Files
linux/arch/arm64/kernel/module.c
panfan a7ed7b9d0e arm64: ftrace: fix unreachable PLT for ftrace_caller in init_module with CONFIG_DYNAMIC_FTRACE
On arm64, it has been possible for a module's sections to be placed more
than 128M away from each other since commit:

  commit 3e35d303ab ("arm64: module: rework module VA range selection")

Due to this, an ftrace callsite in a module's .init.text section can be
out of branch range for the module's ftrace PLT entry (in the module's
.text section). Any attempt to enable tracing of that callsite will
result in a BRK being patched into the callsite, resulting in a fatal
exception when the callsite is later executed.

Fix this by adding an additional trampoline for .init.text, which will
be within range.

No additional trampolines are necessary due to the way a given
module's executable sections are packed together. Any executable
section beginning with ".init" will be placed in MOD_INIT_TEXT,
and any other executable section, including those beginning with ".exit",
 will be placed in MOD_TEXT.

Fixes: 3e35d303ab ("arm64: module: rework module VA range selection")
Cc: <stable@vger.kernel.org> # 6.5.x
Signed-off-by: panfan <panfan@qti.qualcomm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20250905032236.3220885-1-panfan@qti.qualcomm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2025-09-05 16:56:20 +01:00

507 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AArch64 loadable module support.
*
* Copyright (C) 2012 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#define pr_fmt(fmt) "Modules: " fmt
#include <linux/bitops.h>
#include <linux/elf.h>
#include <linux/ftrace.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/moduleloader.h>
#include <linux/random.h>
#include <linux/scs.h>
#include <asm/alternative.h>
#include <asm/insn.h>
#include <asm/scs.h>
#include <asm/sections.h>
#include <asm/text-patching.h>
enum aarch64_reloc_op {
RELOC_OP_NONE,
RELOC_OP_ABS,
RELOC_OP_PREL,
RELOC_OP_PAGE,
};
static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
{
switch (reloc_op) {
case RELOC_OP_ABS:
return val;
case RELOC_OP_PREL:
return val - (u64)place;
case RELOC_OP_PAGE:
return (val & ~0xfff) - ((u64)place & ~0xfff);
case RELOC_OP_NONE:
return 0;
}
pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
return 0;
}
#define WRITE_PLACE(place, val, mod) do { \
__typeof__(val) __val = (val); \
\
if (mod->state == MODULE_STATE_UNFORMED) \
*(place) = __val; \
else \
aarch64_insn_copy(place, &(__val), sizeof(*place)); \
} while (0)
static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len,
struct module *me)
{
s64 sval = do_reloc(op, place, val);
/*
* The ELF psABI for AArch64 documents the 16-bit and 32-bit place
* relative and absolute relocations as having a range of [-2^15, 2^16)
* or [-2^31, 2^32), respectively. However, in order to be able to
* detect overflows reliably, we have to choose whether we interpret
* such quantities as signed or as unsigned, and stick with it.
* The way we organize our address space requires a signed
* interpretation of 32-bit relative references, so let's use that
* for all R_AARCH64_PRELxx relocations. This means our upper
* bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
*/
switch (len) {
case 16:
WRITE_PLACE((s16 *)place, sval, me);
switch (op) {
case RELOC_OP_ABS:
if (sval < 0 || sval > U16_MAX)
return -ERANGE;
break;
case RELOC_OP_PREL:
if (sval < S16_MIN || sval > S16_MAX)
return -ERANGE;
break;
default:
pr_err("Invalid 16-bit data relocation (%d)\n", op);
return 0;
}
break;
case 32:
WRITE_PLACE((s32 *)place, sval, me);
switch (op) {
case RELOC_OP_ABS:
if (sval < 0 || sval > U32_MAX)
return -ERANGE;
break;
case RELOC_OP_PREL:
if (sval < S32_MIN || sval > S32_MAX)
return -ERANGE;
break;
default:
pr_err("Invalid 32-bit data relocation (%d)\n", op);
return 0;
}
break;
case 64:
WRITE_PLACE((s64 *)place, sval, me);
break;
default:
pr_err("Invalid length (%d) for data relocation\n", len);
return 0;
}
return 0;
}
enum aarch64_insn_movw_imm_type {
AARCH64_INSN_IMM_MOVNZ,
AARCH64_INSN_IMM_MOVKZ,
};
