Files
linux/mm/kasan/common.c
Linus Torvalds 8804d970fa Merge tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:

 - "mm, swap: improve cluster scan strategy" from Kairui Song improves
   performance and reduces the failure rate of swap cluster allocation

 - "support large align and nid in Rust allocators" from Vitaly Wool
   permits Rust allocators to set NUMA node and large alignment when
   perforning slub and vmalloc reallocs

 - "mm/damon/vaddr: support stat-purpose DAMOS" from Yueyang Pan extend
   DAMOS_STAT's handling of the DAMON operations sets for virtual
   address spaces for ops-level DAMOS filters

 - "execute PROCMAP_QUERY ioctl under per-vma lock" from Suren
   Baghdasaryan reduces mmap_lock contention during reads of
   /proc/pid/maps

 - "mm/mincore: minor clean up for swap cache checking" from Kairui Song
   performs some cleanup in the swap code

 - "mm: vm_normal_page*() improvements" from David Hildenbrand provides
   code cleanup in the pagemap code

 - "add persistent huge zero folio support" from Pankaj Raghav provides
   a block layer speedup by optionalls making the
   huge_zero_pagepersistent, instead of releasing it when its refcount
   falls to zero

 - "kho: fixes and cleanups" from Mike Rapoport adds a few touchups to
   the recently added Kexec Handover feature

 - "mm: make mm->flags a bitmap and 64-bit on all arches" from Lorenzo
   Stoakes turns mm_struct.flags into a bitmap. To end the constant
   struggle with space shortage on 32-bit conflicting with 64-bit's
   needs

 - "mm/swapfile.c and swap.h cleanup" from Chris Li cleans up some swap
   code

 - "selftests/mm: Fix false positives and skip unsupported tests" from
   Donet Tom fixes a few things in our selftests code

 - "prctl: extend PR_SET_THP_DISABLE to only provide THPs when advised"
   from David Hildenbrand "allows individual processes to opt-out of
   THP=always into THP=madvise, without affecting other workloads on the
   system".

   It's a long story - the [1/N] changelog spells out the considerations

 - "Add and use memdesc_flags_t" from Matthew Wilcox gets us started on
   the memdesc project. Please see

      https://kernelnewbies.org/MatthewWilcox/Memdescs and
      https://blogs.oracle.com/linux/post/introducing-memdesc

 - "Tiny optimization for large read operations" from Chi Zhiling
   improves the efficiency of the pagecache read path

 - "Better split_huge_page_test result check" from Zi Yan improves our
   folio splitting selftest code

 - "test that rmap behaves as expected" from Wei Yang adds some rmap
   selftests

 - "remove write_cache_pages()" from Christoph Hellwig removes that
   function and converts its two remaining callers

 - "selftests/mm: uffd-stress fixes" from Dev Jain fixes some UFFD
   selftests issues

 - "introduce kernel file mapped folios" from Boris Burkov introduces
   the concept of "kernel file pages". Using these permits btrfs to
   account its metadata pages to the root cgroup, rather than to the
   cgroups of random inappropriate tasks

 - "mm/pageblock: improve readability of some pageblock handling" from
   Wei Yang provides some readability improvements to the page allocator
   code

 - "mm/damon: support ARM32 with LPAE" from SeongJae Park teaches DAMON
   to understand arm32 highmem

 - "tools: testing: Use existing atomic.h for vma/maple tests" from
   Brendan Jackman performs some code cleanups and deduplication under
   tools/testing/

 - "maple_tree: Fix testing for 32bit compiles" from Liam Howlett fixes
   a couple of 32-bit issues in tools/testing/radix-tree.c

 - "kasan: unify kasan_enabled() and remove arch-specific
   implementations" from Sabyrzhan Tasbolatov moves KASAN arch-specific
   initialization code into a common arch-neutral implementation

 - "mm: remove zpool" from Johannes Weiner removes zspool - an
   indirection layer which now only redirects to a single thing
   (zsmalloc)

 - "mm: task_stack: Stack handling cleanups" from Pasha Tatashin makes a
   couple of cleanups in the fork code

 - "mm: remove nth_page()" from David Hildenbrand makes rather a lot of
   adjustments at various nth_page() callsites, eventually permitting
   the removal of that undesirable helper function

 - "introduce kasan.write_only option in hw-tags" from Yeoreum Yun
   creates a KASAN read-only mode for ARM, using that architecture's
   memory tagging feature. It is felt that a read-only mode KASAN is
   suitable for use in production systems rather than debug-only

 - "mm: hugetlb: cleanup hugetlb folio allocation" from Kefeng Wang does
   some tidying in the hugetlb folio allocation code

