Files
linux/fs/Kconfig
Linus Torvalds eb0ece1602 Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:

 - The series "Enable strict percpu address space checks" from Uros
   Bizjak uses x86 named address space qualifiers to provide
   compile-time checking of percpu area accesses.

   This has caused a small amount of fallout - two or three issues were
   reported. In all cases the calling code was found to be incorrect.

 - The series "Some cleanup for memcg" from Chen Ridong implements some
   relatively monir cleanups for the memcontrol code.

 - The series "mm: fixes for device-exclusive entries (hmm)" from David
   Hildenbrand fixes a boatload of issues which David found then using
   device-exclusive PTE entries when THP is enabled. More work is
   needed, but this makes thins better - our own HMM selftests now
   succeed.

 - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
   remove the z3fold and zbud implementations. They have been deprecated
   for half a year and nobody has complained.

 - The series "mm: further simplify VMA merge operation" from Lorenzo
   Stoakes implements numerous simplifications in this area. No runtime
   effects are anticipated.

 - The series "mm/madvise: remove redundant mmap_lock operations from
   process_madvise()" from SeongJae Park rationalizes the locking in the
   madvise() implementation. Performance gains of 20-25% were observed
   in one MADV_DONTNEED microbenchmark.

 - The series "Tiny cleanup and improvements about SWAP code" from
   Baoquan He contains a number of touchups to issues which Baoquan
   noticed when working on the swap code.

 - The series "mm: kmemleak: Usability improvements" from Catalin
   Marinas implements a couple of improvements to the kmemleak
   user-visible output.

 - The series "mm/damon/paddr: fix large folios access and schemes
   handling" from Usama Arif provides a couple of fixes for DAMON's
   handling of large folios.

 - The series "mm/damon/core: fix wrong and/or useless damos_walk()
   behaviors" from SeongJae Park fixes a few issues with the accuracy of
   kdamond's walking of DAMON regions.

 - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
   Stoakes changes the interaction between framebuffer deferred-io and
   core MM. No functional changes are anticipated - this is preparatory
   work for the future removal of page structure fields.

 - The series "mm/damon: add support for hugepage_size DAMOS filter"
   from Usama Arif adds a DAMOS filter which permits the filtering by
   huge page sizes.

 - The series "mm: permit guard regions for file-backed/shmem mappings"
   from Lorenzo Stoakes extends the guard region feature from its
   present "anon mappings only" state. The feature now covers shmem and
   file-backed mappings.

 - The series "mm: batched unmap lazyfree large folios during
   reclamation" from Barry Song cleans up and speeds up the unmapping
   for pte-mapped large folios.

 - The series "reimplement per-vma lock as a refcount" from Suren
   Baghdasaryan puts the vm_lock back into the vma. Our reasons for
   pulling it out were largely bogus and that change made the code more
   messy. This patchset provides small (0-10%) improvements on one
   microbenchmark.

 - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
   improves" from SeongJae Park does some maintenance work on the DAMON
   docs.

 - The series "hugetlb/CMA improvements for large systems" from Frank
   van der Linden addresses a pile of issues which have been observed
   when using CMA on large machines.

 - The series "mm/damon: introduce DAMOS filter type for unmapped pages"
   from SeongJae Park enables users of DMAON/DAMOS to filter my the
   page's mapped/unmapped status.

 - The series "zsmalloc/zram: there be preemption" from Sergey
   Senozhatsky teaches zram to run its compression and decompression
   operations preemptibly.

 - The series "selftests/mm: Some cleanups from trying to run them" from
   Brendan Jackman fixes a pile of unrelated issues which Brendan
   encountered while runnimg our selftests.

 - The series "fs/proc/task_mmu: add guard region bit to pagemap" from
   Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
   determine whether a particular page is a guard page.

 - The series "mm, swap: remove swap slot cache" from Kairui Song
   removes the swap slot cache from the allocation path - it simply
   wasn't being effective.

 - The series "mm: cleanups for device-exclusive entries (hmm)" from
   David Hildenbrand implements a number of unrelated cleanups in this
   code.

 - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
   implements a number of preparatoty cleanups to the GENERIC_PTDUMP
   Kconfig logic.

 - The series "mm/damon: auto-tune aggregation interval" from SeongJae
   Park implements a feedback-driven automatic tuning feature for
   DAMON's aggregation interval tuning.

 - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
   powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
   preparation for implementing lazy mmu mode for arm64 to optimize
   vmalloc.

