Files
linux/Documentation/admin-guide
Linus Torvalds af9c191ac2 Merge tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer updates from Steven Rostedt:

 - tracing/ring-buffer: persistent buffer across reboots

   This allows for the tracing instance ring buffer to stay persistent
   across reboots. The way this is done is by adding to the kernel
   command line:

     trace_instance=boot_map@0x285400000:12M

   This will reserve 12 megabytes at the address 0x285400000, and then
   map the tracing instance "boot_map" ring buffer to that memory. This
   will appear as a normal instance in the tracefs system:

     /sys/kernel/tracing/instances/boot_map

   A user could enable tracing in that instance, and on reboot or kernel
   crash, if the memory is not wiped by the firmware, it will recreate
   the trace in that instance. For example, if one was debugging a
   shutdown of a kernel reboot:

     # cd /sys/kernel/tracing
     # echo function > instances/boot_map/current_tracer
     # reboot
     [..]
     # cd /sys/kernel/tracing
     # tail instances/boot_map/trace
           swapper/0-1       [000] d..1.   164.549800: restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549801: native_restore_boot_irq_mode <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549802: disconnect_bsp_APIC <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549811: hpet_disable <-native_machine_shutdown
           swapper/0-1       [000] d..1.   164.549812: iommu_shutdown_noop <-native_machine_restart
           swapper/0-1       [000] d..1.   164.549813: native_machine_emergency_restart <-__do_sys_reboot
           swapper/0-1       [000] d..1.   164.549813: tboot_shutdown <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549820: acpi_reboot <-native_machine_emergency_restart
           swapper/0-1       [000] d..1.   164.549821: acpi_reset <-acpi_reboot
           swapper/0-1       [000] d..1.   164.549822: acpi_os_write_port <-acpi_reboot

   On reboot, the buffer is examined to make sure it is valid. The
   validation check even steps through every event to make sure the meta
   data of the event is correct. If any test fails, it will simply reset
   the buffer, and the buffer will be empty on boot.

 - Allow the tracing persistent boot buffer to use the "reserve_mem"
   option

   Instead of having the admin find a physical address to store the
   persistent buffer, which can be very tedious if they have to
   administrate several different machines, allow them to use the
   "reserve_mem" option that will find a location for them. It is not as
   reliable because of KASLR, as the loading of the kernel in different
   locations can cause the memory allocated to be inconsistent. Booting
   with "nokaslr" can make reserve_mem more reliable.

 - Have function graph tracer handle offsets from a previous boot.

   The ring buffer output from a previous boot may have different
   addresses due to kaslr. Have the function graph tracer handle these
   by using the delta from the previous boot to the new boot address
   space.

 - Only reset the saved meta offset when the buffer is started or reset

   In the persistent memory meta data, it holds the previous address
   space information, so that it can calculate the delta to have
   function tracing work. But this gets updated after being read to hold
   the new address space. But if the buffer isn't used for that boot, on
   reboot, the delta is now calculated from the previous boot and not
   the boot that holds the data in the ring buffer. This causes the
   functions not to be shown. Do not save the address space information
   of the current kernel until it is being recorded.

 - Add a magic variable to test the valid meta data

   Add a magic variable in the meta data that can also be used for
   validation. The validator of the previous buffer doesn't need this
   magic data, but it can be used if the meta data is changed by a new
   kernel, which may have the same format that passes the validator but
   is used differently. This magic number can also be used as a
   "versioning" of the meta data.

 - Align user space mapped ring buffer sub buffers to improve TLB
   entries

   Linus mentioned that the mapped ring buffer sub buffers were
   misaligned between the meta page and the sub-buffers, so that if the
   sub-buffers were bigger than PAGE_SIZE, it wouldn't allow the TLB to
   use bigger entries.

