Files
linux/include/crypto/sha2.h
Eric Biggers 4ca24d6abb lib/crypto: sha256: Add support for 2-way interleaved hashing
Many arm64 and x86_64 CPUs can compute two SHA-256 hashes in nearly the
same speed as one, if the instructions are interleaved.  This is because
SHA-256 is serialized block-by-block, and two interleaved hashes take
much better advantage of the CPU's instruction-level parallelism.

Meanwhile, a very common use case for SHA-256 hashing in the Linux
kernel is dm-verity and fs-verity.  Both use a Merkle tree that has a
fixed block size, usually 4096 bytes with an empty or 32-byte salt
prepended.  Usually, many blocks need to be hashed at a time.  This is
an ideal scenario for 2-way interleaved hashing.

To enable this optimization, add a new function sha256_finup_2x() to the
SHA-256 library API.  It computes the hash of two equal-length messages,
starting from a common initial context.

For now it always falls back to sequential processing.  Later patches
will wire up arm64 and x86_64 optimized implementations.

Note that the interleaving factor could in principle be higher than 2x.
However, that runs into many practical difficulties and CPU throughput
limitations.  Thus, both the implementations I'm adding are 2x.  In the
interest of using the simplest solution, the API matches that.

Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250915160819.140019-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
2025-09-17 13:09:39 -05:00

905 lines
26 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Common values for SHA-2 algorithms
*/
#ifndef _CRYPTO_SHA2_H
#define _CRYPTO_SHA2_H
#include <linux/types.h>
#define SHA224_DIGEST_SIZE 28
#define SHA224_BLOCK_SIZE 64
#define SHA256_DIGEST_SIZE 32
#define SHA256_BLOCK_SIZE 64
#define SHA256_STATE_WORDS 8
#define SHA384_DIGEST_SIZE 48
#define SHA384_BLOCK_SIZE 128
#define SHA512_DIGEST_SIZE 64
#define SHA512_BLOCK_SIZE 128
#define SHA512_STATE_SIZE 80
#define SHA224_H0 0xc1059ed8UL
#define SHA224_H1 0x367cd507UL
#define SHA224_H2 0x3070dd17UL
#define SHA224_H3 0xf70e5939UL
#define SHA224_H4 0xffc00b31UL
#define SHA224_H5 0x68581511UL
#define SHA224_H6 0x64f98fa7UL
#define SHA224_H7 0xbefa4fa4UL
#define SHA256_H0 0x6a09e667UL
#define SHA256_H1 0xbb67ae85UL
#define SHA256_H2 0x3c6ef372UL
#define SHA256_H3 0xa54ff53aUL
#define SHA256_H4 0x510e527fUL
#define SHA256_H5 0x9b05688cUL
#define SHA256_H6 0x1f83d9abUL
#define SHA256_H7 0x5be0cd19UL
#define SHA384_H0 0xcbbb9d5dc1059ed8ULL
#define SHA384_H1 0x629a292a367cd507ULL
#define SHA384_H2 0x9159015a3070dd17ULL
#define SHA384_H3 0x152fecd8f70e5939ULL
#define SHA384_H4 0x67332667ffc00b31ULL
#define SHA384_H5 0x8eb44a8768581511ULL
#define SHA384_H6 0xdb0c2e0d64f98fa7ULL
#define SHA384_H7 0x47b5481dbefa4fa4ULL
#define SHA512_H0 0x6a09e667f3bcc908ULL
#define SHA512_H1 0xbb67ae8584caa73bULL
#define SHA512_H2 0x3c6ef372fe94f82bULL
#define SHA512_H3 0xa54ff53a5f1d36f1ULL
#define SHA512_H4 0x510e527fade682d1ULL
#define SHA512_H5 0x9b05688c2b3e6c1fULL
#define SHA512_H6 0x1f83d9abfb41bd6bULL
#define SHA512_H7 0x5be0cd19137e2179ULL
extern const u8 sha224_zero_message_hash[SHA224_DIGEST_SIZE];
extern const u8 sha256_zero_message_hash[SHA256_DIGEST_SIZE];
extern const u8 sha384_zero_message_hash[SHA384_DIGEST_SIZE];