 - The series "mm/page_alloc: Some clarifications for migratetype
   fallback" from Brendan Jackman reworks some commentary to make the
   code easier to follow.

 - The series "page_counter cleanup and size reduction" from Shakeel
   Butt cleans up the page_counter code and fixes a size increase which
   we accidentally added late last year.

 - The series "Add a command line option that enables control of how
   many threads should be used to allocate huge pages" from Thomas
   Prescher does that. It allows the careful operator to significantly
   reduce boot time by tuning the parallalization of huge page
   initialization.

 - The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
   from Tang Yizhou fixes the tracing output from the dirty page
   balancing code.

 - The series "mm/damon: make allow filters after reject filters useful
   and intuitive" from SeongJae Park improves the handling of allow and
   reject filters. Behaviour is made more consistent and the documention
   is updated accordingly.

 - The series "Switch zswap to object read/write APIs" from Yosry Ahmed
   updates zswap to the new object read/write APIs and thus permits the
   removal of some legacy code from zpool and zsmalloc.

 - The series "Some trivial cleanups for shmem" from Baolin Wang does as
   it claims.

 - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
   Alistair Popple regularizes the weird ZONE_DEVICE page refcount
   handling in DAX, permittig the removal of a number of special-case
   checks.

 - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
   preparatoty refactoring and cleanup of the mremap() code.

 - The series "mm: MM owner tracking for large folios (!hugetlb) +
   CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
   which we determine whether a large folio is known to be mapped
   exclusively into a single MM.

 - The series "mm/damon: add sysfs dirs for managing DAMOS filters based
   on handling layers" from SeongJae Park adds a couple of new sysfs
   directories to ease the management of DAMON/DAMOS filters.

 - The series "arch, mm: reduce code duplication in mem_init()" from
   Mike Rapoport consolidates many per-arch implementations of
   mem_init() into code generic code, where that is practical.

 - The series "mm/damon/sysfs: commit parameters online via
   damon_call()" from SeongJae Park continues the cleaning up of sysfs
   access to DAMON internal data.

 - The series "mm: page_ext: Introduce new iteration API" from Luiz
   Capitulino reworks the page_ext initialization to fix a boot-time
   crash which was observed with an unusual combination of compile and
   cmdline options.

 - The series "Buddy allocator like (or non-uniform) folio split" from
   Zi Yan reworks the code to split a folio into smaller folios. The
   main benefit is lessened memory consumption: fewer post-split folios
   are generated.

 - The series "Minimize xa_node allocation during xarry split" from Zi
   Yan reduces the number of xarray xa_nodes which are generated during
   an xarray split.

 - The series "drivers/base/memory: Two cleanups" from Gavin Shan
   performs some maintenance work on the drivers/base/memory code.

 - The series "Add tracepoints for lowmem reserves, watermarks and
   totalreserve_pages" from Martin Liu adds some more tracepoints to the
   page allocator code.

 - The series "mm/madvise: cleanup requests validations and
   classifications" from SeongJae Park cleans up some warts which
   SeongJae observed during his earlier madvise work.

 - The series "mm/hwpoison: Fix regressions in memory failure handling"
   from Shuai Xue addresses two quite serious regressions which Shuai
   has observed in the memory-failure implementation.

 - The series "mm: reliable huge page allocator" from Johannes Weiner
   makes huge page allocations cheaper and more reliable by reducing
   fragmentation.

 - The series "Minor memcg cleanups & prep for memdescs" from Matthew
   Wilcox is preparatory work for the future implementation of memdescs.

 - The series "track memory used by balloon drivers" from Nico Pache
   introduces a way to track memory used by our various balloon drivers.

 - The series "mm/damon: introduce DAMOS filter type for active pages"
   from Nhat Pham permits users to filter for active/inactive pages,
   separately for file and anon pages.

 - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
   separates the proactive reclaim statistics from the direct reclaim
   statistics.

 - The series "mm/vmscan: don't try to reclaim hwpoison folio" from
   Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
   code.

* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
  mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
  x86/mm: restore early initialization of high_memory for 32-bits
  mm/vmscan: don't try to reclaim hwpoison folio
  mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
  cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
  mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
  selftests/mm: speed up split_huge_page_test
  selftests/mm: uffd-unit-tests support for hugepages > 2M
  docs/mm/damon/design: document active DAMOS filter type
  mm/damon: implement a new DAMOS filter type for active pages
  fs/dax: don't disassociate zero page entries
  MM documentation: add "Unaccepted" meminfo entry
  selftests/mm: add commentary about 9pfs bugs
  fork: use __vmalloc_node() for stack allocation
  docs/mm: Physical Memory: Populate the "Zones" section
  xen: balloon: update the NR_BALLOON_PAGES state
  hv_balloon: update the NR_BALLOON_PAGES state
  balloon_compaction: update the NR_BALLOON_PAGES state
  meminfo: add a per node counter for balloon drivers
  mm: remove references to folio in __memcg_kmem_uncharge_page()
  ...
2025-04-01 09:29:18 -07:00

433 lines
11 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0-only
#
# File system configuration
#
menu "File systems"
# Use unaligned word dcache accesses
config DCACHE_WORD_ACCESS
bool
config VALIDATE_FS_PARSER
bool "Validate filesystem parameter description"
help
Enable this to perform validation of the parameter description for a
filesystem when it is registered.
config FS_IOMAP
bool
# Stackable filesystems
config FS_STACK
bool
config BUFFER_HEAD
bool
# old blockdev_direct_IO implementation. Use iomap for new code instead
config LEGACY_DIRECT_IO
depends on BUFFER_HEAD
bool
if BLOCK
source "fs/ext2/Kconfig"
source "fs/ext4/Kconfig"
source "fs/jbd2/Kconfig"
config FS_MBCACHE
# Meta block cache for Extended Attributes (ext2/ext3/ext4)
tristate
default y if EXT2_FS=y && EXT2_FS_XATTR
default y if EXT4_FS=y
default m if EXT2_FS_XATTR || EXT4_FS
source "fs/jfs/Kconfig"
source "fs/xfs/Kconfig"
source "fs/gfs2/Kconfig"
source "fs/ocfs2/Kconfig"
source "fs/btrfs/Kconfig"
source "fs/nilfs2/Kconfig"
source "fs/f2fs/Kconfig"
source "fs/bcachefs/Kconfig"
source "fs/zonefs/Kconfig"
endif # BLOCK
config FS_DAX
bool "File system based Direct Access (DAX) support"
depends on MMU
depends on ZONE_DEVICE || FS_DAX_LIMITED
select FS_IOMAP
select DAX
help
Direct Access (DAX) can be used on memory-backed block devices.
If the block device supports DAX and the filesystem supports DAX,
then you can avoid using the pagecache to buffer I/Os. Turning
on this option will compile in support for DAX.
For a DAX device to support file system access it needs to have
struct pages. For the nfit based NVDIMMs this can be enabled
using the ndctl utility:
# ndctl create-namespace --force --reconfig=namespace0.0 \
--mode=fsdax --map=mem
See the 'create-namespace' man page for details on the overhead of
--map=mem:
https://docs.pmem.io/ndctl-user-guide/ndctl-man-pages/ndctl-create-namespace
For ndctl to work CONFIG_DEV_DAX needs to be enabled as well. For most
file systems DAX support needs to be manually enabled globally or
per-inode using a mount option as well. See the file documentation in
Documentation/filesystems/dax.rst for details.
If you do not have a block device that is capable of using this,
or if unsure, say N. Saying Y will increase the size of the kernel
by about 5kB.
config FS_DAX_PMD
bool
default FS_DAX
depends on FS_DAX
depends on ZONE_DEVICE
depends on TRANSPARENT_HUGEPAGE
# Selected by DAX drivers that do not expect filesystem DAX to support
# get_user_pages() of DAX mappings. I.e. "limited" indicates no support
# for fork() of processes with MAP_SHARED mappings or support for
# direct-I/O to a DAX mapping.
config FS_DAX_LIMITED
bool