 - Add new kernel command line "traceoff" to disable tracing on boot for
   instances

   If tracing is enabled for a boot instance, there needs a way to be
   able to disable it on boot so that new events do not get entered into
   the ring buffer and be mixed with events from a previous boot, as
   that can be confusing.

 - Allow trace_printk() to go to other instances

   Currently, trace_printk() can only go to the top level instance. When
   debugging with a persistent buffer, it is really useful to be able to
   add trace_printk() to go to that buffer, so that you have access to
   them after a crash.

 - Do not use "bin_printk()" for traces to a boot instance

   The bin_printk() saves only a pointer to the printk format in the
   ring buffer, as the reader of the buffer can still have access to it.
   But this is not the case if the buffer is from a previous boot. If
   the trace_printk() is going to a "persistent" buffer, it will use the
   slower version that writes the printk format into the buffer.

 - Add command line option to allow trace_printk() to go to an instance

   Allow the kernel command line to define which instance the
   trace_printk() goes to, instead of forcing the admin to set it for
   every boot via the tracefs options.

 - Start a document that explains how to use tracefs to debug the kernel

 - Add some more kernel selftests to test user mapped ring buffer

* tag 'trace-ring-buffer-v6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (28 commits)
  selftests/ring-buffer: Handle meta-page bigger than the system
  selftests/ring-buffer: Verify the entire meta-page padding
  tracing/Documentation: Start a document on how to debug with tracing
  tracing: Add option to set an instance to be the trace_printk destination
  tracing: Have trace_printk not use binary prints if boot buffer
  tracing: Allow trace_printk() to go to other instance buffers
  tracing: Add "traceoff" flag to boot time tracing instances
  ring-buffer: Align meta-page to sub-buffers for improved TLB usage
  ring-buffer: Add magic and struct size to boot up meta data
  ring-buffer: Don't reset persistent ring-buffer meta saved addresses
  tracing/fgraph: Have fgraph handle previous boot function addresses
  tracing: Allow boot instances to use reserve_mem boot memory
  tracing: Fix ifdef of snapshots to not prevent last_boot_info file
  ring-buffer: Use vma_pages() helper function
  tracing: Fix NULL vs IS_ERR() check in enable_instances()
  tracing: Add last boot delta offset for stack traces
  tracing: Update function tracing output for previous boot buffer
  tracing: Handle old buffer mappings for event strings and functions
  tracing/ring-buffer: Add last_boot_info file to boot instance
  ring-buffer: Save text and data locations in mapped meta data
  ...
2024-09-22 09:47:16 -07:00
..
2021-02-26 09:41:03 -08:00
2024-08-20 14:03:47 -04:00
2023-10-26 11:35:21 -06:00

.. _readme:

Linux kernel release 6.x <http://kernel.org/>
=============================================

These are the release notes for Linux version 6.  Read them carefully,
as they tell you what this is all about, explain how to install the
kernel, and what to do if something goes wrong.

What is Linux?
--------------

  Linux is a clone of the operating system Unix, written from scratch by
  Linus Torvalds with assistance from a loosely-knit team of hackers across
  the Net. It aims towards POSIX and Single UNIX Specification compliance.

  It has all the features you would expect in a modern fully-fledged Unix,
  including true multitasking, virtual memory, shared libraries, demand
  loading, shared copy-on-write executables, proper memory management,
  and multistack networking including IPv4 and IPv6.

  It is distributed under the GNU General Public License v2 - see the
  accompanying COPYING file for more details.

On what hardware does it run?
-----------------------------

  Although originally developed first for 32-bit x86-based PCs (386 or higher),
  today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and
  UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell,
  IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64 Xtensa, and
  ARC architectures.

  Linux is easily portable to most general-purpose 32- or 64-bit architectures
  as long as they have a paged memory management unit (PMMU) and a port of the
  GNU C compiler (gcc) (part of The GNU Compiler Collection, GCC). Linux has
  also been ported to a number of architectures without a PMMU, although
  functionality is then obviously somewhat limited.
  Linux has also been ported to itself. You can now run the kernel as a
  userspace application - this is called UserMode Linux (UML).

