Files
linux/net/core/devmem.c
Bobby Eshleman 5c024716f5 net: devmem: convert binding refcount to percpu_ref
Convert net_devmem_dmabuf_binding refcount from refcount_t to percpu_ref
to optimize common-case reference counting on the hot path.

The typical devmem workflow involves binding a dmabuf to a queue
(acquiring the initial reference on binding->ref), followed by
high-volume traffic where every skb fragment acquires a reference.
Eventually traffic stops and the unbind operation releases the initial
reference. Additionally, the high traffic hot path is often multi-core.
This access pattern is ideal for percpu_ref as the first and last
reference during bind/unbind normally book-ends activity in the hot
path.

__net_devmem_dmabuf_binding_free becomes the percpu_ref callback invoked
when the last reference is dropped.

kperf test:
- 4MB message sizes
- 60s of workload each run
- 5 runs
- 4 flows

Throughput:
	Before: 45.31 GB/s (+/- 3.17 GB/s)
	After: 48.67 GB/s (+/- 0.01 GB/s)

Picking throughput-matched kperf runs (both before and after matched at
~48 GB/s) for apples-to-apples comparison:

Summary (averaged across 4 workers):

  TX worker CPU idle %:
    Before: 34.44%
    After: 87.13%

  RX worker CPU idle %:
    Before: 5.38%
    After: 9.73%

kperf before:

client: == Source
client:   Tx 98.100 Gbps (735764807680 bytes in 60001149 usec)
client:   Tx102.798 Gbps (770996961280 bytes in 60001149 usec)
client:   Tx101.534 Gbps (761517834240 bytes in 60001149 usec)
client:   Tx 82.794 Gbps (620966707200 bytes in 60001149 usec)
client:   net CPU 56: usr: 0.01% sys: 0.12% idle:17.06% iow: 0.00% irq: 9.89% sirq:72.91%
client:   app CPU 60: usr: 0.08% sys:63.30% idle:36.24% iow: 0.00% irq: 0.30% sirq: 0.06%
client:   net CPU 57: usr: 0.03% sys: 0.08% idle:75.68% iow: 0.00% irq: 2.96% sirq:21.23%
client:   app CPU 61: usr: 0.06% sys:67.67% idle:31.94% iow: 0.00% irq: 0.28% sirq: 0.03%
client:   net CPU 58: usr: 0.01% sys: 0.06% idle:76.87% iow: 0.00% irq: 2.84% sirq:20.19%
client:   app CPU 62: usr: 0.06% sys:69.78% idle:29.79% iow: 0.00% irq: 0.30% sirq: 0.05%
client:   net CPU 59: usr: 0.06% sys: 0.16% idle:74.97% iow: 0.00% irq: 3.76% sirq:21.03%
client:   app CPU 63: usr: 0.06% sys:59.82% idle:39.80% iow: 0.00% irq: 0.25% sirq: 0.05%
client: == Target
client:   Rx 98.092 Gbps (735764807680 bytes in 60006084 usec)
client:   Rx102.785 Gbps (770962161664 bytes in 60006084 usec)
client:   Rx101.523 Gbps (761499566080 bytes in 60006084 usec)
client:   Rx 82.783 Gbps (620933136384 bytes in 60006084 usec)
client:   net CPU  2: usr: 0.00% sys: 0.01% idle:24.51% iow: 0.00% irq: 1.67% sirq:73.79%
client:   app CPU  6: usr: 1.51% sys:96.43% idle: 1.13% iow: 0.00% irq: 0.36% sirq: 0.55%
client:   net CPU  1: usr: 0.00% sys: 0.01% idle:25.18% iow: 0.00% irq: 1.99% sirq:72.80%
client:   app CPU  5: usr: 2.21% sys:94.54% idle: 2.54% iow: 0.00% irq: 0.38% sirq: 0.30%
client:   net CPU  3: usr: 0.00% sys: 0.01% idle:26.34% iow: 0.00% irq: 2.12% sirq:71.51%
client:   app CPU  7: usr: 2.22% sys:94.28% idle: 2.52% iow: 0.00% irq: 0.59% sirq: 0.37%
client:   net CPU  0: usr: 0.00% sys: 0.03% idle: 0.00% iow: 0.00% irq:10.44% sirq:89.51%
client:   app CPU  4: usr: 2.39% sys:81.46% idle:15.33% iow: 0.00% irq: 0.50% sirq: 0.30%

