mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-12-27 11:06:41 -05:00
Patch series "Add and use memdesc_flags_t". At some point struct page will be separated from struct slab and struct folio. This is a step towards that by introducing a type for the 'flags' word of all three structures. This gives us a certain amount of type safety by establishing that some of these unsigned longs are different from other unsigned longs in that they contain things like node ID, section number and zone number in the upper bits. That lets us have functions that can be easily called by anyone who has a slab, folio or page (but not easily by anyone else) to get the node or zone. There's going to be some unusual merge problems with this as some odd bits of the kernel decide they want to print out the flags value or something similar by writing page->flags and now they'll need to write page->flags.f instead. That's most of the churn here. Maybe we should be removing these things from the debug output? This patch (of 11): Wrap the unsigned long flags in a typedef. In upcoming patches, this will provide a strong hint that you can't just pass a random unsigned long to functions which take this as an argument. [willy@infradead.org: s/flags/flags.f/ in several architectures] Link: https://lkml.kernel.org/r/aKMgPRLD-WnkPxYm@casper.infradead.org [nicola.vetrini@gmail.com: mips: fix compilation error] Link: https://lore.kernel.org/lkml/CA+G9fYvkpmqGr6wjBNHY=dRp71PLCoi2341JxOudi60yqaeUdg@mail.gmail.com/ Link: https://lkml.kernel.org/r/20250825214245.1838158-1-nicola.vetrini@gmail.com Link: https://lkml.kernel.org/r/20250805172307.1302730-1-willy@infradead.org Link: https://lkml.kernel.org/r/20250805172307.1302730-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Zi Yan <ziy@nvidia.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
980 lines
26 KiB
C
980 lines
26 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
|
|
* Copyright (C) 1999 SuSE GmbH Nuernberg
|
|
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
|
|
*
|
|
* Cache and TLB management
|
|
*
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/pdc.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/page.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/shmparam.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/cachectl.h>
|
|
|
|
#define PTR_PAGE_ALIGN_DOWN(addr) PTR_ALIGN_DOWN(addr, PAGE_SIZE)
|
|
|
|
/*
|
|
* When nonzero, use _PAGE_ACCESSED bit to try to reduce the number
|
|
* of page flushes done flush_cache_page_if_present. There are some
|
|
* pros and cons in using this option. It may increase the risk of
|
|
* random segmentation faults.
|
|
*/
|
|
#define CONFIG_FLUSH_PAGE_ACCESSED 0
|
|
|
|
int split_tlb __ro_after_init;
|
|
int dcache_stride __ro_after_init;
|
|
int icache_stride __ro_after_init;
|
|
EXPORT_SYMBOL(dcache_stride);
|
|
|
|
/* Internal implementation in arch/parisc/kernel/pacache.S */
|
|
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
EXPORT_SYMBOL(flush_dcache_page_asm);
|
|
void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
|
|
void flush_data_cache_local(void *); /* flushes local data-cache only */
|
|
void flush_instruction_cache_local(void); /* flushes local code-cache only */
|
|
|
|
static void flush_kernel_dcache_page_addr(const void *addr);
|
|
|
|
/* On some machines (i.e., ones with the Merced bus), there can be
|
|
* only a single PxTLB broadcast at a time; this must be guaranteed
|
|
* by software. We need a spinlock around all TLB flushes to ensure
|
|
* this.
|
|
*/
|
|
DEFINE_SPINLOCK(pa_tlb_flush_lock);
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
|
|
int pa_serialize_tlb_flushes __ro_after_init;
|
|
#endif
|
|
|
|
struct pdc_cache_info cache_info __ro_after_init;
|
|
#ifndef CONFIG_PA20
|
|
struct pdc_btlb_info btlb_info;
|
|
#endif
|
|
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
|
|
DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
|
|
|
|
static void cache_flush_local_cpu(void *dummy)
|
|
{
|
|
if (static_branch_likely(&parisc_has_icache))
|
|
flush_instruction_cache_local();
|
|
if (static_branch_likely(&parisc_has_dcache))
|
|
flush_data_cache_local(NULL);
|
|
}
|
|
|
|
void flush_cache_all_local(void)
|
|
{
|
|
cache_flush_local_cpu(NULL);
|
|
}
|
|
|
|
void flush_cache_all(void)
|
|
{
|
|
if (static_branch_likely(&parisc_has_cache))
|
|
on_each_cpu(cache_flush_local_cpu, NULL, 1);
|
|
}
|
|
|
|
static inline void flush_data_cache(void)
|
|
{
|
|
if (static_branch_likely(&parisc_has_dcache))
|
|
on_each_cpu(flush_data_cache_local, NULL, 1);
|
|
}
|
|
|
|
|
|
/* Kernel virtual address of pfn. */
|
|
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
|
|
|
|
void __update_cache(pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
struct folio *folio;
|
|
unsigned int nr;
|
|
|
|
/* We don't have pte special. As a result, we can be called with
|
|
an invalid pfn and we don't need to flush the kernel dcache page.