static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, enum aarch64_insn_movw_imm_type imm_type,
struct module *me)
{
u64 imm;
s64 sval;
u32 insn = le32_to_cpu(*place);
sval = do_reloc(op, place, val);
imm = sval >> lsb;
if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
/*
* For signed MOVW relocations, we have to manipulate the
* instruction encoding depending on whether or not the
* immediate is less than zero.
*/
insn &= ~(3 << 29);
if (sval >= 0) {
/* >=0: Set the instruction to MOVZ (opcode 10b). */
insn |= 2 << 29;
} else {
/*
* <0: Set the instruction to MOVN (opcode 00b).
* Since we've masked the opcode already, we
* don't need to do anything other than
* inverting the new immediate field.
*/
imm = ~imm;
}
}
/* Update the instruction with the new encoding. */
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
WRITE_PLACE(place, cpu_to_le32(insn), me);
if (imm > U16_MAX)
return -ERANGE;
return 0;
}
static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
int lsb, int len, enum aarch64_insn_imm_type imm_type,
struct module *me)
{
u64 imm, imm_mask;
s64 sval;
u32 insn = le32_to_cpu(*place);
/* Calculate the relocation value. */
sval = do_reloc(op, place, val);
sval >>= lsb;
/* Extract the value bits and shift them to bit 0. */
imm_mask = (BIT(lsb + len) - 1) >> lsb;
imm = sval & imm_mask;
/* Update the instruction's immediate field. */
insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
WRITE_PLACE(place, cpu_to_le32(insn), me);
/*
* Extract the upper value bits (including the sign bit) and
* shift them to bit 0.
*/
sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
/*
* Overflow has occurred if the upper bits are not all equal to
* the sign bit of the value.
*/
if ((u64)(sval + 1) >= 2)
return -ERANGE;
return 0;
}
static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
__le32 *place, u64 val, struct module *me)
{
u32 insn;
if (!is_forbidden_offset_for_adrp(place))
return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
AARCH64_INSN_IMM_ADR, me);
/* patch ADRP to ADR if it is in range */
if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
AARCH64_INSN_IMM_ADR, me)) {
insn = le32_to_cpu(*place);
insn &= ~BIT(31);
} else {
/* out of range for ADR -> emit a veneer */
val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
if (!val)
return -ENOEXEC;
insn = aarch64_insn_gen_branch_imm((u64)place, val,
AARCH64_INSN_BRANCH_NOLINK);
}
WRITE_PLACE(place, cpu_to_le32(insn), me);
return 0;
}
int apply_relocate_add(Elf64_Shdr *sechdrs,
const char *strtab,
unsigned int symindex,
unsigned int relsec,
struct module *me)
{
unsigned int i;
int ovf;
bool overflow_check;
Elf64_Sym *sym;
void *loc;
u64 val;
Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
/* loc corresponds to P in the AArch64 ELF document. */
loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
+ rel[i].r_offset;
/* sym is the ELF symbol we're referring to. */
sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
+ ELF64_R_SYM(rel[i].r_info);
/* val corresponds to (S + A) in the AArch64 ELF document. */
val = sym->st_value + rel[i].r_addend;
/* Check for overflow by default. */
overflow_check = true;
/* Perform the static relocation. */
switch (ELF64_R_TYPE(rel[i].r_info)) {
/* Null relocations. */
case R_ARM_NONE:
case R_AARCH64_NONE:
ovf = 0;
break;
/* Data relocations. */
case R_AARCH64_ABS64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_ABS, loc, val, 64, me);
break;
case R_AARCH64_ABS32:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 32, me);
break;
case R_AARCH64_ABS16:
ovf = reloc_data(RELOC_OP_ABS, loc, val, 16, me);
break;
case R_AARCH64_PREL64:
overflow_check = false;
ovf = reloc_data(RELOC_OP_PREL, loc, val, 64, me);
break;
case R_AARCH64_PREL32:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 32, me);
break;
case R_AARCH64_PREL16:
ovf = reloc_data(RELOC_OP_PREL, loc, val, 16, me);
break;
/* MOVW instruction relocations. */