kperf after:

client: == Source
client:   Tx 99.257 Gbps (744447016960 bytes in 60001303 usec)
client:   Tx101.013 Gbps (757617131520 bytes in 60001303 usec)
client:   Tx 88.179 Gbps (661357854720 bytes in 60001303 usec)
client:   Tx101.002 Gbps (757533245440 bytes in 60001303 usec)
client:   net CPU 56: usr: 0.00% sys: 0.01% idle: 6.22% iow: 0.00% irq: 8.68% sirq:85.06%
client:   app CPU 60: usr: 0.08% sys:12.56% idle:87.21% iow: 0.00% irq: 0.08% sirq: 0.05%
client:   net CPU 57: usr: 0.00% sys: 0.05% idle:69.53% iow: 0.00% irq: 2.02% sirq:28.38%
client:   app CPU 61: usr: 0.11% sys:13.40% idle:86.36% iow: 0.00% irq: 0.08% sirq: 0.03%
client:   net CPU 58: usr: 0.00% sys: 0.03% idle:70.04% iow: 0.00% irq: 3.38% sirq:26.53%
client:   app CPU 62: usr: 0.10% sys:11.46% idle:88.31% iow: 0.00% irq: 0.08% sirq: 0.03%
client:   net CPU 59: usr: 0.01% sys: 0.06% idle:71.18% iow: 0.00% irq: 1.97% sirq:26.75%
client:   app CPU 63: usr: 0.10% sys:13.10% idle:86.64% iow: 0.00% irq: 0.10% sirq: 0.05%
client: == Target
client:   Rx 99.250 Gbps (744415182848 bytes in 60003297 usec)
client:   Rx101.006 Gbps (757589737472 bytes in 60003297 usec)
client:   Rx 88.171 Gbps (661319475200 bytes in 60003297 usec)
client:   Rx100.996 Gbps (757514792960 bytes in 60003297 usec)
client:   net CPU  2: usr: 0.00% sys: 0.01% idle:28.02% iow: 0.00% irq: 1.95% sirq:70.00%
client:   app CPU  6: usr: 2.03% sys:87.20% idle:10.04% iow: 0.00% irq: 0.37% sirq: 0.33%
client:   net CPU  3: usr: 0.00% sys: 0.00% idle:27.63% iow: 0.00% irq: 1.90% sirq:70.45%
client:   app CPU  7: usr: 1.78% sys:89.70% idle: 7.79% iow: 0.00% irq: 0.37% sirq: 0.34%
client:   net CPU  0: usr: 0.00% sys: 0.01% idle: 0.00% iow: 0.00% irq: 9.96% sirq:90.01%
client:   app CPU  4: usr: 2.33% sys:83.51% idle:13.24% iow: 0.00% irq: 0.64% sirq: 0.26%
client:   net CPU  1: usr: 0.00% sys: 0.01% idle:27.60% iow: 0.00% irq: 1.94% sirq:70.43%
client:   app CPU  5: usr: 1.88% sys:89.61% idle: 7.86% iow: 0.00% irq: 0.35% sirq: 0.27%

Signed-off-by: Bobby Eshleman <bobbyeshleman@meta.com>
Acked-by: Stanislav Fomichev <sdf@fomichev.me>
Link: https://patch.msgid.link/20260107-upstream-precpu-ref-v2-v2-1-a709f098b3dc@meta.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2026-01-12 18:00:12 -08:00

