mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-12-29 20:36:26 -05:00
Pull RCU updates from Neeraj Upadhyay:
"Context tracking:
- rename context tracking state related symbols and remove references
to "dynticks" in various context tracking state variables and
related helpers
- force context_tracking_enabled_this_cpu() to be inlined to avoid
leaving a noinstr section
CSD lock:
- enhance CSD-lock diagnostic reports
- add an API to provide an indication of ongoing CSD-lock stall
nocb:
- update and simplify RCU nocb code to handle (de-)offloading of
callbacks only for offline CPUs
- fix RT throttling hrtimer being armed from offline CPU
rcutorture:
- remove redundant rcu_torture_ops get_gp_completed fields
- add SRCU ->same_gp_state and ->get_comp_state functions
- add generic test for NUM_ACTIVE_*RCU_POLL* for testing RCU and SRCU
polled grace periods
- add CFcommon.arch for arch-specific Kconfig options
- print number of update types in rcu_torture_write_types()
- add rcutree.nohz_full_patience_delay testing to the TREE07 scenario
- add a stall_cpu_repeat module parameter to test repeated CPU stalls
- add argument to limit number of CPUs a guest OS can use in
torture.sh
rcustall:
- abbreviate RCU CPU stall warnings during CSD-lock stalls
- Allow dump_cpu_task() to be called without disabling preemption
- defer printing stall-warning backtrace when holding rcu_node lock
srcu:
- make SRCU gp seq wrap-around faster
- add KCSAN checks for concurrent updates to ->srcu_n_exp_nodelay and
->reschedule_count which are used in heuristics governing
auto-expediting of normal SRCU grace periods and
grace-period-state-machine delays
- mark idle SRCU-barrier callbacks to help identify stuck
SRCU-barrier callback
rcu tasks:
- remove RCU Tasks Rude asynchronous APIs as they are no longer used
- stop testing RCU Tasks Rude asynchronous APIs
- fix access to non-existent percpu regions
- check processor-ID assumptions during chosen CPU calculation for
callback enqueuing
- update description of rtp->tasks_gp_seq grace-period sequence
number
- add rcu_barrier_cb_is_done() to identify whether a given
rcu_barrier callback is stuck
- mark idle Tasks-RCU-barrier callbacks
- add *torture_stats_print() functions to print detailed diagnostics
for Tasks-RCU variants
- capture start time of rcu_barrier_tasks*() operation to help
distinguish a hung barrier operation from a long series of barrier
operations
refscale:
- add a TINY scenario to support tests of Tiny RCU and Tiny
SRCU
- optimize process_durations() operation
rcuscale:
- dump stacks of stalled rcu_scale_writer() instances and
grace-period statistics when rcu_scale_writer() stalls
- mark idle RCU-barrier callbacks to identify stuck RCU-barrier
callbacks
- print detailed grace-period and barrier diagnostics on
rcu_scale_writer() hangs for Tasks-RCU variants
- warn if async module parameter is specified for RCU implementations
that do not have async primitives such as RCU Tasks Rude
- make all writer tasks report upon hang
- tolerate repeated GFP_KERNEL failure in rcu_scale_writer()
- use special allocator for rcu_scale_writer()
- NULL out top-level pointers to heap memory to avoid double-free
bugs on modprobe failures
- maintain per-task instead of per-CPU callbacks count to avoid any
issues with migration of either tasks or callbacks
- constify struct ref_scale_ops
Fixes:
- use system_unbound_wq for kfree_rcu work to avoid disturbing
isolated CPUs
Misc:
- warn on unexpected rcu_state.srs_done_tail state
- better define "atomic" for list_replace_rcu() and
hlist_replace_rcu() routines
- annotate struct kvfree_rcu_bulk_data with __counted_by()"
* tag 'rcu.release.v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (90 commits)
rcu: Defer printing stall-warning backtrace when holding rcu_node lock
rcu/nocb: Remove superfluous memory barrier after bypass enqueue
rcu/nocb: Conditionally wake up rcuo if not already waiting on GP
rcu/nocb: Fix RT throttling hrtimer armed from offline CPU
rcu/nocb: Simplify (de-)offloading state machine
context_tracking: Tag context_tracking_enabled_this_cpu() __always_inline
context_tracking, rcu: Rename rcu_dyntick trace event into rcu_watching
rcu: Update stray documentation references to rcu_dynticks_eqs_{enter, exit}()
rcu: Rename rcu_momentary_dyntick_idle() into rcu_momentary_eqs()
rcu: Rename rcu_implicit_dynticks_qs() into rcu_watching_snap_recheck()
rcu: Rename dyntick_save_progress_counter() into rcu_watching_snap_save()
rcu: Rename struct rcu_data .exp_dynticks_snap into .exp_watching_snap
rcu: Rename struct rcu_data .dynticks_snap into .watching_snap
rcu: Rename rcu_dynticks_zero_in_eqs() into rcu_watching_zero_in_eqs()
rcu: Rename rcu_dynticks_in_eqs_since() into rcu_watching_snap_stopped_since()
rcu: Rename rcu_dynticks_in_eqs() into rcu_watching_snap_in_eqs()
rcu: Rename rcu_dynticks_eqs_online() into rcu_watching_online()
context_tracking, rcu: Rename rcu_dynticks_curr_cpu_in_eqs() into rcu_is_watching_curr_cpu()
context_tracking, rcu: Rename rcu_dynticks_task*() into rcu_task*()
refscale: Constify struct ref_scale_ops
...