Documentation
-------------

 - There is a lot of documentation available both in electronic form on
   the Internet and in books, both Linux-specific and pertaining to
   general UNIX questions.  I'd recommend looking into the documentation
   subdirectories on any Linux FTP site for the LDP (Linux Documentation
   Project) books.  This README is not meant to be documentation on the
   system: there are much better sources available.

 - There are various README files in the Documentation/ subdirectory:
   these typically contain kernel-specific installation notes for some
   drivers for example. Please read the
   :ref:`Documentation/process/changes.rst <changes>` file, as it
   contains information about the problems, which may result by upgrading
   your kernel.

Installing the kernel source
----------------------------

 - If you install the full sources, put the kernel tarball in a
   directory where you have permissions (e.g. your home directory) and
   unpack it::

     xz -cd linux-6.x.tar.xz | tar xvf -

   Replace "X" with the version number of the latest kernel.

   Do NOT use the /usr/src/linux area! This area has a (usually
   incomplete) set of kernel headers that are used by the library header
   files.  They should match the library, and not get messed up by
   whatever the kernel-du-jour happens to be.

 - You can also upgrade between 6.x releases by patching.  Patches are
   distributed in the xz format.  To install by patching, get all the
   newer patch files, enter the top level directory of the kernel source
   (linux-6.x) and execute::

     xz -cd ../patch-6.x.xz | patch -p1

   Replace "x" for all versions bigger than the version "x" of your current
   source tree, **in_order**, and you should be ok.  You may want to remove
   the backup files (some-file-name~ or some-file-name.orig), and make sure
   that there are no failed patches (some-file-name# or some-file-name.rej).
   If there are, either you or I have made a mistake.

   Unlike patches for the 6.x kernels, patches for the 6.x.y kernels
   (also known as the -stable kernels) are not incremental but instead apply
   directly to the base 6.x kernel.  For example, if your base kernel is 6.0
   and you want to apply the 6.0.3 patch, you must not first apply the 6.0.1
   and 6.0.2 patches. Similarly, if you are running kernel version 6.0.2 and
   want to jump to 6.0.3, you must first reverse the 6.0.2 patch (that is,
   patch -R) **before** applying the 6.0.3 patch. You can read more on this in
   :ref:`Documentation/process/applying-patches.rst <applying_patches>`.

   Alternatively, the script patch-kernel can be used to automate this
   process.  It determines the current kernel version and applies any
   patches found::

     linux/scripts/patch-kernel linux

   The first argument in the command above is the location of the
   kernel source.  Patches are applied from the current directory, but
   an alternative directory can be specified as the second argument.

 - Make sure you have no stale .o files and dependencies lying around::

     cd linux
     make mrproper

   You should now have the sources correctly installed.

Software requirements
---------------------

   Compiling and running the 6.x kernels requires up-to-date
   versions of various software packages.  Consult
   :ref:`Documentation/process/changes.rst <changes>` for the minimum version numbers
   required and how to get updates for these packages.  Beware that using
   excessively old versions of these packages can cause indirect
   errors that are very difficult to track down, so don't assume that
   you can just update packages when obvious problems arise during
   build or operation.

Build directory for the kernel
------------------------------

   When compiling the kernel, all output files will per default be
   stored together with the kernel source code.
   Using the option ``make O=output/dir`` allows you to specify an alternate
   place for the output files (including .config).
   Example::

     kernel source code: /usr/src/linux-6.x
     build directory:    /home/name/build/kernel

   To configure and build the kernel, use::

     cd /usr/src/linux-6.x
     make O=/home/name/build/kernel menuconfig
     make O=/home/name/build/kernel
     sudo make O=/home/name/build/kernel modules_install install

   Please note: If the ``O=output/dir`` option is used, then it must be
   used for all invocations of make.