539 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Devmem TCP
*
* Authors: Mina Almasry <almasrymina@google.com>
* Willem de Bruijn <willemdebruijn.kernel@gmail.com>
* Kaiyuan Zhang <kaiyuanz@google.com
*/
#include <linux/dma-buf.h>
#include <linux/genalloc.h>
#include <linux/mm.h>
#include <linux/netdevice.h>
#include <linux/types.h>
#include <net/netdev_queues.h>
#include <net/netdev_rx_queue.h>
#include <net/page_pool/helpers.h>
#include <net/page_pool/memory_provider.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <trace/events/page_pool.h>
#include "devmem.h"
#include "mp_dmabuf_devmem.h"
#include "page_pool_priv.h"
/* Device memory support */
static DEFINE_XARRAY_FLAGS(net_devmem_dmabuf_bindings, XA_FLAGS_ALLOC1);
static const struct memory_provider_ops dmabuf_devmem_ops;
bool net_is_devmem_iov(struct net_iov *niov)
{
return niov->type == NET_IOV_DMABUF;
}
static void net_devmem_dmabuf_free_chunk_owner(struct gen_pool *genpool,
struct gen_pool_chunk *chunk,
void *not_used)
{
struct dmabuf_genpool_chunk_owner *owner = chunk->owner;
kvfree(owner->area.niovs);
kfree(owner);
}
static dma_addr_t net_devmem_get_dma_addr(const struct net_iov *niov)
{
struct dmabuf_genpool_chunk_owner *owner;
owner = net_devmem_iov_to_chunk_owner(niov);
return owner->base_dma_addr +
((dma_addr_t)net_iov_idx(niov) << PAGE_SHIFT);
}
static void net_devmem_dmabuf_binding_release(struct percpu_ref *ref)
{
struct net_devmem_dmabuf_binding *binding =
container_of(ref, struct net_devmem_dmabuf_binding, ref);
INIT_WORK(&binding->unbind_w, __net_devmem_dmabuf_binding_free);
schedule_work(&binding->unbind_w);
}
void __net_devmem_dmabuf_binding_free(struct work_struct *wq)
{
struct net_devmem_dmabuf_binding *binding = container_of(wq, typeof(*binding), unbind_w);
size_t size, avail;
gen_pool_for_each_chunk(binding->chunk_pool,
net_devmem_dmabuf_free_chunk_owner, NULL);
size = gen_pool_size(binding->chunk_pool);
avail = gen_pool_avail(binding->chunk_pool);
if (!WARN(size != avail, "can't destroy genpool. size=%zu, avail=%zu",
size, avail))
gen_pool_destroy(binding->chunk_pool);
dma_buf_unmap_attachment_unlocked(binding->attachment, binding->sgt,
binding->direction);
dma_buf_detach(binding->dmabuf, binding->attachment);
dma_buf_put(binding->dmabuf);
xa_destroy(&binding->bound_rxqs);
percpu_ref_exit(&binding->ref);
kvfree(binding->tx_vec);
kfree(binding);
}
struct net_iov *
net_devmem_alloc_dmabuf(struct net_devmem_dmabuf_binding *binding)
{
struct dmabuf_genpool_chunk_owner *owner;
unsigned long dma_addr;
struct net_iov *niov;
ssize_t offset;
ssize_t index;
dma_addr = gen_pool_alloc_owner(binding->chunk_pool, PAGE_SIZE,
(void **)&owner);
if (!dma_addr)
return NULL;
offset = dma_addr - owner->base_dma_addr;
index = offset / PAGE_SIZE;
niov = &owner->area.niovs[index];
niov->desc.pp_magic = 0;
niov->desc.pp = NULL;
atomic_long_set(&niov->desc.pp_ref_count, 0);
return niov;
}
void net_devmem_free_dmabuf(struct net_iov *niov)
{
struct net_devmem_dmabuf_binding *binding = net_devmem_iov_binding(niov);
unsigned long dma_addr = net_devmem_get_dma_addr(niov);
if (WARN_ON(!gen_pool_has_addr(binding->chunk_pool, dma_addr,