|
|
This occurs with FireGL card in C8000. */
|
|
if (!pfn_valid(pfn))
|
|
return;
|
|
|
|
folio = page_folio(pfn_to_page(pfn));
|
|
pfn = folio_pfn(folio);
|
|
nr = folio_nr_pages(folio);
|
|
if (folio_flush_mapping(folio) &&
|
|
test_bit(PG_dcache_dirty, &folio->flags.f)) {
|
|
while (nr--)
|
|
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
|
|
clear_bit(PG_dcache_dirty, &folio->flags.f);
|
|
} else if (parisc_requires_coherency())
|
|
while (nr--)
|
|
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
|
|
}
|
|
|
|
void
|
|
show_cache_info(struct seq_file *m)
|
|
{
|
|
char buf[32];
|
|
|
|
seq_printf(m, "I-cache\t\t: %ld KB\n",
|
|
cache_info.ic_size/1024 );
|
|
if (cache_info.dc_loop != 1)
|
|
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
|
|
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
|
|
cache_info.dc_size/1024,
|
|
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
|
|
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
|
|
((cache_info.dc_loop == 1) ? "direct mapped" : buf),
|
|
cache_info.dc_conf.cc_alias
|
|
);
|
|
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
|
|
cache_info.it_size,
|
|
cache_info.dt_size,
|
|
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
|
|
);
|
|
|
|
#ifndef CONFIG_PA20
|
|
/* BTLB - Block TLB */
|
|
if (btlb_info.max_size==0) {
|
|
seq_printf(m, "BTLB\t\t: not supported\n" );
|
|
} else {
|
|
seq_printf(m,
|
|
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
|
|
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
|
|
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
|
|
btlb_info.max_size, (int)4096,
|
|
btlb_info.max_size>>8,
|
|
btlb_info.fixed_range_info.num_i,
|
|
btlb_info.fixed_range_info.num_d,
|
|
btlb_info.fixed_range_info.num_comb,
|
|
btlb_info.variable_range_info.num_i,
|
|
btlb_info.variable_range_info.num_d,
|
|
btlb_info.variable_range_info.num_comb
|
|
);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void __init
|
|
parisc_cache_init(void)
|
|
{
|
|
if (pdc_cache_info(&cache_info) < 0)
|
|
panic("parisc_cache_init: pdc_cache_info failed");
|
|
|
|
#if 0
|
|
printk("ic_size %lx dc_size %lx it_size %lx\n",
|
|
cache_info.ic_size,
|
|
cache_info.dc_size,
|
|
cache_info.it_size);
|
|
|
|
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
|
|
cache_info.dc_base,
|
|
cache_info.dc_stride,
|
|
cache_info.dc_count,
|
|
cache_info.dc_loop);
|
|
|
|
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
|
|
*(unsigned long *) (&cache_info.dc_conf),
|
|
cache_info.dc_conf.cc_alias,
|
|
cache_info.dc_conf.cc_block,
|
|
cache_info.dc_conf.cc_line,
|
|
cache_info.dc_conf.cc_shift);
|
|
printk(" wt %d sh %d cst %d hv %d\n",
|
|
cache_info.dc_conf.cc_wt,
|
|
cache_info.dc_conf.cc_sh,
|
|
cache_info.dc_conf.cc_cst,
|
|
cache_info.dc_conf.cc_hv);
|
|
|
|
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
|
|
cache_info.ic_base,
|
|
cache_info.ic_stride,
|
|
cache_info.ic_count,
|
|
cache_info.ic_loop);
|
|
|
|
printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
|
|
cache_info.it_sp_base,
|
|
cache_info.it_sp_stride,
|
|
cache_info.it_sp_count,
|
|
cache_info.it_loop,
|
|
cache_info.it_off_base,
|
|
cache_info.it_off_stride,
|
|
cache_info.it_off_count);
|
|
|
|
printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
|
|
cache_info.dt_sp_base,
|
|
cache_info.dt_sp_stride,
|
|
cache_info.dt_sp_count,
|
|
cache_info.dt_loop,
|
|
cache_info.dt_off_base,
|
|
cache_info.dt_off_stride,
|
|
cache_info.dt_off_count);
|
|
|
|
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