.. _readme:
Linux kernel release 6.x <http://kernel.org/>
=============================================
These are the release notes for Linux version 6. Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.
What is Linux?
--------------
Linux is a clone of the operating system Unix, written from scratch by
Linus Torvalds with assistance from a loosely-knit team of hackers across
the Net. It aims towards POSIX and Single UNIX Specification compliance.
It has all the features you would expect in a modern fully-fledged Unix,
including true multitasking, virtual memory, shared libraries, demand
loading, shared copy-on-write executables, proper memory management,
and multistack networking including IPv4 and IPv6.
It is distributed under the GNU General Public License v2 - see the
accompanying COPYING file for more details.
On what hardware does it run?
-----------------------------
Although originally developed first for 32-bit x86-based PCs (386 or higher),
today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
ARC architectures.
Linux is easily portable to most general-purpose 32- or 64-bit architectures
as long as they have a paged memory management unit (PMMU) and a port of the
GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
also been ported to a number of architectures without a PMMU, although
functionality is then obviously somewhat limited.
Linux has also been ported to itself. You can now run the kernel as a
userspace application - this is called UserMode Linux (UML).
Documentation
-------------
- There is a lot of documentation available both in electronic form on
the Internet and in books, both Linux-specific and pertaining to
general UNIX questions. I'd recommend looking into the documentation
subdirectories on any Linux FTP site for the LDP (Linux Documentation
Project) books. This README is not meant to be documentation on the
system: there are much better sources available.
- There are various README files in the Documentation/ subdirectory:
these typically contain kernel-specific installation notes for some
drivers for example. Please read the
:ref:`Documentation/process/changes.rst <changes>` file, as it
contains information about the problems, which may result by upgrading
your kernel.
Installing the kernel source
----------------------------
- If you install the full sources, put the kernel tarball in a
directory where you have permissions (e.g. your home directory) and
unpack it::
xz -cd linux-6.x.tar.xz | tar xvf -
Replace "X" with the version number of the latest kernel.
Do NOT use the /usr/src/linux area! This area has a (usually
incomplete) set of kernel headers that are used by the library header
files. They should match the library, and not get messed up by
whatever the kernel-du-jour happens to be.
- You can also upgrade between 6.x releases by patching. Patches are
distributed in the xz format. To install by patching, get all the
newer patch files, enter the top level directory of the kernel source
(linux-6.x) and execute::
xz -cd ../patch-6.x.xz | patch -p1
Replace "x" for all versions bigger than the version "x" of your current
source tree, **in_order**, and you should be ok. You may want to remove
the backup files (some-file-name~ or some-file-name.orig), and make sure
that there are no failed patches (some-file-name# or some-file-name.rej).
If there are, either you or I have made a mistake.
Unlike patches for the 6.x kernels, patches for the 6.x.y kernels
(also known as the -stable kernels) are not incremental but instead apply
directly to the base 6.x kernel. For example, if your base kernel is 6.0
and you want to apply the 6.0.3 patch, you must not first apply the 6.0.1
and 6.0.2 patches. Similarly, if you are running kernel version 6.0.2 and
want to jump to 6.0.3, you must first reverse the 6.0.2 patch (that is,
patch -R) **before** applying the 6.0.3 patch. You can read more on this in
:ref:`Documentation/process/applying-patches.rst <applying_patches>`.