extern const u8 sha512_zero_message_hash[SHA512_DIGEST_SIZE];
struct crypto_sha256_state {
u32 state[SHA256_STATE_WORDS];
u64 count;
};
static inline void sha224_block_init(struct crypto_sha256_state *sctx)
{
sctx->state[0] = SHA224_H0;
sctx->state[1] = SHA224_H1;
sctx->state[2] = SHA224_H2;
sctx->state[3] = SHA224_H3;
sctx->state[4] = SHA224_H4;
sctx->state[5] = SHA224_H5;
sctx->state[6] = SHA224_H6;
sctx->state[7] = SHA224_H7;
sctx->count = 0;
}
static inline void sha256_block_init(struct crypto_sha256_state *sctx)
{
sctx->state[0] = SHA256_H0;
sctx->state[1] = SHA256_H1;
sctx->state[2] = SHA256_H2;
sctx->state[3] = SHA256_H3;
sctx->state[4] = SHA256_H4;
sctx->state[5] = SHA256_H5;
sctx->state[6] = SHA256_H6;
sctx->state[7] = SHA256_H7;
sctx->count = 0;
}
struct sha256_state {
union {
struct crypto_sha256_state ctx;
struct {
u32 state[SHA256_STATE_WORDS];
u64 count;
};
};
u8 buf[SHA256_BLOCK_SIZE];
};
struct sha512_state {
u64 state[SHA512_DIGEST_SIZE / 8];
u64 count[2];
u8 buf[SHA512_BLOCK_SIZE];
};
/* State for the SHA-256 (and SHA-224) compression function */
struct sha256_block_state {
u32 h[SHA256_STATE_WORDS];
};
/*
* Context structure, shared by SHA-224 and SHA-256. The sha224_ctx and
* sha256_ctx structs wrap this one so that the API has proper typing and
* doesn't allow mixing the SHA-224 and SHA-256 functions arbitrarily.
*/
struct __sha256_ctx {
struct sha256_block_state state;
u64 bytecount;
u8 buf[SHA256_BLOCK_SIZE] __aligned(__alignof__(__be64));
};
void __sha256_update(struct __sha256_ctx *ctx, const u8 *data, size_t len);
/*
* HMAC key and message context structs, shared by HMAC-SHA224 and HMAC-SHA256.
* The hmac_sha224_* and hmac_sha256_* structs wrap this one so that the API has
* proper typing and doesn't allow mixing the functions arbitrarily.
*/
struct __hmac_sha256_key {
struct sha256_block_state istate;
struct sha256_block_state ostate;
};
struct __hmac_sha256_ctx {
struct __sha256_ctx sha_ctx;
struct sha256_block_state ostate;
};
void __hmac_sha256_init(struct __hmac_sha256_ctx *ctx,
const struct __hmac_sha256_key *key);
/**
* struct sha224_ctx - Context for hashing a message with SHA-224
* @ctx: private
*/
struct sha224_ctx {
struct __sha256_ctx ctx;
};
/**
* sha224_init() - Initialize a SHA-224 context for a new message
* @ctx: the context to initialize
*
* If you don't need incremental computation, consider sha224() instead.
*
* Context: Any context.
*/
void sha224_init(struct sha224_ctx *ctx);
/**
* sha224_update() - Update a SHA-224 context with message data
* @ctx: the context to update; must have been initialized
* @data: the message data
* @len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void sha224_update(struct sha224_ctx *ctx,
const u8 *data, size_t len)
{
__sha256_update(&ctx->ctx, data, len);
}
/**
* sha224_final() - Finish computing a SHA-224 message digest
* @ctx: the context to finalize; must have been initialized
* @out: (output) the resulting SHA-224 message digest
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void sha224_final(struct sha224_ctx *ctx, u8 out[SHA224_DIGEST_SIZE]);
/**
* sha224() - Compute SHA-224 message digest in one shot
* @data: the message data
* @len: the data length in bytes
* @out: (output) the resulting SHA-224 message digest
*
* Context: Any context.