|
|
*(unsigned long *) (&cache_info.ic_conf),
|
|
cache_info.ic_conf.cc_alias,
|
|
cache_info.ic_conf.cc_block,
|
|
cache_info.ic_conf.cc_line,
|
|
cache_info.ic_conf.cc_shift);
|
|
printk(" wt %d sh %d cst %d hv %d\n",
|
|
cache_info.ic_conf.cc_wt,
|
|
cache_info.ic_conf.cc_sh,
|
|
cache_info.ic_conf.cc_cst,
|
|
cache_info.ic_conf.cc_hv);
|
|
|
|
printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
|
|
cache_info.dt_conf.tc_sh,
|
|
cache_info.dt_conf.tc_page,
|
|
cache_info.dt_conf.tc_cst,
|
|
cache_info.dt_conf.tc_aid,
|
|
cache_info.dt_conf.tc_sr);
|
|
|
|
printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
|
|
cache_info.it_conf.tc_sh,
|
|
cache_info.it_conf.tc_page,
|
|
cache_info.it_conf.tc_cst,
|
|
cache_info.it_conf.tc_aid,
|
|
cache_info.it_conf.tc_sr);
|
|
#endif
|
|
|
|
split_tlb = 0;
|
|
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
|
|
if (cache_info.dt_conf.tc_sh == 2)
|
|
printk(KERN_WARNING "Unexpected TLB configuration. "
|
|
"Will flush I/D separately (could be optimized).\n");
|
|
|
|
split_tlb = 1;
|
|
}
|
|
|
|
/* "New and Improved" version from Jim Hull
|
|
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
|
|
* The following CAFL_STRIDE is an optimized version, see
|
|
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
|
|
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
|
|
*/
|
|
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
|
|
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
|
|
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
|
|
#undef CAFL_STRIDE
|
|
|
|
/* stride needs to be non-zero, otherwise cache flushes will not work */
|
|
WARN_ON(cache_info.dc_size && dcache_stride == 0);
|
|
WARN_ON(cache_info.ic_size && icache_stride == 0);
|
|
|
|
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
|
|
PDC_MODEL_NVA_UNSUPPORTED) {
|
|
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
|
|
#if 0
|
|
panic("SMP kernel required to avoid non-equivalent aliasing");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void disable_sr_hashing(void)
|
|
{
|
|
int srhash_type, retval;
|
|
unsigned long space_bits;
|
|
|
|
switch (boot_cpu_data.cpu_type) {
|
|
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
|
|
BUG();
|
|
return;
|
|
|
|
case pcxs:
|
|
case pcxt:
|
|
case pcxt_:
|
|
srhash_type = SRHASH_PCXST;
|
|
break;
|
|
|
|
case pcxl:
|
|
srhash_type = SRHASH_PCXL;
|
|
break;
|
|
|
|
case pcxl2: /* pcxl2 doesn't support space register hashing */
|
|
return;
|
|
|
|
default: /* Currently all PA2.0 machines use the same ins. sequence */
|
|
srhash_type = SRHASH_PA20;
|
|
break;
|
|
}
|
|
|
|
disable_sr_hashing_asm(srhash_type);
|
|
|
|
retval = pdc_spaceid_bits(&space_bits);
|
|
/* If this procedure isn't implemented, don't panic. */
|
|
if (retval < 0 && retval != PDC_BAD_OPTION)
|
|
panic("pdc_spaceid_bits call failed.\n");
|
|
if (space_bits != 0)
|
|
panic("SpaceID hashing is still on!\n");
|
|
}
|
|
|
|
static inline void
|
|
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
|
|
unsigned long physaddr)
|
|
{
|
|
if (!static_branch_likely(&parisc_has_cache))
|
|
return;
|
|
|
|
/*
|
|
* The TLB is the engine of coherence on parisc. The CPU is
|
|
* entitled to speculate any page with a TLB mapping, so here
|
|
* we kill the mapping then flush the page along a special flush
|
|
* only alias mapping. This guarantees that the page is no-longer
|
|
* in the cache for any process and nor may it be speculatively
|
|
* read in (until the user or kernel specifically accesses it,
|
|
* of course).
