`leptos_actix`](https://docs.rs/leptos_actix/0.2.5/leptos_actix/trait.LeptosRoutes.html) are for. When the server starts up, these methods walk over the routing structure you provide in `<Routes/>`, generating a list of all possible routes your app can handle and telling the servers router “for each of these routes, if you get a request... hand it off to Leptos.”
- The server sees that this route can be handled by Leptos. So it renders your root component (often called something like `<App/>`), providing it with the URL thats being requested and some other data like the HTTP headers and request metadata.
- Your application runs once on the server, building up an HTML version of the component tree that will be rendered at that route. (Theres more to be said here about resources and `<Suspense/>` in the next chapter.)
- The server returns this HTML page, also injecting information on how to load the version of your app that has been compiled to WASM so that it can run in the browser.
> The HTML page thats returned is essentially your app, “dehydrated” or “freeze-dried”: it is HTML without any of the reactivity or event listeners youve added. The browser will “rehydrate” this HTML page by adding the reactive system and attaching event listeners to that server-rendered HTML. Hence the two feature flags that apply to the two halves of this process: `ssr` on the server for “server-side rendering”, and `hydrate` in the browser for that process of rehydration.
## In the Browser
- The browser receives this HTML page from the server. It immediately goes back to the server to begin loading the JS and WASM necessary to run the interactive, client side version of the app.
- In the meantime, it renders the HTML version.
- When the WASM version has reloaded, it does the same route-matching process that the server did. Because the `<Routes/>` component is identical on the server and in the client, the browser version will read the URL and render the same page that was already returned by the server.
- During this initial “hydration” phase, the WASM version of your app doesnt re-create the DOM nodes that make up your application. Instead, it walks over the existing HTML tree, “picking up” existing elements and adding the necessary interactivity.
> Note that there are some trade-offs here. Before this hydration process is complete, the page will _appear_ interactive but wont actually respond to interactions. For example, if you have a counter button and click it before WASM has loaded, the count will not increment, because the necessary event listeners and reactivity have not been added yet. Well look at some ways to build in “graceful degradation” in future chapters.
## Client-Side Navigation
The next step is very important. Imagine that the user now clicks a link to navigate to another page in your application.
The browser will _not_ make another round trip to the server, reloading the full page as it would for navigating between plain HTML pages or an application that uses server rendering (for example with PHP) but without a client-side half.
Instead, the WASM version of your app will load the new page, right there in the browser, without requesting another page from the server. Essentially, your app upgrades itself from a server-loaded “multi-page app” into a browser-rendered “single-page app.” This yields the best of both worlds: a fast initial load time due to the server-rendered HTML, and fast secondary navigations because of the client-side routing.
Some of what will be described in the following chapters—like the interactions between server functions, resources, and `<Suspense/>`—may seem overly complicated. You might find yourself asking, “If my page is being rendered to HTML on the server, why cant I just `.await` this on the server? If I can just call library X in a server function, why cant I call it in my component?” The reason is pretty simple: to enable the upgrade from server rendering to client rendering, everything in your application must be able to run either on the server or in the browser.
This is not the only way to create a website or web framework, of course. But its the most common way, and we happen to think its quite a good way, to create the smoothest possible experience for your users.

View File

@@ -1,2 +0,0 @@
<meta http-equiv="refresh" content="0; URL=https://book.leptos.dev/ssr/22_life_cycle.html">
<link rel="canonical" href="https://book.leptos.dev/ssr/22_life_cycle.html">

Some files were not shown because too many files have changed in this diff Show More