*/
void sha224(const u8 *data, size_t len, u8 out[SHA224_DIGEST_SIZE]);
/**
* struct hmac_sha224_key - Prepared key for HMAC-SHA224
* @key: private
*/
struct hmac_sha224_key {
struct __hmac_sha256_key key;
};
/**
* struct hmac_sha224_ctx - Context for computing HMAC-SHA224 of a message
* @ctx: private
*/
struct hmac_sha224_ctx {
struct __hmac_sha256_ctx ctx;
};
/**
* hmac_sha224_preparekey() - Prepare a key for HMAC-SHA224
* @key: (output) the key structure to initialize
* @raw_key: the raw HMAC-SHA224 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* Note: the caller is responsible for zeroizing both the struct hmac_sha224_key
* and the raw key once they are no longer needed.
*
* Context: Any context.
*/
void hmac_sha224_preparekey(struct hmac_sha224_key *key,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha224_init() - Initialize an HMAC-SHA224 context for a new message
* @ctx: (output) the HMAC context to initialize
* @key: the prepared HMAC key
*
* If you don't need incremental computation, consider hmac_sha224() instead.
*
* Context: Any context.
*/
static inline void hmac_sha224_init(struct hmac_sha224_ctx *ctx,
const struct hmac_sha224_key *key)
{
__hmac_sha256_init(&ctx->ctx, &key->key);
}
/**
* hmac_sha224_init_usingrawkey() - Initialize an HMAC-SHA224 context for a new
* message, using a raw key
* @ctx: (output) the HMAC context to initialize
* @raw_key: the raw HMAC-SHA224 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* If you don't need incremental computation, consider hmac_sha224_usingrawkey()
* instead.
*
* Context: Any context.
*/
void hmac_sha224_init_usingrawkey(struct hmac_sha224_ctx *ctx,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha224_update() - Update an HMAC-SHA224 context with message data
* @ctx: the HMAC context to update; must have been initialized
* @data: the message data
* @data_len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void hmac_sha224_update(struct hmac_sha224_ctx *ctx,
const u8 *data, size_t data_len)
{
__sha256_update(&ctx->ctx.sha_ctx, data, data_len);
}
/**
* hmac_sha224_final() - Finish computing an HMAC-SHA224 value
* @ctx: the HMAC context to finalize; must have been initialized
* @out: (output) the resulting HMAC-SHA224 value
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void hmac_sha224_final(struct hmac_sha224_ctx *ctx, u8 out[SHA224_DIGEST_SIZE]);
/**
* hmac_sha224() - Compute HMAC-SHA224 in one shot, using a prepared key
* @key: the prepared HMAC key
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA224 value
*
* If you're using the key only once, consider using hmac_sha224_usingrawkey().
*
* Context: Any context.
*/
void hmac_sha224(const struct hmac_sha224_key *key,
const u8 *data, size_t data_len, u8 out[SHA224_DIGEST_SIZE]);
/**
* hmac_sha224_usingrawkey() - Compute HMAC-SHA224 in one shot, using a raw key
* @raw_key: the raw HMAC-SHA224 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA224 value
*
* If you're using the key multiple times, prefer to use
* hmac_sha224_preparekey() followed by multiple calls to hmac_sha224() instead.
*
* Context: Any context.
*/
void hmac_sha224_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA224_DIGEST_SIZE]);
/**
* struct sha256_ctx - Context for hashing a message with SHA-256
* @ctx: private
*/
struct sha256_ctx {
struct __sha256_ctx ctx;
};
/**
* sha256_init() - Initialize a SHA-256 context for a new message
* @ctx: the context to initialize
*
* If you don't need incremental computation, consider sha256() instead.
*
* Context: Any context.