|
|
*/
|
|
flush_tlb_page(vma, vmaddr);
|
|
|
|
preempt_disable();
|
|
flush_dcache_page_asm(physaddr, vmaddr);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_icache_page_asm(physaddr, vmaddr);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void flush_kernel_dcache_page_addr(const void *addr)
|
|
{
|
|
unsigned long vaddr = (unsigned long)addr;
|
|
unsigned long flags;
|
|
|
|
/* Purge TLB entry to remove translation on all CPUs */
|
|
purge_tlb_start(flags);
|
|
pdtlb(SR_KERNEL, addr);
|
|
purge_tlb_end(flags);
|
|
|
|
/* Use tmpalias flush to prevent data cache move-in */
|
|
preempt_disable();
|
|
flush_dcache_page_asm(__pa(vaddr), vaddr);
|
|
preempt_enable();
|
|
}
|
|
|
|
static void flush_kernel_icache_page_addr(const void *addr)
|
|
{
|
|
unsigned long vaddr = (unsigned long)addr;
|
|
unsigned long flags;
|
|
|
|
/* Purge TLB entry to remove translation on all CPUs */
|
|
purge_tlb_start(flags);
|
|
pdtlb(SR_KERNEL, addr);
|
|
purge_tlb_end(flags);
|
|
|
|
/* Use tmpalias flush to prevent instruction cache move-in */
|
|
preempt_disable();
|
|
flush_icache_page_asm(__pa(vaddr), vaddr);
|
|
preempt_enable();
|
|
}
|
|
|
|
void kunmap_flush_on_unmap(const void *addr)
|
|
{
|
|
flush_kernel_dcache_page_addr(addr);
|
|
}
|
|
EXPORT_SYMBOL(kunmap_flush_on_unmap);
|
|
|
|
void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
|
|
unsigned int nr)
|
|
{
|
|
void *kaddr = page_address(page);
|
|
|
|
for (;;) {
|
|
flush_kernel_dcache_page_addr(kaddr);
|
|
flush_kernel_icache_page_addr(kaddr);
|
|
if (--nr == 0)
|
|
break;
|
|
kaddr += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Walk page directory for MM to find PTEP pointer for address ADDR.
|
|
*/
|
|
static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pte_t *ptep = NULL;
|
|
pgd_t *pgd = mm->pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (!pgd_none(*pgd)) {
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_none(*p4d)) {
|
|
pud = pud_offset(p4d, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd))
|
|
ptep = pte_offset_map(pmd, addr);
|
|
}
|
|
}
|
|
}
|
|
return ptep;
|
|
}
|
|
|
|
static inline bool pte_needs_cache_flush(pte_t pte)
|
|
{
|
|
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
|
|
== (_PAGE_PRESENT | _PAGE_ACCESSED);
|
|
}
|
|
|
|
/*
|
|
* Return user physical address. Returns 0 if page is not present.
