Files
linux/sound/soc/soc-ops.c
Stefan Binding 095d621141 ASoC: ops: fix snd_soc_get_volsw for sx controls
SX controls are currently broken, since the clamp introduced in
commit a0ce874cfa ("ASoC: ops: improve snd_soc_get_volsw") does not
handle SX controls, for example where the min value in the clamp is
greater than the max value in the clamp.

Add clamp parameter to prevent clamping in SX controls.
The nature of SX controls mean that it wraps around 0, with a variable
number of bits, therefore clamping the value becomes complicated and
prone to error.

Fixes 35 kunit tests for soc_ops_test_access.

Fixes: a0ce874cfa ("ASoC: ops: improve snd_soc_get_volsw")

Co-developed-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Signed-off-by: Stefan Binding <sbinding@opensource.cirrus.com>
Tested-by: Peter Ujfalusi <peter.ujfalusi@linux.intel.com>
Link: https://patch.msgid.link/20251216134938.788625-1-sbinding@opensource.cirrus.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2025-12-18 18:18:18 +00:00

852 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// soc-ops.c -- Generic ASoC operations
//
// Copyright 2005 Wolfson Microelectronics PLC.
// Copyright 2005 Openedhand Ltd.
// Copyright (C) 2010 Slimlogic Ltd.
// Copyright (C) 2010 Texas Instruments Inc.
//
// Author: Liam Girdwood <lrg@slimlogic.co.uk>
// with code, comments and ideas from :-
// Richard Purdie <richard@openedhand.com>
#include <linux/cleanup.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/ctype.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
/**
* snd_soc_info_enum_double - enumerated double mixer info callback
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a double enumerated
* mixer control.
*
* Returns 0 for success.
*/
int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
e->items, e->texts);
}
EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
/**
* snd_soc_get_enum_double - enumerated double mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int val, item;
unsigned int reg_val;
reg_val = snd_soc_component_read(component, e->reg);
val = (reg_val >> e->shift_l) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[0] = item;
if (e->shift_l != e->shift_r) {
val = (reg_val >> e->shift_r) & e->mask;
item = snd_soc_enum_val_to_item(e, val);
ucontrol->value.enumerated.item[1] = item;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
/**
* snd_soc_put_enum_double - enumerated double mixer put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double enumerated mixer.
*
* Returns 0 for success.
*/
int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int *item = ucontrol->value.enumerated.item;
unsigned int val;
unsigned int mask;
if (item[0] >= e->items)
return -EINVAL;
val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
mask = e->mask << e->shift_l;
if (e->shift_l != e->shift_r) {
if (item[1] >= e->items)
return -EINVAL;
val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
mask |= e->mask << e->shift_r;
}
return snd_soc_component_update_bits(component, e->reg, mask, val);
}
EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
static int sdca_soc_q78_reg_to_ctl(struct soc_mixer_control *mc, unsigned int reg_val,
unsigned int mask, unsigned int shift, int max,
bool sx)
{
int val = reg_val;
if (WARN_ON(!mc->shift))
return -EINVAL;
val = sign_extend32(val, mc->sign_bit);
val = (((val * 100) >> 8) / (int)mc->shift);
val -= mc->min;
return val & mask;
}
static unsigned int sdca_soc_q78_ctl_to_reg(struct soc_mixer_control *mc, int val,
unsigned int mask, unsigned int shift, int max)
{
unsigned int ret_val;
int reg_val;
if (WARN_ON(!mc->shift))
return -EINVAL;
reg_val = val + mc->min;
ret_val = (int)((reg_val * mc->shift) << 8) / 100;
return ret_val & mask;
}
static int soc_mixer_reg_to_ctl(struct soc_mixer_control *mc, unsigned int reg_val,
unsigned int mask, unsigned int shift, int max,
bool sx)
{
int val = (reg_val >> shift) & mask;
if (mc->sign_bit)
val = sign_extend32(val, mc->sign_bit);
if (sx) {
val -= mc->min; // SX controls intentionally can overflow here
val = min_t(unsigned int, val & mask, max);
} else {
val = clamp(val, mc->min, mc->max);
val -= mc->min;
}
if (mc->invert)
val = max - val;
return val;
}
static unsigned int soc_mixer_ctl_to_reg(struct soc_mixer_control *mc, int val,