 - "mm: establish const-correctness for pointer parameters" from Max
   Kellermann makes quite a number of the MM API functions more accurate
   about the constness of their arguments. This was getting in the way
   of subsystems (in this case CEPH) when they attempt to improving
   their own const/non-const accuracy

 - "Cleanup free_pages() misuse" from Vishal Moola fixes a number of
   code sites which were confused over when to use free_pages() vs
   __free_pages()

 - "Add Rust abstraction for Maple Trees" from Alice Ryhl makes the
   mapletree code accessible to Rust. Required by nouveau and by its
   forthcoming successor: the new Rust Nova driver

 - "selftests/mm: split_huge_page_test: split_pte_mapped_thp
   improvements" from David Hildenbrand adds a fix and some cleanups to
   the thp selftesting code

 - "mm, swap: introduce swap table as swap cache (phase I)" from Chris
   Li and Kairui Song is the first step along the path to implementing
   "swap tables" - a new approach to swap allocation and state tracking
   which is expected to yield speed and space improvements. This
   patchset itself yields a 5-20% performance benefit in some situations

 - "Some ptdesc cleanups" from Matthew Wilcox utilizes the new memdesc
   layer to clean up the ptdesc code a little

 - "Fix va_high_addr_switch.sh test failure" from Chunyu Hu fixes some
   issues in our 5-level pagetable selftesting code

 - "Minor fixes for memory allocation profiling" from Suren Baghdasaryan
   addresses a couple of minor issues in relatively new memory
   allocation profiling feature

 - "Small cleanups" from Matthew Wilcox has a few cleanups in
   preparation for more memdesc work

 - "mm/damon: add addr_unit for DAMON_LRU_SORT and DAMON_RECLAIM" from
   Quanmin Yan makes some changes to DAMON in furtherance of supporting
   arm highmem

 - "selftests/mm: Add -Wunreachable-code and fix warnings" from Muhammad
   Anjum adds that compiler check to selftests code and fixes the
   fallout, by removing dead code

 - "Improvements to Victim Process Thawing and OOM Reaper Traversal
   Order" from zhongjinji makes a number of improvements in the OOM
   killer: mainly thawing a more appropriate group of victim threads so
   they can release resources

 - "mm/damon: misc fixups and improvements for 6.18" from SeongJae Park
   is a bunch of small and unrelated fixups for DAMON

 - "mm/damon: define and use DAMON initialization check function" from
   SeongJae Park implement reliability and maintainability improvements
   to a recently-added bug fix

 - "mm/damon/stat: expose auto-tuned intervals and non-idle ages" from
   SeongJae Park provides additional transparency to userspace clients
   of the DAMON_STAT information

 - "Expand scope of khugepaged anonymous collapse" from Dev Jain removes
   some constraints on khubepaged's collapsing of anon VMAs. It also
   increases the success rate of MADV_COLLAPSE against an anon vma

 - "mm: do not assume file == vma->vm_file in compat_vma_mmap_prepare()"
   from Lorenzo Stoakes moves us further towards removal of
   file_operations.mmap(). This patchset concentrates upon clearing up
   the treatment of stacked filesystems

 - "mm: Improve mlock tracking for large folios" from Kiryl Shutsemau
   provides some fixes and improvements to mlock's tracking of large
   folios. /proc/meminfo's "Mlocked" field became more accurate

 - "mm/ksm: Fix incorrect accounting of KSM counters during fork" from
   Donet Tom fixes several user-visible KSM stats inaccuracies across
   forks and adds selftest code to verify these counters

 - "mm_slot: fix the usage of mm_slot_entry" from Wei Yang addresses
   some potential but presently benign issues in KSM's mm_slot handling

* tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (372 commits)
  mm: swap: check for stable address space before operating on the VMA
  mm: convert folio_page() back to a macro
  mm/khugepaged: use start_addr/addr for improved readability
  hugetlbfs: skip VMAs without shareable locks in hugetlb_vmdelete_list
  alloc_tag: fix boot failure due to NULL pointer dereference
  mm: silence data-race in update_hiwater_rss
  mm/memory-failure: don't select MEMORY_ISOLATION
  mm/khugepaged: remove definition of struct khugepaged_mm_slot
  mm/ksm: get mm_slot by mm_slot_entry() when slot is !NULL
  hugetlb: increase number of reserving hugepages via cmdline
  selftests/mm: add fork inheritance test for ksm_merging_pages counter
  mm/ksm: fix incorrect KSM counter handling in mm_struct during fork
  drivers/base/node: fix double free in register_one_node()
  mm: remove PMD alignment constraint in execmem_vmalloc()
  mm/memory_hotplug: fix typo 'esecially' -> 'especially'
  mm/rmap: improve mlock tracking for large folios
  mm/filemap: map entire large folio faultaround
  mm/fault: try to map the entire file folio in finish_fault()
  mm/rmap: mlock large folios in try_to_unmap_one()
  mm/rmap: fix a mlock race condition in folio_referenced_one()
  ...
2025-10-02 18:18:33 -07:00