|
|
*/
|
|
static inline unsigned long get_upa(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
unsigned long flags, space, pgd, prot, pa;
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
unsigned long pgd_lock;
|
|
#endif
|
|
|
|
/* Save context */
|
|
local_irq_save(flags);
|
|
prot = mfctl(8);
|
|
space = mfsp(SR_USER);
|
|
pgd = mfctl(25);
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
pgd_lock = mfctl(28);
|
|
#endif
|
|
|
|
/* Set context for lpa_user */
|
|
switch_mm_irqs_off(NULL, mm, NULL);
|
|
pa = lpa_user(addr);
|
|
|
|
/* Restore previous context */
|
|
#ifdef CONFIG_TLB_PTLOCK
|
|
mtctl(pgd_lock, 28);
|
|
#endif
|
|
mtctl(pgd, 25);
|
|
mtsp(space, SR_USER);
|
|
mtctl(prot, 8);
|
|
local_irq_restore(flags);
|
|
|
|
return pa;
|
|
}
|
|
|
|
void flush_dcache_folio(struct folio *folio)
|
|
{
|
|
struct address_space *mapping = folio_flush_mapping(folio);
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr, old_addr = 0;
|
|
void *kaddr;
|
|
unsigned long count = 0;
|
|
unsigned long i, nr, flags;
|
|
pgoff_t pgoff;
|
|
|
|
if (mapping && !mapping_mapped(mapping)) {
|
|
set_bit(PG_dcache_dirty, &folio->flags.f);
|
|
return;
|
|
}
|
|
|
|
nr = folio_nr_pages(folio);
|
|
kaddr = folio_address(folio);
|
|
for (i = 0; i < nr; i++)
|
|
flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE);
|
|
|
|
if (!mapping)
|
|
return;
|
|
|
|
pgoff = folio->index;
|
|
|
|
/*
|
|
* We have carefully arranged in arch_get_unmapped_area() that
|
|
* *any* mappings of a file are always congruently mapped (whether
|
|
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
|
|
* to flush one address here for them all to become coherent
|
|
* on machines that support equivalent aliasing
|
|
*/
|
|
flush_dcache_mmap_lock_irqsave(mapping, flags);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) {
|
|
unsigned long offset = pgoff - vma->vm_pgoff;
|
|
unsigned long pfn = folio_pfn(folio);
|
|
|
|
addr = vma->vm_start;
|
|
nr = folio_nr_pages(folio);
|
|
if (offset > -nr) {
|
|
pfn -= offset;
|
|
nr += offset;
|
|
} else {
|
|
addr += offset * PAGE_SIZE;
|
|
}
|
|
if (addr + nr * PAGE_SIZE > vma->vm_end)
|
|
nr = (vma->vm_end - addr) / PAGE_SIZE;
|
|
|
|
if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
|
|
!= (addr & (SHM_COLOUR - 1))) {
|
|
for (i = 0; i < nr; i++)
|
|
__flush_cache_page(vma,
|
|
addr + i * PAGE_SIZE,
|
|
(pfn + i) * PAGE_SIZE);
|
|
/*
|
|
* Software is allowed to have any number
|
|
* of private mappings to a page.
|
|
*/
|
|
if (!(vma->vm_flags & VM_SHARED))
|
|
continue;
|
|
if (old_addr)
|
|
pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
|
|
old_addr, addr, vma->vm_file);
|
|
if (nr == folio_nr_pages(folio))
|
|
old_addr = addr;
|
|
}
|
|
WARN_ON(++count == 4096);
|
|
}
|
|
flush_dcache_mmap_unlock_irqrestore(mapping, flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_folio);
|
|
|
|
/* Defined in arch/parisc/kernel/pacache.S */
|
|
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
|
|
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
|
|
|
|
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
|
|
static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
|
|
|
|
#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
|
|
static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
|
|
|
|
void __init parisc_setup_cache_timing(void)
|
|
{
|
|
unsigned long rangetime, alltime;
|
|
unsigned long size;
|
|
unsigned long threshold, threshold2;
|
|
|
|
alltime = mfctl(16);
|
|
flush_data_cache();
|
|
alltime = mfctl(16) - alltime;
|
|
|
|
size = (unsigned long)(_end - _text);
|
|
rangetime = mfctl(16);
|
|
flush_kernel_dcache_range((unsigned long)_text, size);
|
|
rangetime = mfctl(16) - rangetime;
|
|
|
|
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
|
|
alltime, size, rangetime);
|
|
|
|
threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
|
|
pr_info("Calculated flush threshold is %lu KiB\n",
|
|
threshold/1024);
|
|
|
|
/*
|
|
* The threshold computed above isn't very reliable. The following
|
|
* heuristic works reasonably well on c8000/rp3440.