Configuring the kernel
----------------------

   Do not skip this step even if you are only upgrading one minor
   version.  New configuration options are added in each release, and
   odd problems will turn up if the configuration files are not set up
   as expected.  If you want to carry your existing configuration to a
   new version with minimal work, use ``make oldconfig``, which will
   only ask you for the answers to new questions.

 - Alternative configuration commands are::

     "make config"      Plain text interface.

     "make menuconfig"  Text based color menus, radiolists & dialogs.

     "make nconfig"     Enhanced text based color menus.

     "make xconfig"     Qt based configuration tool.

     "make gconfig"     GTK+ based configuration tool.

     "make oldconfig"   Default all questions based on the contents of
                        your existing ./.config file and asking about
                        new config symbols.

     "make olddefconfig"
                        Like above, but sets new symbols to their default
                        values without prompting.

     "make defconfig"   Create a ./.config file by using the default
                        symbol values from either arch/$ARCH/defconfig
                        or arch/$ARCH/configs/${PLATFORM}_defconfig,
                        depending on the architecture.

     "make ${PLATFORM}_defconfig"
                        Create a ./.config file by using the default
                        symbol values from
                        arch/$ARCH/configs/${PLATFORM}_defconfig.
                        Use "make help" to get a list of all available
                        platforms of your architecture.

     "make allyesconfig"
                        Create a ./.config file by setting symbol
                        values to 'y' as much as possible.

     "make allmodconfig"
                        Create a ./.config file by setting symbol
                        values to 'm' as much as possible.

     "make allnoconfig" Create a ./.config file by setting symbol
                        values to 'n' as much as possible.

     "make randconfig"  Create a ./.config file by setting symbol
                        values to random values.

     "make localmodconfig" Create a config based on current config and
                           loaded modules (lsmod). Disables any module
                           option that is not needed for the loaded modules.

                           To create a localmodconfig for another machine,
                           store the lsmod of that machine into a file
                           and pass it in as a LSMOD parameter.

                           Also, you can preserve modules in certain folders
                           or kconfig files by specifying their paths in
                           parameter LMC_KEEP.

                   target$ lsmod > /tmp/mylsmod
                   target$ scp /tmp/mylsmod host:/tmp

                   host$ make LSMOD=/tmp/mylsmod \
                           LMC_KEEP="drivers/usb:drivers/gpu:fs" \
                           localmodconfig

                           The above also works when cross compiling.

     "make localyesconfig" Similar to localmodconfig, except it will convert
                           all module options to built in (=y) options. You can
                           also preserve modules by LMC_KEEP.

     "make kvm_guest.config"   Enable additional options for kvm guest kernel
                               support.

     "make xen.config"   Enable additional options for xen dom0 guest kernel
                         support.

     "make tinyconfig"  Configure the tiniest possible kernel.

   You can find more information on using the Linux kernel config tools
   in Documentation/kbuild/kconfig.rst.

 - NOTES on ``make config``:

    - Having unnecessary drivers will make the kernel bigger, and can
      under some circumstances lead to problems: probing for a
      nonexistent controller card may confuse your other controllers.

    - A kernel with math-emulation compiled in will still use the
      coprocessor if one is present: the math emulation will just
      never get used in that case.  The kernel will be slightly larger,
      but will work on different machines regardless of whether they
      have a math coprocessor or not.

    - The "kernel hacking" configuration details usually result in a
      bigger or slower kernel (or both), and can even make the kernel
      less stable by configuring some routines to actively try to
      break bad code to find kernel problems (kmalloc()).  Thus you
      should probably answer 'n' to the questions for "development",
      "experimental", or "debugging" features.

Compiling the kernel
--------------------

 - Make sure you have at least gcc 5.1 available.
   For more information, refer to :ref:`Documentation/process/changes.rst <changes>`.