*/
void sha256_init(struct sha256_ctx *ctx);
/**
* sha256_update() - Update a SHA-256 context with message data
* @ctx: the context to update; must have been initialized
* @data: the message data
* @len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void sha256_update(struct sha256_ctx *ctx,
const u8 *data, size_t len)
{
__sha256_update(&ctx->ctx, data, len);
}
/**
* sha256_final() - Finish computing a SHA-256 message digest
* @ctx: the context to finalize; must have been initialized
* @out: (output) the resulting SHA-256 message digest
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void sha256_final(struct sha256_ctx *ctx, u8 out[SHA256_DIGEST_SIZE]);
/**
* sha256() - Compute SHA-256 message digest in one shot
* @data: the message data
* @len: the data length in bytes
* @out: (output) the resulting SHA-256 message digest
*
* Context: Any context.
*/
void sha256(const u8 *data, size_t len, u8 out[SHA256_DIGEST_SIZE]);
/**
* sha256_finup_2x() - Compute two SHA-256 digests from a common initial
* context. On some CPUs, this is faster than sequentially
* computing each digest.
* @ctx: an optional initial context, which may have already processed data. If
* NULL, a default initial context is used (equivalent to sha256_init()).
* @data1: data for the first message
* @data2: data for the second message
* @len: the length of each of @data1 and @data2, in bytes
* @out1: (output) the first SHA-256 message digest
* @out2: (output) the second SHA-256 message digest
*
* Context: Any context.
*/
void sha256_finup_2x(const struct sha256_ctx *ctx, const u8 *data1,
const u8 *data2, size_t len, u8 out1[SHA256_DIGEST_SIZE],
u8 out2[SHA256_DIGEST_SIZE]);
/**
* sha256_finup_2x_is_optimized() - Check if sha256_finup_2x() is using a real
* interleaved implementation, as opposed to a
* sequential fallback
* @return: true if optimized
*
* Context: Any context.
*/
bool sha256_finup_2x_is_optimized(void);
/**
* struct hmac_sha256_key - Prepared key for HMAC-SHA256
* @key: private
*/
struct hmac_sha256_key {
struct __hmac_sha256_key key;
};
/**
* struct hmac_sha256_ctx - Context for computing HMAC-SHA256 of a message
* @ctx: private
*/
struct hmac_sha256_ctx {
struct __hmac_sha256_ctx ctx;
};
/**
* hmac_sha256_preparekey() - Prepare a key for HMAC-SHA256
* @key: (output) the key structure to initialize
* @raw_key: the raw HMAC-SHA256 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* Note: the caller is responsible for zeroizing both the struct hmac_sha256_key
* and the raw key once they are no longer needed.
*
* Context: Any context.
*/
void hmac_sha256_preparekey(struct hmac_sha256_key *key,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha256_init() - Initialize an HMAC-SHA256 context for a new message
* @ctx: (output) the HMAC context to initialize
* @key: the prepared HMAC key
*
* If you don't need incremental computation, consider hmac_sha256() instead.
*
* Context: Any context.
*/
static inline void hmac_sha256_init(struct hmac_sha256_ctx *ctx,
const struct hmac_sha256_key *key)
{
__hmac_sha256_init(&ctx->ctx, &key->key);
}
/**
* hmac_sha256_init_usingrawkey() - Initialize an HMAC-SHA256 context for a new
* message, using a raw key
* @ctx: (output) the HMAC context to initialize
* @raw_key: the raw HMAC-SHA256 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* If you don't need incremental computation, consider hmac_sha256_usingrawkey()
* instead.
*
* Context: Any context.