|
|
*/
|
|
threshold2 = cache_info.dc_size * num_online_cpus();
|
|
parisc_cache_flush_threshold = threshold2;
|
|
printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
|
|
parisc_cache_flush_threshold/1024);
|
|
|
|
/* calculate TLB flush threshold */
|
|
|
|
/* On SMP machines, skip the TLB measure of kernel text which
|
|
* has been mapped as huge pages. */
|
|
if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
|
|
threshold = max(cache_info.it_size, cache_info.dt_size);
|
|
threshold *= PAGE_SIZE;
|
|
threshold /= num_online_cpus();
|
|
goto set_tlb_threshold;
|
|
}
|
|
|
|
size = (unsigned long)_end - (unsigned long)_text;
|
|
rangetime = mfctl(16);
|
|
flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
|
|
rangetime = mfctl(16) - rangetime;
|
|
|
|
alltime = mfctl(16);
|
|
flush_tlb_all();
|
|
alltime = mfctl(16) - alltime;
|
|
|
|
printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
|
|
alltime, size, rangetime);
|
|
|
|
threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
|
|
printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
|
|
threshold/1024);
|
|
|
|
set_tlb_threshold:
|
|
parisc_tlb_flush_threshold = max(threshold, FLUSH_TLB_THRESHOLD);
|
|
printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
|
|
parisc_tlb_flush_threshold/1024);
|
|
}
|
|
|
|
extern void purge_kernel_dcache_page_asm(unsigned long);
|
|
extern void clear_user_page_asm(void *, unsigned long);
|
|
extern void copy_user_page_asm(void *, void *, unsigned long);
|
|
|
|
static void flush_cache_page_if_present(struct vm_area_struct *vma,
|
|
unsigned long vmaddr)
|
|
{
|
|
#if CONFIG_FLUSH_PAGE_ACCESSED
|
|
bool needs_flush = false;
|
|
pte_t *ptep, pte;
|
|
|
|
ptep = get_ptep(vma->vm_mm, vmaddr);
|
|
if (ptep) {
|
|
pte = ptep_get(ptep);
|
|
needs_flush = pte_needs_cache_flush(pte);
|
|
pte_unmap(ptep);
|
|
}
|
|
if (needs_flush)
|
|
__flush_cache_page(vma, vmaddr, PFN_PHYS(pte_pfn(pte)));
|
|
#else
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long physaddr = get_upa(mm, vmaddr);
|
|
|
|
if (physaddr)
|
|
__flush_cache_page(vma, vmaddr, PAGE_ALIGN_DOWN(physaddr));
|
|
#endif
|
|
}
|
|
|
|
void copy_user_highpage(struct page *to, struct page *from,
|
|
unsigned long vaddr, struct vm_area_struct *vma)
|
|
{
|
|
void *kto, *kfrom;
|
|
|
|
kfrom = kmap_local_page(from);
|
|
kto = kmap_local_page(to);
|
|
__flush_cache_page(vma, vaddr, PFN_PHYS(page_to_pfn(from)));
|
|
copy_page_asm(kto, kfrom);
|
|
kunmap_local(kto);
|
|
kunmap_local(kfrom);
|
|
}
|
|
|
|
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long user_vaddr, void *dst, void *src, int len)
|
|
{
|
|
__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
|
|
memcpy(dst, src, len);
|
|
flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(dst));
|
|
}
|
|
|
|
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long user_vaddr, void *dst, void *src, int len)
|
|
{
|
|
__flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page)));
|
|
memcpy(dst, src, len);
|
|
flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(src));
|
|
}
|
|
|
|
/* __flush_tlb_range()
|
|
*
|
|
* returns 1 if all TLBs were flushed.
|
|
*/
|
|
int __flush_tlb_range(unsigned long sid, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
|
|
end - start >= parisc_tlb_flush_threshold) {
|
|
flush_tlb_all();
|
|
return 1;
|
|
}
|
|
|
|
/* Purge TLB entries for small ranges using the pdtlb and
|
|
pitlb instructions. These instructions execute locally
|
|
but cause a purge request to be broadcast to other TLBs. */
|
|
while (start < end) {
|
|
purge_tlb_start(flags);
|
|
mtsp(sid, SR_TEMP1);
|
|
pdtlb(SR_TEMP1, start);
|
|
pitlb(SR_TEMP1, start);
|
|
purge_tlb_end(flags);
|
|
start += PAGE_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr < end; addr += PAGE_SIZE)
|
|
flush_cache_page_if_present(vma, addr);
|
|
}
|
|
|
|
static inline unsigned long mm_total_size(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long usize = 0;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
for_each_vma(vmi, vma) {
|
|
if (usize >= parisc_cache_flush_threshold)
|
|
break;
|
|
usize += vma->vm_end - vma->vm_start;
|
|
}
|
|
return usize;
|
|
}
|
|
|
|
void flush_cache_mm(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
VMA_ITERATOR(vmi, mm, 0);
|
|
|
|
/*
|
|
* Flushing the whole cache on each cpu takes forever on
|
|
* rp3440, etc. So, avoid it if the mm isn't too big.