585 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* This file contains common KASAN code.
*
* Copyright (c) 2014 Samsung Electronics Co., Ltd.
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
*
* Some code borrowed from https://github.com/xairy/kasan-prototype by
* Andrey Konovalov <andreyknvl@gmail.com>
*/
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kasan.h>
#include <linux/kernel.h>
#include <linux/linkage.h>
#include <linux/memblock.h>
#include <linux/memory.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/bug.h>
#include "kasan.h"
#include "../slab.h"
#if defined(CONFIG_ARCH_DEFER_KASAN) || defined(CONFIG_KASAN_HW_TAGS)
/*
* Definition of the unified static key declared in kasan-enabled.h.
* This provides consistent runtime enable/disable across KASAN modes.
*/
DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled);
EXPORT_SYMBOL_GPL(kasan_flag_enabled);
#endif
struct slab *kasan_addr_to_slab(const void *addr)
{
if (virt_addr_valid(addr))
return virt_to_slab(addr);
return NULL;
}
depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags)
{
unsigned long entries[KASAN_STACK_DEPTH];
unsigned int nr_entries;
nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
return stack_depot_save_flags(entries, nr_entries, flags, depot_flags);
}
void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack)
{
#ifdef CONFIG_KASAN_EXTRA_INFO
u32 cpu = raw_smp_processor_id();
u64 ts_nsec = local_clock();
track->cpu = cpu;
track->timestamp = ts_nsec >> 9;
#endif /* CONFIG_KASAN_EXTRA_INFO */
track->pid = current->pid;
track->stack = stack;
}
void kasan_save_track(struct kasan_track *track, gfp_t flags)
{
depot_stack_handle_t stack;
stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC);
kasan_set_track(track, stack);
}
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
void kasan_enable_current(void)
{
current->kasan_depth++;
}
EXPORT_SYMBOL(kasan_enable_current);
void kasan_disable_current(void)
{
current->kasan_depth--;
}
EXPORT_SYMBOL(kasan_disable_current);
#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
void __kasan_unpoison_range(const void *address, size_t size)
{
if (is_kfence_address(address))
return;
kasan_unpoison(address, size, false);
}
#ifdef CONFIG_KASAN_STACK
/* Unpoison the entire stack for a task. */
void kasan_unpoison_task_stack(struct task_struct *task)
{
void *base = task_stack_page(task);
kasan_unpoison(base, THREAD_SIZE, false);
}
/* Unpoison the stack for the current task beyond a watermark sp value. */
asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
{
/*
* Calculate the task stack base address. Avoid using 'current'
* because this function is called by early resume code which hasn't
* yet set up the percpu register (%gs).
*/
void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
kasan_unpoison(base, watermark - base, false);
}
#endif /* CONFIG_KASAN_STACK */
bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
{
u8 tag;
unsigned long i;
if (unlikely(PageHighMem(page)))
return false;
if (!kasan_sample_page_alloc(order))
return false;
tag = kasan_random_tag();
kasan_unpoison(set_tag(page_address(page), tag),
PAGE_SIZE << order, init);
for (i = 0; i < (1 << order); i++)
page_kasan_tag_set(page + i, tag);
return true;
}
void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
{
if (likely(!PageHighMem(page)))
kasan_poison(page_address(page), PAGE_SIZE << order,
KASAN_PAGE_FREE, init);
}
void __kasan_poison_slab(struct slab *slab)
{
struct page *page = slab_page(slab);
unsigned long i;
for (i = 0; i < compound_nr(page); i++)
page_kasan_tag_reset(page + i);
kasan_poison(page_address(page), page_size(page),
KASAN_SLAB_REDZONE, false);
}
void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object)
{
kasan_unpoison(object, cache->object_size, false);
}
void __kasan_poison_new_object(struct kmem_cache *cache, void *object)
{
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
KASAN_SLAB_REDZONE, false);
}
/*
* This function assigns a tag to an object considering the following:
* 1. A cache might have a constructor, which might save a pointer to a slab
* object somewhere (e.g. in the object itself). We preassign a tag for
* each object in caches with constructors during slab creation and reuse
* the same tag each time a particular object is allocated.
* 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
* accessed after being freed. We preassign tags for objects in these
* caches as well.
*/
static inline u8 assign_tag(struct kmem_cache *cache,
const void *object, bool init)
{
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
return 0xff;
/*
* If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
* set, assign a tag when the object is being allocated (init == false).
*/
if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