Alternatively, the script patch-kernel can be used to automate this
process. It determines the current kernel version and applies any
patches found::
linux/scripts/patch-kernel linux
The first argument in the command above is the location of the
kernel source. Patches are applied from the current directory, but
an alternative directory can be specified as the second argument.
- Make sure you have no stale .o files and dependencies lying around::
cd linux
make mrproper
You should now have the sources correctly installed.
Software requirements
---------------------
Compiling and running the 6.x kernels requires up-to-date
versions of various software packages. Consult
:ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
required and how to get updates for these packages. Beware that using
excessively old versions of these packages can cause indirect
errors that are very difficult to track down, so don't assume that
you can just update packages when obvious problems arise during
build or operation.
Build directory for the kernel
------------------------------
When compiling the kernel, all output files will per default be
stored together with the kernel source code.
Using the option ``make O=output/dir`` allows you to specify an alternate
place for the output files (including .config).
Example::
kernel source code: /usr/src/linux-6.x
build directory: /home/name/build/kernel
To configure and build the kernel, use::
cd /usr/src/linux-6.x
make O=/home/name/build/kernel menuconfig
make O=/home/name/build/kernel
sudo make O=/home/name/build/kernel modules_install install
Please note: If the ``O=output/dir`` option is used, then it must be
used for all invocations of make.
Configuring the kernel
----------------------
Do not skip this step even if you are only upgrading one minor
version. New configuration options are added in each release, and
odd problems will turn up if the configuration files are not set up
as expected. If you want to carry your existing configuration to a
new version with minimal work, use ``make oldconfig``, which will
only ask you for the answers to new questions.
- Alternative configuration commands are::
"make config" Plain text interface.
"make menuconfig" Text based color menus, radiolists & dialogs.
"make nconfig" Enhanced text based color menus.
"make xconfig" Qt based configuration tool.
"make gconfig" GTK+ based configuration tool.
"make oldconfig" Default all questions based on the contents of
your existing ./.config file and asking about
new config symbols.
"make olddefconfig"
Like above, but sets new symbols to their default
values without prompting.
"make defconfig" Create a ./.config file by using the default
symbol values from either arch/$ARCH/defconfig
or arch/$ARCH/configs/${PLATFORM}_defconfig,
depending on the architecture.
"make ${PLATFORM}_defconfig"
Create a ./.config file by using the default
symbol values from
arch/$ARCH/configs/${PLATFORM}_defconfig.
Use "make help" to get a list of all available
platforms of your architecture.
"make allyesconfig"
Create a ./.config file by setting symbol
values to 'y' as much as possible.
"make allmodconfig"
Create a ./.config file by setting symbol
values to 'm' as much as possible.
"make allnoconfig" Create a ./.config file by setting symbol
values to 'n' as much as possible.
"make randconfig" Create a ./.config file by setting symbol
values to random values.
"make localmodconfig" Create a config based on current config and
loaded modules (lsmod). Disables any module
option that is not needed for the loaded modules.
To create a localmodconfig for another machine,
store the lsmod of that machine into a file
and pass it in as a LSMOD parameter.
Also, you can preserve modules in certain folders
or kconfig files by specifying their paths in
parameter LMC_KEEP.
target$ lsmod > /tmp/mylsmod
target$ scp /tmp/mylsmod host:/tmp
host$ make LSMOD=/tmp/mylsmod \
LMC_KEEP="drivers/usb:drivers/gpu:fs" \
localmodconfig
The above also works when cross compiling.
"make localyesconfig" Similar to localmodconfig, except it will convert
all module options to built in (=y) options. You can
also preserve modules by LMC_KEEP.
"make kvm_guest.config" Enable additional options for kvm guest kernel
support.
"make xen.config" Enable additional options for xen dom0 guest kernel
support.
"make tinyconfig" Configure the tiniest possible kernel.
You can find more information on using the Linux kernel config tools
in Documentation/kbuild/kconfig.rst.
- NOTES on ``make config``:
- Having unnecessary drivers will make the kernel bigger, and can
under some circumstances lead to problems: probing for a
nonexistent controller card may confuse your other controllers.