|
|
*
|
|
* Note that we must flush the entire cache on machines
|
|
* with aliasing caches to prevent random segmentation
|
|
* faults.
|
|
*/
|
|
if (!parisc_requires_coherency()
|
|
|| mm_total_size(mm) >= parisc_cache_flush_threshold) {
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
|
|
return;
|
|
flush_tlb_all();
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
/* Flush mm */
|
|
for_each_vma(vmi, vma)
|
|
flush_cache_pages(vma, vma->vm_start, vma->vm_end);
|
|
}
|
|
|
|
void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
if (!parisc_requires_coherency()
|
|
|| end - start >= parisc_cache_flush_threshold) {
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
|
|
return;
|
|
flush_tlb_range(vma, start, end);
|
|
if (vma->vm_flags & VM_EXEC)
|
|
flush_cache_all();
|
|
else
|
|
flush_data_cache();
|
|
return;
|
|
}
|
|
|
|
flush_cache_pages(vma, start & PAGE_MASK, end);
|
|
}
|
|
|
|
void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
|
|
{
|
|
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
|
|
}
|
|
|
|
void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
|
|
{
|
|
if (!PageAnon(page))
|
|
return;
|
|
|
|
__flush_cache_page(vma, vmaddr, PFN_PHYS(page_to_pfn(page)));
|
|
}
|
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = ptep_get(ptep);
|
|
|
|
if (!pte_young(pte))
|
|
return 0;
|
|
set_pte(ptep, pte_mkold(pte));
|
|
#if CONFIG_FLUSH_PAGE_ACCESSED
|
|
__flush_cache_page(vma, addr, PFN_PHYS(pte_pfn(pte)));
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* After a PTE is cleared, we have no way to flush the cache for
|
|
* the physical page. On PA8800 and PA8900 processors, these lines
|
|
* can cause random cache corruption. Thus, we must flush the cache
|
|
* as well as the TLB when clearing a PTE that's valid.
|
|
*/
|
|
pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
struct mm_struct *mm = (vma)->vm_mm;
|
|
pte_t pte = ptep_get_and_clear(mm, addr, ptep);
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
if (pfn_valid(pfn))
|
|
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
|
|
else if (pte_accessible(mm, pte))
|
|
flush_tlb_page(vma, addr);
|
|
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* The physical address for pages in the ioremap case can be obtained
|
|
* from the vm_struct struct. I wasn't able to successfully handle the
|
|
* vmalloc and vmap cases. We have an array of struct page pointers in
|
|
* the uninitialized vmalloc case but the flush failed using page_to_pfn.
|
|
*/
|
|
void flush_cache_vmap(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr, physaddr;
|
|
struct vm_struct *vm;
|
|
|
|
/* Prevent cache move-in */
|
|
flush_tlb_kernel_range(start, end);
|
|
|
|
if (end - start >= parisc_cache_flush_threshold) {
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!is_vmalloc_addr((void *)start))) {
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
vm = find_vm_area((void *)start);
|
|
if (!vm) {
|
|
flush_cache_all();
|
|
return;
|
|
}
|
|
|
|
/* The physical addresses of IOREMAP regions are contiguous */
|
|
if (vm->flags & VM_IOREMAP) {
|
|
physaddr = vm->phys_addr;
|
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
|
preempt_disable();
|
|
flush_dcache_page_asm(physaddr, start);
|
|
flush_icache_page_asm(physaddr, start);
|
|
preempt_enable();
|
|
physaddr += PAGE_SIZE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
flush_cache_all();
|
|
}
|
|
EXPORT_SYMBOL(flush_cache_vmap);
|
|
|
|
/*
|
|
* The vm_struct has been retired and the page table is set up. The
|
|
* last page in the range is a guard page. Its physical address can't
|
|
* be determined using lpa, so there is no way to flush the range
|
|
* using flush_dcache_page_asm.