# Posix ACL utility routines
#
# Note: Posix ACLs can be implemented without these helpers. Never use
# this symbol for ifdefs in core code.
#
config FS_POSIX_ACL
def_bool n
config EXPORTFS
tristate
config EXPORTFS_BLOCK_OPS
bool "Enable filesystem export operations for block IO"
help
This option enables the export operations for a filesystem to support
external block IO.
config FILE_LOCKING
bool "Enable POSIX file locking API" if EXPERT
default y
help
This option enables standard file locking support, required
for filesystems like NFS and for the flock() system
call. Disabling this option saves about 11k.
source "fs/crypto/Kconfig"
source "fs/verity/Kconfig"
source "fs/notify/Kconfig"
source "fs/quota/Kconfig"
source "fs/autofs/Kconfig"
source "fs/fuse/Kconfig"
source "fs/overlayfs/Kconfig"
menu "Caches"
source "fs/netfs/Kconfig"
source "fs/cachefiles/Kconfig"
endmenu
if BLOCK
menu "CD-ROM/DVD Filesystems"
source "fs/isofs/Kconfig"
source "fs/udf/Kconfig"
endmenu
endif # BLOCK
if BLOCK
menu "DOS/FAT/EXFAT/NT Filesystems"
source "fs/fat/Kconfig"
source "fs/exfat/Kconfig"
source "fs/ntfs3/Kconfig"
endmenu
endif # BLOCK
menu "Pseudo filesystems"
source "fs/proc/Kconfig"
source "fs/kernfs/Kconfig"
source "fs/sysfs/Kconfig"
config TMPFS
bool "Tmpfs virtual memory file system support (former shm fs)"
depends on SHMEM
select MEMFD_CREATE
help
Tmpfs is a file system which keeps all files in virtual memory.
Everything in tmpfs is temporary in the sense that no files will be
created on your hard drive. The files live in memory and swap
space. If you unmount a tmpfs instance, everything stored therein is
lost.
See <file:Documentation/filesystems/tmpfs.rst> for details.
config TMPFS_POSIX_ACL
bool "Tmpfs POSIX Access Control Lists"
depends on TMPFS
select TMPFS_XATTR
select FS_POSIX_ACL
help
POSIX Access Control Lists (ACLs) support additional access rights
for users and groups beyond the standard owner/group/world scheme,
and this option selects support for ACLs specifically for tmpfs
filesystems.
If you've selected TMPFS, it's possible that you'll also need
this option as there are a number of Linux distros that require
POSIX ACL support under /dev for certain features to work properly.
For example, some distros need this feature for ALSA-related /dev
files for sound to work properly. In short, if you're not sure,
say Y.
config TMPFS_XATTR
bool "Tmpfs extended attributes"
depends on TMPFS
default n
help
Extended attributes are name:value pairs associated with inodes by
the kernel or by users (see the attr(5) manual page for details).
This enables support for the trusted.*, security.* and user.*
namespaces.
You need this for POSIX ACL support on tmpfs.
If unsure, say N.
config TMPFS_INODE64
bool "Use 64-bit ino_t by default in tmpfs"
depends on TMPFS && 64BIT
default n
help
tmpfs has historically used only inode numbers as wide as an unsigned
int. In some cases this can cause wraparound, potentially resulting
in multiple files with the same inode number on a single device. This
option makes tmpfs use the full width of ino_t by default, without
needing to specify the inode64 option when mounting.
But if a long-lived tmpfs is to be accessed by 32-bit applications so
ancient that opening a file larger than 2GiB fails with EINVAL, then
the INODE64 config option and inode64 mount option risk operations
failing with EOVERFLOW once 33-bit inode numbers are reached.
To override this configured default, use the inode32 or inode64
option when mounting.
If unsure, say N.
config TMPFS_QUOTA
bool "Tmpfs quota support"
depends on TMPFS
select QUOTA
help
Quota support allows to set per user and group limits for tmpfs
usage. Say Y to enable quota support. Once enabled you can control
user and group quota enforcement with quota, usrquota and grpquota
mount options.
If unsure, say N.
config ARCH_SUPPORTS_HUGETLBFS
def_bool n
menuconfig HUGETLBFS
bool "HugeTLB file system support"