PAGE_SIZE)))
return;
gen_pool_free(binding->chunk_pool, dma_addr, PAGE_SIZE);
}
void net_devmem_unbind_dmabuf(struct net_devmem_dmabuf_binding *binding)
{
struct netdev_rx_queue *rxq;
unsigned long xa_idx;
unsigned int rxq_idx;
xa_erase(&net_devmem_dmabuf_bindings, binding->id);
/* Ensure no tx net_devmem_lookup_dmabuf() are in flight after the
* erase.
*/
synchronize_net();
if (binding->list.next)
list_del(&binding->list);
xa_for_each(&binding->bound_rxqs, xa_idx, rxq) {
const struct pp_memory_provider_params mp_params = {
.mp_priv = binding,
.mp_ops = &dmabuf_devmem_ops,
};
rxq_idx = get_netdev_rx_queue_index(rxq);
__net_mp_close_rxq(binding->dev, rxq_idx, &mp_params);
}
percpu_ref_kill(&binding->ref);
}
int net_devmem_bind_dmabuf_to_queue(struct net_device *dev, u32 rxq_idx,
struct net_devmem_dmabuf_binding *binding,
struct netlink_ext_ack *extack)
{
struct pp_memory_provider_params mp_params = {
.mp_priv = binding,
.mp_ops = &dmabuf_devmem_ops,
};
struct netdev_rx_queue *rxq;
u32 xa_idx;
int err;
err = __net_mp_open_rxq(dev, rxq_idx, &mp_params, extack);
if (err)
return err;
rxq = __netif_get_rx_queue(dev, rxq_idx);
err = xa_alloc(&binding->bound_rxqs, &xa_idx, rxq, xa_limit_32b,
GFP_KERNEL);
if (err)
goto err_close_rxq;
return 0;
err_close_rxq:
__net_mp_close_rxq(dev, rxq_idx, &mp_params);
return err;
}
struct net_devmem_dmabuf_binding *
net_devmem_bind_dmabuf(struct net_device *dev,
struct device *dma_dev,
enum dma_data_direction direction,
unsigned int dmabuf_fd, struct netdev_nl_sock *priv,
struct netlink_ext_ack *extack)
{
struct net_devmem_dmabuf_binding *binding;
static u32 id_alloc_next;
struct scatterlist *sg;
struct dma_buf *dmabuf;
unsigned int sg_idx, i;
unsigned long virtual;
int err;
if (!dma_dev) {
NL_SET_ERR_MSG(extack, "Device doesn't support DMA");
return ERR_PTR(-EOPNOTSUPP);
}
dmabuf = dma_buf_get(dmabuf_fd);
if (IS_ERR(dmabuf))
return ERR_CAST(dmabuf);
binding = kzalloc_node(sizeof(*binding), GFP_KERNEL,
dev_to_node(&dev->dev));
if (!binding) {
err = -ENOMEM;
goto err_put_dmabuf;
}
binding->dev = dev;
xa_init_flags(&binding->bound_rxqs, XA_FLAGS_ALLOC);
err = percpu_ref_init(&binding->ref,
net_devmem_dmabuf_binding_release,
0, GFP_KERNEL);
if (err < 0)
goto err_free_binding;
mutex_init(&binding->lock);
binding->dmabuf = dmabuf;
binding->direction = direction;
binding->attachment = dma_buf_attach(binding->dmabuf, dma_dev);
if (IS_ERR(binding->attachment)) {
err = PTR_ERR(binding->attachment);
NL_SET_ERR_MSG(extack, "Failed to bind dmabuf to device");
goto err_exit_ref;
}
binding->sgt = dma_buf_map_attachment_unlocked(binding->attachment,
direction);
if (IS_ERR(binding->sgt)) {
err = PTR_ERR(binding->sgt);
NL_SET_ERR_MSG(extack, "Failed to map dmabuf attachment");
goto err_detach;
}
if (direction == DMA_TO_DEVICE) {
binding->tx_vec = kvmalloc_array(dmabuf->size / PAGE_SIZE,
sizeof(struct net_iov *),
GFP_KERNEL);
if (!binding->tx_vec) {
err = -ENOMEM;
goto err_unmap;
}
}
/* For simplicity we expect to make PAGE_SIZE allocations, but the
* binding can be much more flexible than that. We may be able to
* allocate MTU sized chunks here. Leave that for future work...