|
|
*/
|
|
void flush_cache_vunmap(unsigned long start, unsigned long end)
|
|
{
|
|
/* Prevent cache move-in */
|
|
flush_tlb_kernel_range(start, end);
|
|
flush_data_cache();
|
|
}
|
|
EXPORT_SYMBOL(flush_cache_vunmap);
|
|
|
|
/*
|
|
* On systems with PA8800/PA8900 processors, there is no way to flush
|
|
* a vmap range other than using the architected loop to flush the
|
|
* entire cache. The page directory is not set up, so we can't use
|
|
* fdc, etc. FDCE/FICE don't work to flush a portion of the cache.
|
|
* L2 is physically indexed but FDCE/FICE instructions in virtual
|
|
* mode output their virtual address on the core bus, not their
|
|
* real address. As a result, the L2 cache index formed from the
|
|
* virtual address will most likely not be the same as the L2 index
|
|
* formed from the real address.
|
|
*/
|
|
void flush_kernel_vmap_range(void *vaddr, int size)
|
|
{
|
|
unsigned long start = (unsigned long)vaddr;
|
|
unsigned long end = start + size;
|
|
|
|
flush_tlb_kernel_range(start, end);
|
|
|
|
if (!static_branch_likely(&parisc_has_dcache))
|
|
return;
|
|
|
|
/* If interrupts are disabled, we can only do local flush */
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
|
|
flush_data_cache_local(NULL);
|
|
return;
|
|
}
|
|
|
|
flush_data_cache();
|
|
}
|
|
EXPORT_SYMBOL(flush_kernel_vmap_range);
|
|
|
|
void invalidate_kernel_vmap_range(void *vaddr, int size)
|
|
{
|
|
unsigned long start = (unsigned long)vaddr;
|
|
unsigned long end = start + size;
|
|
|
|
/* Ensure DMA is complete */
|
|
asm_syncdma();
|
|
|
|
flush_tlb_kernel_range(start, end);
|
|
|
|
if (!static_branch_likely(&parisc_has_dcache))
|
|
return;
|
|
|
|
/* If interrupts are disabled, we can only do local flush */
|
|
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) {
|
|
flush_data_cache_local(NULL);
|
|
return;
|
|
}
|
|
|
|
flush_data_cache();
|
|
}
|
|
EXPORT_SYMBOL(invalidate_kernel_vmap_range);
|
|
|
|
|
|
SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes,
|
|
unsigned int, cache)
|
|
{
|
|
unsigned long start, end;
|
|
ASM_EXCEPTIONTABLE_VAR(error);
|
|
|
|
if (bytes == 0)
|
|
return 0;
|
|
if (!access_ok((void __user *) addr, bytes))
|
|
return -EFAULT;
|
|
|
|
end = addr + bytes;
|
|
|
|
if (cache & DCACHE) {
|
|
start = addr;
|
|
__asm__ __volatile__ (
|
|
#ifdef CONFIG_64BIT
|
|
"1: cmpb,*<<,n %0,%2,1b\n"
|
|
#else
|
|
"1: cmpb,<<,n %0,%2,1b\n"
|
|
#endif
|
|
" fic,m %3(%4,%0)\n"
|
|
"2: sync\n"
|
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
|
|
: "+r" (start), "+r" (error)
|
|
: "r" (end), "r" (dcache_stride), "i" (SR_USER));
|
|
}
|
|
|
|
if (cache & ICACHE && error == 0) {
|
|
start = addr;
|
|
__asm__ __volatile__ (
|
|
#ifdef CONFIG_64BIT
|
|
"1: cmpb,*<<,n %0,%2,1b\n"
|
|
#else
|
|
"1: cmpb,<<,n %0,%2,1b\n"
|
|
#endif
|
|
" fdc,m %3(%4,%0)\n"
|
|
"2: sync\n"
|
|
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
|
|
: "+r" (start), "+r" (error)
|
|
: "r" (end), "r" (icache_stride), "i" (SR_USER));
|
|
}
|
|
|
|
return error;
|
|
}
|