 - Do a ``make`` to create a compressed kernel image. It is also possible to do
   ``make install`` if you have lilo installed or if your distribution has an
   install script recognised by the kernel's installer. Most popular
   distributions will have a recognized install script. You may want to
   check your distribution's setup first.

   To do the actual install, you have to be root, but none of the normal
   build should require that. Don't take the name of root in vain.

 - If you configured any of the parts of the kernel as ``modules``, you
   will also have to do ``make modules_install``.

 - Verbose kernel compile/build output:

   Normally, the kernel build system runs in a fairly quiet mode (but not
   totally silent).  However, sometimes you or other kernel developers need
   to see compile, link, or other commands exactly as they are executed.
   For this, use "verbose" build mode.  This is done by passing
   ``V=1`` to the ``make`` command, e.g.::

     make V=1 all

   To have the build system also tell the reason for the rebuild of each
   target, use ``V=2``.  The default is ``V=0``.

 - Keep a backup kernel handy in case something goes wrong.  This is
   especially true for the development releases, since each new release
   contains new code which has not been debugged.  Make sure you keep a
   backup of the modules corresponding to that kernel, as well.  If you
   are installing a new kernel with the same version number as your
   working kernel, make a backup of your modules directory before you
   do a ``make modules_install``.

   Alternatively, before compiling, use the kernel config option
   "LOCALVERSION" to append a unique suffix to the regular kernel version.
   LOCALVERSION can be set in the "General Setup" menu.

 - In order to boot your new kernel, you'll need to copy the kernel
   image (e.g. .../linux/arch/x86/boot/bzImage after compilation)
   to the place where your regular bootable kernel is found.

 - Booting a kernel directly from a storage device without the assistance
   of a bootloader such as LILO or GRUB, is no longer supported in BIOS
   (non-EFI systems). On UEFI/EFI systems, however, you can use EFISTUB
   which allows the motherboard to boot directly to the kernel.
   On modern workstations and desktops, it's generally recommended to use a
   bootloader as difficulties can arise with multiple kernels and secure boot.
   For more details on EFISTUB,
   see "Documentation/admin-guide/efi-stub.rst".

 - It's important to note that as of 2016 LILO (LInux LOader) is no longer in
   active development, though as it was extremely popular, it often comes up
   in documentation. Popular alternatives include GRUB2, rEFInd, Syslinux,
   systemd-boot, or EFISTUB. For various reasons, it's not recommended to use
   software that's no longer in active development.

 - Chances are your distribution includes an install script and running
   ``make install`` will be all that's needed. Should that not be the case
   you'll have to identify your bootloader and reference its documentation or
   configure your EFI.

Legacy LILO Instructions
------------------------


 - If you use LILO the kernel images are specified in the file /etc/lilo.conf.
   The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or
   /boot/bzImage. To use the new kernel, save a copy of the old image and copy
   the new image over the old one. Then, you MUST RERUN LILO to update the
   loading map! If you don't, you won't be able to boot the new kernel image.

 - Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish
   to edit /etc/lilo.conf to specify an entry for your old kernel image
   (say, /vmlinux.old) in case the new one does not work. See the LILO docs
   for more information.

 - After reinstalling LILO, you should be all set. Shutdown the system,
   reboot, and enjoy!

 - If you ever need to change the default root device, video mode, etc. in the
   kernel image, use your bootloader's boot options where appropriate. No need
   to recompile the kernel to change these parameters.

 - Reboot with the new kernel and enjoy.


If something goes wrong
-----------------------

If you have problems that seem to be due to kernel bugs, please follow the
instructions at 'Documentation/admin-guide/reporting-issues.rst'.

Hints on understanding kernel bug reports are in
'Documentation/admin-guide/bug-hunting.rst'. More on debugging the kernel
with gdb is in 'Documentation/dev-tools/gdb-kernel-debugging.rst' and
'Documentation/dev-tools/kgdb.rst'.