- A kernel with math-emulation compiled in will still use the
coprocessor if one is present: the math emulation will just
never get used in that case. The kernel will be slightly larger,
but will work on different machines regardless of whether they
have a math coprocessor or not.
- The "kernel hacking" configuration details usually result in a
bigger or slower kernel (or both), and can even make the kernel
less stable by configuring some routines to actively try to
break bad code to find kernel problems (kmalloc()). Thus you
should probably answer 'n' to the questions for "development",
"experimental", or "debugging" features.
Compiling the kernel
--------------------
- Make sure you have at least gcc 5.1 available.
For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.
- Do a ``make`` to create a compressed kernel image. It is also possible to do
``make install`` if you have lilo installed or if your distribution has an
install script recognised by the kernel's installer. Most popular
distributions will have a recognized install script. You may want to
check your distribution's setup first.
To do the actual install, you have to be root, but none of the normal
build should require that. Don't take the name of root in vain.
- If you configured any of the parts of the kernel as ``modules``, you
will also have to do ``make modules_install``.
- Verbose kernel compile/build output:
Normally, the kernel build system runs in a fairly quiet mode (but not
totally silent). However, sometimes you or other kernel developers need
to see compile, link, or other commands exactly as they are executed.
For this, use "verbose" build mode. This is done by passing
``V=1`` to the ``make`` command, e.g.::
make V=1 all
To have the build system also tell the reason for the rebuild of each
target, use ``V=2``. The default is ``V=0``.
- Keep a backup kernel handy in case something goes wrong. This is
especially true for the development releases, since each new release
contains new code which has not been debugged. Make sure you keep a
backup of the modules corresponding to that kernel, as well. If you
are installing a new kernel with the same version number as your
working kernel, make a backup of your modules directory before you
do a ``make modules_install``.
Alternatively, before compiling, use the kernel config option
"LOCALVERSION" to append a unique suffix to the regular kernel version.
LOCALVERSION can be set in the "General Setup" menu.
- In order to boot your new kernel, you'll need to copy the kernel
image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
to the place where your regular bootable kernel is found.
- Booting a kernel directly from a storage device without the assistance
of a bootloader such as LILO or GRUB, is no longer supported in BIOS
(non-EFI systems). On UEFI/EFI systems, however, you can use EFISTUB
which allows the motherboard to boot directly to the kernel.
On modern workstations and desktops, it's generally recommended to use a
bootloader as difficulties can arise with multiple kernels and secure boot.
For more details on EFISTUB,
see "Documentation/admin-guide/efi-stub.rst".
- It's important to note that as of 2016 LILO (LInux LOader) is no longer in
active development, though as it was extremely popular, it often comes up
in documentation. Popular alternatives include GRUB2, rEFInd, Syslinux,
systemd-boot, or EFISTUB. For various reasons, it's not recommended to use
software that's no longer in active development.
- Chances are your distribution includes an install script and running
``make install`` will be all that's needed. Should that not be the case
you'll have to identify your bootloader and reference its documentation or
configure your EFI.
Legacy LILO Instructions
------------------------
- If you use LILO the kernel images are specified in the file /etc/lilo.conf.
The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
/boot/bzImage. To use the new kernel, save a copy of the old image and copy
the new image over the old one. Then, you MUST RERUN LILO to update the
loading map! If you don't, you won't be able to boot the new kernel image.
- Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish
to edit /etc/lilo.conf to specify an entry for your old kernel image
(say, /vmlinux.old) in case the new one does not work. See the LILO docs
for more information.
- After reinstalling LILO, you should be all set. Shutdown the system,
reboot, and enjoy!
- If you ever need to change the default root device, video mode, etc. in the
kernel image, use your bootloader's boot options where appropriate. No need
to recompile the kernel to change these parameters.
- Reboot with the new kernel and enjoy.
If something goes wrong
-----------------------
If you have problems that seem to be due to kernel bugs, please follow the
instructions at 'Documentation/admin-guide/reporting-issues.rst'.
Hints on understanding kernel bug reports are in
'Documentation/admin-guide/bug-hunting.rst'. More on debugging the kernel
with gdb is in 'Documentation/dev-tools/gdb-kernel-debugging.rst' and
'Documentation/dev-tools/kgdb.rst'.