*/
void hmac_sha256_init_usingrawkey(struct hmac_sha256_ctx *ctx,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha256_update() - Update an HMAC-SHA256 context with message data
* @ctx: the HMAC context to update; must have been initialized
* @data: the message data
* @data_len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void hmac_sha256_update(struct hmac_sha256_ctx *ctx,
const u8 *data, size_t data_len)
{
__sha256_update(&ctx->ctx.sha_ctx, data, data_len);
}
/**
* hmac_sha256_final() - Finish computing an HMAC-SHA256 value
* @ctx: the HMAC context to finalize; must have been initialized
* @out: (output) the resulting HMAC-SHA256 value
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void hmac_sha256_final(struct hmac_sha256_ctx *ctx, u8 out[SHA256_DIGEST_SIZE]);
/**
* hmac_sha256() - Compute HMAC-SHA256 in one shot, using a prepared key
* @key: the prepared HMAC key
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA256 value
*
* If you're using the key only once, consider using hmac_sha256_usingrawkey().
*
* Context: Any context.
*/
void hmac_sha256(const struct hmac_sha256_key *key,
const u8 *data, size_t data_len, u8 out[SHA256_DIGEST_SIZE]);
/**
* hmac_sha256_usingrawkey() - Compute HMAC-SHA256 in one shot, using a raw key
* @raw_key: the raw HMAC-SHA256 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA256 value
*
* If you're using the key multiple times, prefer to use
* hmac_sha256_preparekey() followed by multiple calls to hmac_sha256() instead.
*
* Context: Any context.
*/
void hmac_sha256_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA256_DIGEST_SIZE]);
/* State for the SHA-512 (and SHA-384) compression function */
struct sha512_block_state {
u64 h[8];
};
/*
* Context structure, shared by SHA-384 and SHA-512. The sha384_ctx and
* sha512_ctx structs wrap this one so that the API has proper typing and
* doesn't allow mixing the SHA-384 and SHA-512 functions arbitrarily.
*/
struct __sha512_ctx {
struct sha512_block_state state;
u64 bytecount_lo;
u64 bytecount_hi;
u8 buf[SHA512_BLOCK_SIZE] __aligned(__alignof__(__be64));
};
void __sha512_update(struct __sha512_ctx *ctx, const u8 *data, size_t len);
/*
* HMAC key and message context structs, shared by HMAC-SHA384 and HMAC-SHA512.
* The hmac_sha384_* and hmac_sha512_* structs wrap this one so that the API has
* proper typing and doesn't allow mixing the functions arbitrarily.
*/
struct __hmac_sha512_key {
struct sha512_block_state istate;
struct sha512_block_state ostate;
};
struct __hmac_sha512_ctx {
struct __sha512_ctx sha_ctx;
struct sha512_block_state ostate;
};
void __hmac_sha512_init(struct __hmac_sha512_ctx *ctx,
const struct __hmac_sha512_key *key);
/**
* struct sha384_ctx - Context for hashing a message with SHA-384
* @ctx: private
*/
struct sha384_ctx {
struct __sha512_ctx ctx;
};
/**
* sha384_init() - Initialize a SHA-384 context for a new message
* @ctx: the context to initialize
*
* If you don't need incremental computation, consider sha384() instead.
*
* Context: Any context.
*/
void sha384_init(struct sha384_ctx *ctx);
/**
* sha384_update() - Update a SHA-384 context with message data
* @ctx: the context to update; must have been initialized
* @data: the message data
* @len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void sha384_update(struct sha384_ctx *ctx,
const u8 *data, size_t len)
{
__sha512_update(&ctx->ctx, data, len);
}
/**
* sha384_final() - Finish computing a SHA-384 message digest
* @ctx: the context to finalize; must have been initialized
* @out: (output) the resulting SHA-384 message digest
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void sha384_final(struct sha384_ctx *ctx, u8 out[SHA384_DIGEST_SIZE]);
/**
* sha384() - Compute SHA-384 message digest in one shot
* @data: the message data
* @len: the data length in bytes
* @out: (output) the resulting SHA-384 message digest
*
* Context: Any context.