case R_AARCH64_MOVW_UABS_G0_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_UABS_G1_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_UABS_G2_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_MOVW_UABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_UABS_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_SABS_G0:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_SABS_G1:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_SABS_G2:
ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_PREL_G0_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_PREL_G0:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_PREL_G1_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_PREL_G1:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_PREL_G2_NC:
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVKZ, me);
break;
case R_AARCH64_MOVW_PREL_G2:
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
AARCH64_INSN_IMM_MOVNZ, me);
break;
case R_AARCH64_MOVW_PREL_G3:
/* We're using the top bits so we can't overflow. */
overflow_check = false;
ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
AARCH64_INSN_IMM_MOVNZ, me);
break;
/* Immediate instruction relocations. */
case R_AARCH64_LD_PREL_LO19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19, me);
break;
case R_AARCH64_ADR_PREL_LO21:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
AARCH64_INSN_IMM_ADR, me);
break;
case R_AARCH64_ADR_PREL_PG_HI21_NC:
overflow_check = false;
fallthrough;
case R_AARCH64_ADR_PREL_PG_HI21:
ovf = reloc_insn_adrp(me, sechdrs, loc, val, me);
if (ovf && ovf != -ERANGE)
return ovf;
break;
case R_AARCH64_ADD_ABS_LO12_NC:
case R_AARCH64_LDST8_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
AARCH64_INSN_IMM_12, me);
break;
case R_AARCH64_LDST16_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
AARCH64_INSN_IMM_12, me);
break;
case R_AARCH64_LDST32_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
AARCH64_INSN_IMM_12, me);
break;
case R_AARCH64_LDST64_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
AARCH64_INSN_IMM_12, me);
break;
case R_AARCH64_LDST128_ABS_LO12_NC:
overflow_check = false;
ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
AARCH64_INSN_IMM_12, me);
break;
case R_AARCH64_TSTBR14:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
AARCH64_INSN_IMM_14, me);
break;
case R_AARCH64_CONDBR19:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
AARCH64_INSN_IMM_19, me);
break;
case R_AARCH64_JUMP26:
case R_AARCH64_CALL26:
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
AARCH64_INSN_IMM_26, me);
if (ovf == -ERANGE) {
val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
if (!val)
return -ENOEXEC;
ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
26, AARCH64_INSN_IMM_26, me);
}
break;
default:
pr_err("module %s: unsupported RELA relocation: %llu\n",
me->name, ELF64_R_TYPE(rel[i].r_info));
return -ENOEXEC;
}
if (overflow_check && ovf == -ERANGE)
goto overflow;
}
return 0;
overflow:
pr_err("module %s: overflow in relocation type %d val %Lx\n",
me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
return -ENOEXEC;
}
static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
{
*plt = get_plt_entry(addr, plt);
}
static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *mod)
{
#if defined(CONFIG_DYNAMIC_FTRACE)
const Elf_Shdr *s;
struct plt_entry *plts;
s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
if (!s)
return -ENOEXEC;
plts = (void *)s->sh_addr;
__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
mod->arch.ftrace_trampolines = plts;
s = find_section(hdr, sechdrs, ".init.text.ftrace_trampoline");
if (!s)
return -ENOEXEC;
plts = (void *)s->sh_addr;
__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
mod->arch.init_ftrace_trampolines = plts;
#endif
return 0;
}
int module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
const Elf_Shdr *s;
int ret;
s = find_section(hdr, sechdrs, ".altinstructions");
if (s)
apply_alternatives_module((void *)s->sh_addr, s->sh_size);
if (scs_is_dynamic()) {
s = find_section(hdr, sechdrs, ".init.eh_frame");
if (s) {
ret = __pi_scs_patch((void *)s->sh_addr, s->sh_size);
if (ret)
pr_err("module %s: error occurred during dynamic SCS patching (%d)\n",
me->name, ret);
}
}
return module_init_ftrace_plt(hdr, sechdrs, me);
}