return init ? KASAN_TAG_KERNEL : kasan_random_tag();
/*
* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU,
* assign a random tag during slab creation, otherwise reuse
* the already assigned tag.
*/
return init ? kasan_random_tag() : get_tag(object);
}
void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
const void *object)
{
/* Initialize per-object metadata if it is present. */
if (kasan_requires_meta())
kasan_init_object_meta(cache, object);
/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
object = set_tag(object, assign_tag(cache, object, true));
return (void *)object;
}
/* Returns true when freeing the object is not safe. */
static bool check_slab_allocation(struct kmem_cache *cache, void *object,
unsigned long ip)
{
void *tagged_object = object;
object = kasan_reset_tag(object);
if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) {
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
return true;
}
if (!kasan_byte_accessible(tagged_object)) {
kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
return true;
}
return false;
}
static inline void poison_slab_object(struct kmem_cache *cache, void *object,
bool init)
{
void *tagged_object = object;
object = kasan_reset_tag(object);
kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
KASAN_SLAB_FREE, init);
if (kasan_stack_collection_enabled())
kasan_save_free_info(cache, tagged_object);
}
bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object,
unsigned long ip)
{
if (is_kfence_address(object))
return false;
return check_slab_allocation(cache, object, ip);
}
bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init,
bool still_accessible, bool no_quarantine)
{
if (is_kfence_address(object))
return false;
/*
* If this point is reached with an object that must still be
* accessible under RCU, we can't poison it; in that case, also skip the
* quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG
* has been disabled manually.
*
* Putting the object on the quarantine wouldn't help catch UAFs (since
* we can't poison it here), and it would mask bugs caused by
* SLAB_TYPESAFE_BY_RCU users not being careful enough about object
* reuse; so overall, putting the object into the quarantine here would
* be counterproductive.
*/
if (still_accessible)
return false;
poison_slab_object(cache, object, init);
if (no_quarantine)
return false;
/*
* If the object is put into quarantine, do not let slab put the object
* onto the freelist for now. The object's metadata is kept until the
* object gets evicted from quarantine.
*/
if (kasan_quarantine_put(cache, object))
return true;
/*
* Note: Keep per-object metadata to allow KASAN print stack traces for
* use-after-free-before-realloc bugs.
*/
/* Let slab put the object onto the freelist. */
return false;
}
static inline bool check_page_allocation(void *ptr, unsigned long ip)
{
if (!kasan_enabled())
return false;
if (ptr != page_address(virt_to_head_page(ptr))) {
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
return true;
}
if (!kasan_byte_accessible(ptr)) {
kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
return true;
}
return false;
}
void __kasan_kfree_large(void *ptr, unsigned long ip)
{
check_page_allocation(ptr, ip);
/* The object will be poisoned by kasan_poison_pages(). */
}
static inline void unpoison_slab_object(struct kmem_cache *cache, void *object,
gfp_t flags, bool init)
{
/*
* Unpoison the whole object. For kmalloc() allocations,
* poison_kmalloc_redzone() will do precise poisoning.
*/
kasan_unpoison(object, cache->object_size, init);
/* Save alloc info (if possible) for non-kmalloc() allocations. */
if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))
kasan_save_alloc_info(cache, object, flags);
}
void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
void *object, gfp_t flags, bool init)
{
u8 tag;
void *tagged_object;
if (gfpflags_allow_blocking(flags))
kasan_quarantine_reduce();
if (unlikely(object == NULL))
return NULL;
if (is_kfence_address(object))
return (void *)object;
/*
* Generate and assign random tag for tag-based modes.
* Tag is ignored in set_tag() for the generic mode.
*/
tag = assign_tag(cache, object, false);
tagged_object = set_tag(object, tag);
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
unpoison_slab_object(cache, tagged_object, flags, init);
return tagged_object;
}
static inline void poison_kmalloc_redzone(struct kmem_cache *cache,
const void *object, size_t size, gfp_t flags)
{
unsigned long redzone_start;
unsigned long redzone_end;
/*
* The redzone has byte-level precision for the generic mode.
* Partially poison the last object granule to cover the unaligned
* part of the redzone.
*/
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
kasan_poison_last_granule((void *)object, size);
/* Poison the aligned part of the redzone. */