*/
void sha384(const u8 *data, size_t len, u8 out[SHA384_DIGEST_SIZE]);
/**
* struct hmac_sha384_key - Prepared key for HMAC-SHA384
* @key: private
*/
struct hmac_sha384_key {
struct __hmac_sha512_key key;
};
/**
* struct hmac_sha384_ctx - Context for computing HMAC-SHA384 of a message
* @ctx: private
*/
struct hmac_sha384_ctx {
struct __hmac_sha512_ctx ctx;
};
/**
* hmac_sha384_preparekey() - Prepare a key for HMAC-SHA384
* @key: (output) the key structure to initialize
* @raw_key: the raw HMAC-SHA384 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* Note: the caller is responsible for zeroizing both the struct hmac_sha384_key
* and the raw key once they are no longer needed.
*
* Context: Any context.
*/
void hmac_sha384_preparekey(struct hmac_sha384_key *key,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha384_init() - Initialize an HMAC-SHA384 context for a new message
* @ctx: (output) the HMAC context to initialize
* @key: the prepared HMAC key
*
* If you don't need incremental computation, consider hmac_sha384() instead.
*
* Context: Any context.
*/
static inline void hmac_sha384_init(struct hmac_sha384_ctx *ctx,
const struct hmac_sha384_key *key)
{
__hmac_sha512_init(&ctx->ctx, &key->key);
}
/**
* hmac_sha384_init_usingrawkey() - Initialize an HMAC-SHA384 context for a new
* message, using a raw key
* @ctx: (output) the HMAC context to initialize
* @raw_key: the raw HMAC-SHA384 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* If you don't need incremental computation, consider hmac_sha384_usingrawkey()
* instead.
*
* Context: Any context.
*/
void hmac_sha384_init_usingrawkey(struct hmac_sha384_ctx *ctx,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha384_update() - Update an HMAC-SHA384 context with message data
* @ctx: the HMAC context to update; must have been initialized
* @data: the message data
* @data_len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void hmac_sha384_update(struct hmac_sha384_ctx *ctx,
const u8 *data, size_t data_len)
{
__sha512_update(&ctx->ctx.sha_ctx, data, data_len);
}
/**
* hmac_sha384_final() - Finish computing an HMAC-SHA384 value
* @ctx: the HMAC context to finalize; must have been initialized
* @out: (output) the resulting HMAC-SHA384 value
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void hmac_sha384_final(struct hmac_sha384_ctx *ctx, u8 out[SHA384_DIGEST_SIZE]);
/**
* hmac_sha384() - Compute HMAC-SHA384 in one shot, using a prepared key
* @key: the prepared HMAC key
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA384 value
*
* If you're using the key only once, consider using hmac_sha384_usingrawkey().
*
* Context: Any context.
*/
void hmac_sha384(const struct hmac_sha384_key *key,
const u8 *data, size_t data_len, u8 out[SHA384_DIGEST_SIZE]);
/**
* hmac_sha384_usingrawkey() - Compute HMAC-SHA384 in one shot, using a raw key
* @raw_key: the raw HMAC-SHA384 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA384 value
*
* If you're using the key multiple times, prefer to use
* hmac_sha384_preparekey() followed by multiple calls to hmac_sha384() instead.
*
* Context: Any context.
*/
void hmac_sha384_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA384_DIGEST_SIZE]);
/**
* struct sha512_ctx - Context for hashing a message with SHA-512
* @ctx: private
*/
struct sha512_ctx {
struct __sha512_ctx ctx;
};
/**
* sha512_init() - Initialize a SHA-512 context for a new message
* @ctx: the context to initialize
*
* If you don't need incremental computation, consider sha512() instead.
*
* Context: Any context.
*/
void sha512_init(struct sha512_ctx *ctx);
/**
* sha512_update() - Update a SHA-512 context with message data
* @ctx: the context to update; must have been initialized
* @data: the message data
* @len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void sha512_update(struct sha512_ctx *ctx,
const u8 *data, size_t len)
{
__sha512_update(&ctx->ctx, data, len);
}
/**
* sha512_final() - Finish computing a SHA-512 message digest
* @ctx: the context to finalize; must have been initialized
* @out: (output) the resulting SHA-512 message digest
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void sha512_final(struct sha512_ctx *ctx, u8 out[SHA512_DIGEST_SIZE]);
/**
* sha512() - Compute SHA-512 message digest in one shot
* @data: the message data
* @len: the data length in bytes
* @out: (output) the resulting SHA-512 message digest
*
* Context: Any context.