*/
binding->chunk_pool = gen_pool_create(PAGE_SHIFT,
dev_to_node(&dev->dev));
if (!binding->chunk_pool) {
err = -ENOMEM;
goto err_tx_vec;
}
virtual = 0;
for_each_sgtable_dma_sg(binding->sgt, sg, sg_idx) {
dma_addr_t dma_addr = sg_dma_address(sg);
struct dmabuf_genpool_chunk_owner *owner;
size_t len = sg_dma_len(sg);
struct net_iov *niov;
owner = kzalloc_node(sizeof(*owner), GFP_KERNEL,
dev_to_node(&dev->dev));
if (!owner) {
err = -ENOMEM;
goto err_free_chunks;
}
owner->area.base_virtual = virtual;
owner->base_dma_addr = dma_addr;
owner->area.num_niovs = len / PAGE_SIZE;
owner->binding = binding;
err = gen_pool_add_owner(binding->chunk_pool, dma_addr,
dma_addr, len, dev_to_node(&dev->dev),
owner);
if (err) {
kfree(owner);
err = -EINVAL;
goto err_free_chunks;
}
owner->area.niovs = kvmalloc_array(owner->area.num_niovs,
sizeof(*owner->area.niovs),
GFP_KERNEL);
if (!owner->area.niovs) {
err = -ENOMEM;
goto err_free_chunks;
}
for (i = 0; i < owner->area.num_niovs; i++) {
niov = &owner->area.niovs[i];
niov->type = NET_IOV_DMABUF;
niov->owner = &owner->area;
page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov),
net_devmem_get_dma_addr(niov));
if (direction == DMA_TO_DEVICE)
binding->tx_vec[owner->area.base_virtual / PAGE_SIZE + i] = niov;
}
virtual += len;
}
err = xa_alloc_cyclic(&net_devmem_dmabuf_bindings, &binding->id,
binding, xa_limit_32b, &id_alloc_next,
GFP_KERNEL);
if (err < 0)
goto err_free_chunks;
list_add(&binding->list, &priv->bindings);
return binding;
err_free_chunks:
gen_pool_for_each_chunk(binding->chunk_pool,
net_devmem_dmabuf_free_chunk_owner, NULL);
gen_pool_destroy(binding->chunk_pool);
err_tx_vec:
kvfree(binding->tx_vec);
err_unmap:
dma_buf_unmap_attachment_unlocked(binding->attachment, binding->sgt,
direction);
err_detach:
dma_buf_detach(dmabuf, binding->attachment);
err_exit_ref:
percpu_ref_exit(&binding->ref);
err_free_binding:
kfree(binding);
err_put_dmabuf:
dma_buf_put(dmabuf);
return ERR_PTR(err);
}
struct net_devmem_dmabuf_binding *net_devmem_lookup_dmabuf(u32 id)
{
struct net_devmem_dmabuf_binding *binding;
rcu_read_lock();
binding = xa_load(&net_devmem_dmabuf_bindings, id);
if (binding) {
if (!net_devmem_dmabuf_binding_get(binding))
binding = NULL;
}
rcu_read_unlock();
return binding;
}
void net_devmem_get_net_iov(struct net_iov *niov)
{
net_devmem_dmabuf_binding_get(net_devmem_iov_binding(niov));
}
void net_devmem_put_net_iov(struct net_iov *niov)
{
net_devmem_dmabuf_binding_put(net_devmem_iov_binding(niov));
}
struct net_devmem_dmabuf_binding *net_devmem_get_binding(struct sock *sk,
unsigned int dmabuf_id)
{
struct net_devmem_dmabuf_binding *binding;
struct net_device *dst_dev;
struct dst_entry *dst;
int err = 0;
binding = net_devmem_lookup_dmabuf(dmabuf_id);
if (!binding || !binding->tx_vec) {
err = -EINVAL;
goto out_err;
}
rcu_read_lock();
dst = __sk_dst_get(sk);
/* If dst is NULL (route expired), attempt to rebuild it. */
if (unlikely(!dst)) {
if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) {
err = -EHOSTUNREACH;
goto out_unlock;
}
dst = __sk_dst_get(sk);
if (unlikely(!dst)) {
err = -ENODEV;
goto out_unlock;
}
}