redzone_start = round_up((unsigned long)(object + size),
KASAN_GRANULE_SIZE);
redzone_end = round_up((unsigned long)(object + cache->object_size),
KASAN_GRANULE_SIZE);
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
KASAN_SLAB_REDZONE, false);
/*
* Save alloc info (if possible) for kmalloc() allocations.
* This also rewrites the alloc info when called from kasan_krealloc().
*/
if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache))
kasan_save_alloc_info(cache, (void *)object, flags);
}
void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
size_t size, gfp_t flags)
{
if (gfpflags_allow_blocking(flags))
kasan_quarantine_reduce();
if (unlikely(object == NULL))
return NULL;
if (is_kfence_address(object))
return (void *)object;
/* The object has already been unpoisoned by kasan_slab_alloc(). */
poison_kmalloc_redzone(cache, object, size, flags);
/* Keep the tag that was set by kasan_slab_alloc(). */
return (void *)object;
}
EXPORT_SYMBOL(__kasan_kmalloc);
static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size,
gfp_t flags)
{
unsigned long redzone_start;
unsigned long redzone_end;
/*
* The redzone has byte-level precision for the generic mode.
* Partially poison the last object granule to cover the unaligned
* part of the redzone.
*/
if (IS_ENABLED(CONFIG_KASAN_GENERIC))
kasan_poison_last_granule(ptr, size);
/* Poison the aligned part of the redzone. */
redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE);
redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
kasan_poison((void *)redzone_start, redzone_end - redzone_start,
KASAN_PAGE_REDZONE, false);
}
void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
gfp_t flags)
{
if (gfpflags_allow_blocking(flags))
kasan_quarantine_reduce();
if (unlikely(ptr == NULL))
return NULL;
/* The object has already been unpoisoned by kasan_unpoison_pages(). */
poison_kmalloc_large_redzone(ptr, size, flags);
/* Keep the tag that was set by alloc_pages(). */
return (void *)ptr;
}
void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
{
struct slab *slab;
if (gfpflags_allow_blocking(flags))
kasan_quarantine_reduce();
if (unlikely(object == ZERO_SIZE_PTR))
return (void *)object;
if (is_kfence_address(object))
return (void *)object;
/*
* Unpoison the object's data.
* Part of it might already have been unpoisoned, but it's unknown
* how big that part is.
*/
kasan_unpoison(object, size, false);
slab = virt_to_slab(object);
/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
if (unlikely(!slab))
poison_kmalloc_large_redzone(object, size, flags);
else
poison_kmalloc_redzone(slab->slab_cache, object, size, flags);
return (void *)object;
}
bool __kasan_mempool_poison_pages(struct page *page, unsigned int order,
unsigned long ip)
{
unsigned long *ptr;
if (unlikely(PageHighMem(page)))
return true;
/* Bail out if allocation was excluded due to sampling. */
if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
page_kasan_tag(page) == KASAN_TAG_KERNEL)
return true;
ptr = page_address(page);
if (check_page_allocation(ptr, ip))
return false;
kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false);
return true;
}
void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order,
unsigned long ip)
{
__kasan_unpoison_pages(page, order, false);
}
bool __kasan_mempool_poison_object(void *ptr, unsigned long ip)
{
struct folio *folio = virt_to_folio(ptr);
struct slab *slab;
/*
* This function can be called for large kmalloc allocation that get
* their memory from page_alloc. Thus, the folio might not be a slab.
*/
if (unlikely(!folio_test_slab(folio))) {
if (check_page_allocation(ptr, ip))
return false;
kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
return true;
}
if (is_kfence_address(ptr))
return true;
slab = folio_slab(folio);
if (check_slab_allocation(slab->slab_cache, ptr, ip))
return false;
poison_slab_object(slab->slab_cache, ptr, false);
return true;
}
void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip)
{
struct slab *slab;
gfp_t flags = 0; /* Might be executing under a lock. */
slab = virt_to_slab(ptr);
/*
* This function can be called for large kmalloc allocation that get
* their memory from page_alloc.
*/
if (unlikely(!slab)) {
kasan_unpoison(ptr, size, false);
poison_kmalloc_large_redzone(ptr, size, flags);
return;
}
if (is_kfence_address(ptr))
return;
/* Unpoison the object and save alloc info for non-kmalloc() allocations. */
unpoison_slab_object(slab->slab_cache, ptr, flags, false);
/* Poison the redzone and save alloc info for kmalloc() allocations. */
if (is_kmalloc_cache(slab->slab_cache))
poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags);
}
bool __kasan_check_byte(const void *address, unsigned long ip)
{
if (!kasan_byte_accessible(address)) {
kasan_report(address, 1, false, ip);
return false;
}
return true;
}