unsigned int mask, unsigned int shift,
int max)
{
unsigned int reg_val;
if (mc->invert)
val = max - val;
reg_val = val + mc->min;
return (reg_val & mask) << shift;
}
static int soc_mixer_valid_ctl(struct soc_mixer_control *mc, long val, int max)
{
if (val < 0)
return -EINVAL;
if (mc->platform_max && val > mc->platform_max)
return -EINVAL;
if (val > max)
return -EINVAL;
return 0;
}
static int soc_mixer_mask(struct soc_mixer_control *mc)
{
if (mc->sign_bit)
return GENMASK(mc->sign_bit, 0);
else
return GENMASK(fls(mc->max) - 1, 0);
}
static int soc_mixer_sx_mask(struct soc_mixer_control *mc)
{
// min + max will take us 1-bit over the size of the mask
return GENMASK(fls(mc->min + mc->max) - 2, 0);
}
static int soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo,
struct soc_mixer_control *mc, int max)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
if (max == 1) {
/* Even two value controls ending in Volume should be integer */
const char *vol_string = strstr(kcontrol->id.name, " Volume");
if (!vol_string || strcmp(vol_string, " Volume"))
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
}
if (mc->platform_max && mc->platform_max < max)
max = mc->platform_max;
uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = max;
return 0;
}
static int soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct soc_mixer_control *mc, int mask, int max)
{
unsigned int (*ctl_to_reg)(struct soc_mixer_control *, int, unsigned int, unsigned int, int);
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
unsigned int val1, val_mask;
unsigned int val2 = 0;
bool double_r = false;
int ret;
if (mc->sdca_q78) {
ctl_to_reg = sdca_soc_q78_ctl_to_reg;
val_mask = mask;
} else {
ctl_to_reg = soc_mixer_ctl_to_reg;
val_mask = mask << mc->shift;
}
ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[0], max);
if (ret)
return ret;
val1 = ctl_to_reg(mc, ucontrol->value.integer.value[0],
mask, mc->shift, max);
if (snd_soc_volsw_is_stereo(mc)) {
ret = soc_mixer_valid_ctl(mc, ucontrol->value.integer.value[1], max);
if (ret)
return ret;
if (mc->reg == mc->rreg) {
val1 |= ctl_to_reg(mc, ucontrol->value.integer.value[1], mask, mc->rshift, max);
val_mask |= mask << mc->rshift;
} else {
val2 = ctl_to_reg(mc, ucontrol->value.integer.value[1], mask, mc->shift, max);
double_r = true;
}
}
ret = snd_soc_component_update_bits(component, mc->reg, val_mask, val1);
if (ret < 0)
return ret;
if (double_r) {
int err = snd_soc_component_update_bits(component, mc->rreg,
val_mask, val2);
/* Don't drop change flag */
if (err)
return err;
}
return ret;
}
static int soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol,
struct soc_mixer_control *mc, int mask, int max, bool sx)
{
int (*reg_to_ctl)(struct soc_mixer_control *, unsigned int, unsigned int,
unsigned int, int, bool);
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
unsigned int reg_val;
int val;
if (mc->sdca_q78)
reg_to_ctl = sdca_soc_q78_reg_to_ctl;
else
reg_to_ctl = soc_mixer_reg_to_ctl;
reg_val = snd_soc_component_read(component, mc->reg);
val = reg_to_ctl(mc, reg_val, mask, mc->shift, max, sx);
ucontrol->value.integer.value[0] = val;
if (snd_soc_volsw_is_stereo(mc)) {
if (mc->reg == mc->rreg) {
val = reg_to_ctl(mc, reg_val, mask, mc->rshift, max, sx);
} else {
reg_val = snd_soc_component_read(component, mc->rreg);
val = reg_to_ctl(mc, reg_val, mask, mc->shift, max, sx);
}
ucontrol->value.integer.value[1] = val;
}
return 0;
}
/**
* snd_soc_info_volsw - single mixer info callback with range.
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information, with a range, about a single mixer control,
* or a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return soc_info_volsw(kcontrol, uinfo, mc, mc->max - mc->min);
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
/**
* snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
* @kcontrol: mixer control
* @uinfo: control element information
*
* Callback to provide information about a single mixer control, or a double
* mixer control that spans 2 registers of the SX TLV type. SX TLV controls
* have a range that represents both positive and negative values either side
* of zero but without a sign bit. min is the minimum register value, max is
* the number of steps.
*
* Returns 0 for success.