depends on X86 || SPARC64 || ARCH_SUPPORTS_HUGETLBFS || BROKEN
depends on (SYSFS || SYSCTL)
select MEMFD_CREATE
select PADATA if SMP
help
hugetlbfs is a filesystem backing for HugeTLB pages, based on
ramfs. For architectures that support it, say Y here and read
<file:Documentation/admin-guide/mm/hugetlbpage.rst> for details.
If unsure, say N.
if HUGETLBFS
config HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON
bool "HugeTLB Vmemmap Optimization (HVO) defaults to on"
default n
depends on HUGETLB_PAGE_OPTIMIZE_VMEMMAP
help
The HugeTLB Vmemmap Optimization (HVO) defaults to off. Say Y here to
enable HVO by default. It can be disabled via hugetlb_free_vmemmap=off
(boot command line) or hugetlb_optimize_vmemmap (sysctl).
endif # HUGETLBFS
config HUGETLB_PAGE
def_bool HUGETLBFS
select XARRAY_MULTI
config HUGETLB_PAGE_OPTIMIZE_VMEMMAP
def_bool HUGETLB_PAGE
depends on ARCH_WANT_OPTIMIZE_HUGETLB_VMEMMAP
depends on SPARSEMEM_VMEMMAP
select SPARSEMEM_VMEMMAP_PREINIT if ARCH_WANT_HUGETLB_VMEMMAP_PREINIT
config HUGETLB_PMD_PAGE_TABLE_SHARING
def_bool HUGETLB_PAGE
depends on ARCH_WANT_HUGE_PMD_SHARE && SPLIT_PMD_PTLOCKS
config ARCH_HAS_GIGANTIC_PAGE
bool
source "fs/configfs/Kconfig"
source "fs/efivarfs/Kconfig"
endmenu
menuconfig MISC_FILESYSTEMS
bool "Miscellaneous filesystems"
default y
help
Say Y here to get to see options for various miscellaneous
filesystems, such as filesystems that came from other
operating systems.
This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and
disabled; if unsure, say Y here.
if MISC_FILESYSTEMS
source "fs/orangefs/Kconfig"
source "fs/adfs/Kconfig"
source "fs/affs/Kconfig"
source "fs/ecryptfs/Kconfig"
source "fs/hfs/Kconfig"
source "fs/hfsplus/Kconfig"
source "fs/befs/Kconfig"
source "fs/bfs/Kconfig"
source "fs/efs/Kconfig"
source "fs/jffs2/Kconfig"
# UBIFS File system configuration
source "fs/ubifs/Kconfig"
source "fs/cramfs/Kconfig"
source "fs/squashfs/Kconfig"
source "fs/freevxfs/Kconfig"
source "fs/minix/Kconfig"
source "fs/omfs/Kconfig"
source "fs/hpfs/Kconfig"
source "fs/qnx4/Kconfig"
source "fs/qnx6/Kconfig"
source "fs/romfs/Kconfig"
source "fs/pstore/Kconfig"
source "fs/ufs/Kconfig"
source "fs/erofs/Kconfig"
source "fs/vboxsf/Kconfig"
endif # MISC_FILESYSTEMS
menuconfig NETWORK_FILESYSTEMS
bool "Network File Systems"
default y
depends on NET
help
Say Y here to get to see options for network filesystems and
filesystem-related networking code, such as NFS daemon and
RPCSEC security modules.
This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and
disabled; if unsure, say Y here.
if NETWORK_FILESYSTEMS
source "fs/nfs/Kconfig"
source "fs/nfsd/Kconfig"
config GRACE_PERIOD
tristate
config LOCKD
tristate
depends on FILE_LOCKING
select GRACE_PERIOD
config LOCKD_V4
bool
depends on NFSD || NFS_V3
depends on FILE_LOCKING
default y
config NFS_ACL_SUPPORT
tristate
select FS_POSIX_ACL
config NFS_COMMON
bool
depends on NFSD || NFS_FS || LOCKD
default y
config NFS_COMMON_LOCALIO_SUPPORT
tristate
depends on NFS_LOCALIO
default y if NFSD=y || NFS_FS=y
default m if NFSD=m && NFS_FS=m
select SUNRPC
config NFS_LOCALIO
bool "NFS client and server support for LOCALIO auxiliary protocol"
depends on NFSD && NFS_FS
select NFS_COMMON_LOCALIO_SUPPORT
default n
help
Some NFS servers support an auxiliary NFS LOCALIO protocol
that is not an official part of the NFS protocol.
This option enables support for the LOCALIO protocol in the
kernel's NFS server and client. Enable this to permit local
NFS clients to bypass the network when issuing reads and
writes to the local NFS server.
If unsure, say N.
config NFS_V4_2_SSC_HELPER
bool
default y if NFS_V4_2
source "net/sunrpc/Kconfig"
source "fs/ceph/Kconfig"
source "fs/smb/Kconfig"
source "fs/coda/Kconfig"
source "fs/afs/Kconfig"
source "fs/9p/Kconfig"
endif # NETWORK_FILESYSTEMS
source "fs/nls/Kconfig"
source "fs/dlm/Kconfig"
source "fs/unicode/Kconfig"
config IO_WQ
bool
endmenu