*/
void sha512(const u8 *data, size_t len, u8 out[SHA512_DIGEST_SIZE]);
/**
* struct hmac_sha512_key - Prepared key for HMAC-SHA512
* @key: private
*/
struct hmac_sha512_key {
struct __hmac_sha512_key key;
};
/**
* struct hmac_sha512_ctx - Context for computing HMAC-SHA512 of a message
* @ctx: private
*/
struct hmac_sha512_ctx {
struct __hmac_sha512_ctx ctx;
};
/**
* hmac_sha512_preparekey() - Prepare a key for HMAC-SHA512
* @key: (output) the key structure to initialize
* @raw_key: the raw HMAC-SHA512 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* Note: the caller is responsible for zeroizing both the struct hmac_sha512_key
* and the raw key once they are no longer needed.
*
* Context: Any context.
*/
void hmac_sha512_preparekey(struct hmac_sha512_key *key,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha512_init() - Initialize an HMAC-SHA512 context for a new message
* @ctx: (output) the HMAC context to initialize
* @key: the prepared HMAC key
*
* If you don't need incremental computation, consider hmac_sha512() instead.
*
* Context: Any context.
*/
static inline void hmac_sha512_init(struct hmac_sha512_ctx *ctx,
const struct hmac_sha512_key *key)
{
__hmac_sha512_init(&ctx->ctx, &key->key);
}
/**
* hmac_sha512_init_usingrawkey() - Initialize an HMAC-SHA512 context for a new
* message, using a raw key
* @ctx: (output) the HMAC context to initialize
* @raw_key: the raw HMAC-SHA512 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
*
* If you don't need incremental computation, consider hmac_sha512_usingrawkey()
* instead.
*
* Context: Any context.
*/
void hmac_sha512_init_usingrawkey(struct hmac_sha512_ctx *ctx,
const u8 *raw_key, size_t raw_key_len);
/**
* hmac_sha512_update() - Update an HMAC-SHA512 context with message data
* @ctx: the HMAC context to update; must have been initialized
* @data: the message data
* @data_len: the data length in bytes
*
* This can be called any number of times.
*
* Context: Any context.
*/
static inline void hmac_sha512_update(struct hmac_sha512_ctx *ctx,
const u8 *data, size_t data_len)
{
__sha512_update(&ctx->ctx.sha_ctx, data, data_len);
}
/**
* hmac_sha512_final() - Finish computing an HMAC-SHA512 value
* @ctx: the HMAC context to finalize; must have been initialized
* @out: (output) the resulting HMAC-SHA512 value
*
* After finishing, this zeroizes @ctx. So the caller does not need to do it.
*
* Context: Any context.
*/
void hmac_sha512_final(struct hmac_sha512_ctx *ctx, u8 out[SHA512_DIGEST_SIZE]);
/**
* hmac_sha512() - Compute HMAC-SHA512 in one shot, using a prepared key
* @key: the prepared HMAC key
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA512 value
*
* If you're using the key only once, consider using hmac_sha512_usingrawkey().
*
* Context: Any context.
*/
void hmac_sha512(const struct hmac_sha512_key *key,
const u8 *data, size_t data_len, u8 out[SHA512_DIGEST_SIZE]);
/**
* hmac_sha512_usingrawkey() - Compute HMAC-SHA512 in one shot, using a raw key
* @raw_key: the raw HMAC-SHA512 key
* @raw_key_len: the key length in bytes. All key lengths are supported.
* @data: the message data
* @data_len: the data length in bytes
* @out: (output) the resulting HMAC-SHA512 value
*
* If you're using the key multiple times, prefer to use
* hmac_sha512_preparekey() followed by multiple calls to hmac_sha512() instead.
*
* Context: Any context.
*/
void hmac_sha512_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA512_DIGEST_SIZE]);
#endif /* _CRYPTO_SHA2_H */