/* The dma-addrs in this binding are only reachable to the corresponding
* net_device.
*/
dst_dev = dst_dev_rcu(dst);
if (unlikely(!dst_dev) || unlikely(dst_dev != binding->dev)) {
err = -ENODEV;
goto out_unlock;
}
rcu_read_unlock();
return binding;
out_unlock:
rcu_read_unlock();
out_err:
if (binding)
net_devmem_dmabuf_binding_put(binding);
return ERR_PTR(err);
}
struct net_iov *
net_devmem_get_niov_at(struct net_devmem_dmabuf_binding *binding,
size_t virt_addr, size_t *off, size_t *size)
{
if (virt_addr >= binding->dmabuf->size)
return NULL;
*off = virt_addr % PAGE_SIZE;
*size = PAGE_SIZE - *off;
return binding->tx_vec[virt_addr / PAGE_SIZE];
}
/*** "Dmabuf devmem memory provider" ***/
int mp_dmabuf_devmem_init(struct page_pool *pool)
{
struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
if (!binding)
return -EINVAL;
/* dma-buf dma addresses do not need and should not be used with
* dma_sync_for_cpu/device. Force disable dma_sync.
*/
pool->dma_sync = false;
pool->dma_sync_for_cpu = false;
if (pool->p.order != 0)
return -E2BIG;
net_devmem_dmabuf_binding_get(binding);
return 0;
}
netmem_ref mp_dmabuf_devmem_alloc_netmems(struct page_pool *pool, gfp_t gfp)
{
struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
struct net_iov *niov;
netmem_ref netmem;
niov = net_devmem_alloc_dmabuf(binding);
if (!niov)
return 0;
netmem = net_iov_to_netmem(niov);
page_pool_set_pp_info(pool, netmem);
pool->pages_state_hold_cnt++;
trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
return netmem;
}
void mp_dmabuf_devmem_destroy(struct page_pool *pool)
{
struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
net_devmem_dmabuf_binding_put(binding);
}
bool mp_dmabuf_devmem_release_page(struct page_pool *pool, netmem_ref netmem)
{
long refcount = atomic_long_read(netmem_get_pp_ref_count_ref(netmem));
if (WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
return false;
if (WARN_ON_ONCE(refcount != 1))
return false;
page_pool_clear_pp_info(netmem);
net_devmem_free_dmabuf(netmem_to_net_iov(netmem));
/* We don't want the page pool put_page()ing our net_iovs. */
return false;
}
static int mp_dmabuf_devmem_nl_fill(void *mp_priv, struct sk_buff *rsp,
struct netdev_rx_queue *rxq)
{
const struct net_devmem_dmabuf_binding *binding = mp_priv;
int type = rxq ? NETDEV_A_QUEUE_DMABUF : NETDEV_A_PAGE_POOL_DMABUF;
return nla_put_u32(rsp, type, binding->id);
}
static void mp_dmabuf_devmem_uninstall(void *mp_priv,
struct netdev_rx_queue *rxq)
{
struct net_devmem_dmabuf_binding *binding = mp_priv;
struct netdev_rx_queue *bound_rxq;
unsigned long xa_idx;
xa_for_each(&binding->bound_rxqs, xa_idx, bound_rxq) {
if (bound_rxq == rxq) {
xa_erase(&binding->bound_rxqs, xa_idx);
if (xa_empty(&binding->bound_rxqs)) {
mutex_lock(&binding->lock);
binding->dev = NULL;
mutex_unlock(&binding->lock);
}
break;
}
}
}
static const struct memory_provider_ops dmabuf_devmem_ops = {
.init = mp_dmabuf_devmem_init,
.destroy = mp_dmabuf_devmem_destroy,
.alloc_netmems = mp_dmabuf_devmem_alloc_netmems,
.release_netmem = mp_dmabuf_devmem_release_page,
.nl_fill = mp_dmabuf_devmem_nl_fill,
.uninstall = mp_dmabuf_devmem_uninstall,
};