*/
int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
return soc_info_volsw(kcontrol, uinfo, mc, mc->max);
}
EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
/**
* snd_soc_get_volsw - single mixer get callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value, within a range, of a single mixer control, or a
* double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_mask(mc);
return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min, false);
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
/**
* snd_soc_put_volsw - single mixer put callback with range
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value , within a range, of a single mixer control, or
* a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_mask(mc);
return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max - mc->min);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
/**
* snd_soc_get_volsw_sx - single mixer get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to get the value of a single mixer control, or a double mixer
* control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_sx_mask(mc);
return soc_get_volsw(kcontrol, ucontrol, mc, mask, mc->max, true);
}
EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
/**
* snd_soc_put_volsw_sx - double mixer set callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback to set the value of a double mixer control that spans 2 registers.
*
* Returns 0 for success.
*/
int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int mask = soc_mixer_sx_mask(mc);
return soc_put_volsw(kcontrol, ucontrol, mc, mask, mc->max);
}
EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
static int snd_soc_clip_to_platform_max(struct snd_kcontrol *kctl)
{
struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
struct snd_ctl_elem_value *uctl;
int ret;
if (!mc->platform_max)
return 0;
uctl = kzalloc(sizeof(*uctl), GFP_KERNEL);
if (!uctl)
return -ENOMEM;
ret = kctl->get(kctl, uctl);
if (ret < 0)
goto out;
if (uctl->value.integer.value[0] > mc->platform_max)
uctl->value.integer.value[0] = mc->platform_max;
if (snd_soc_volsw_is_stereo(mc) &&
uctl->value.integer.value[1] > mc->platform_max)
uctl->value.integer.value[1] = mc->platform_max;
ret = kctl->put(kctl, uctl);
out:
kfree(uctl);
return ret;
}
/**
* snd_soc_limit_volume - Set new limit to an existing volume control.
*
* @card: where to look for the control
* @name: Name of the control
* @max: new maximum limit
*
* Return 0 for success, else error.
*/
int snd_soc_limit_volume(struct snd_soc_card *card, const char *name, int max)
{
struct snd_kcontrol *kctl;
int ret = -EINVAL;
/* Sanity check for name and max */
if (unlikely(!name || max <= 0))
return -EINVAL;
kctl = snd_soc_card_get_kcontrol(card, name);
if (kctl) {
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kctl->private_value;
if (max <= mc->max - mc->min) {
mc->platform_max = max;
ret = snd_soc_clip_to_platform_max(kctl);
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
uinfo->count = params->num_regs * component->val_bytes;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
int ret;
if (component->regmap)
ret = regmap_raw_read(component->regmap, params->base,
ucontrol->value.bytes.data,
params->num_regs * component->val_bytes);
else
ret = -EINVAL;
/* Hide any masked bytes to ensure consistent data reporting */
if (ret == 0 && params->mask) {
switch (component->val_bytes) {
case 1:
ucontrol->value.bytes.data[0] &= ~params->mask;
break;
case 2:
((u16 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be16(~params->mask);
break;
case 4:
((u32 *)(&ucontrol->value.bytes.data))[0]
&= cpu_to_be32(~params->mask);
break;
default:
return -EINVAL;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_bytes *params = (void *)kcontrol->private_value;
unsigned int val, mask;
int ret, len;
if (!component->regmap || !params->num_regs)
return -EINVAL;
len = params->num_regs * component->val_bytes;
void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
GFP_KERNEL | GFP_DMA);
if (!data)
return -ENOMEM;
/*
* If we've got a mask then we need to preserve the register
* bits. We shouldn't modify the incoming data so take a
* copy.
*/
if (params->mask) {
ret = regmap_read(component->regmap, params->base, &val);
if (ret != 0)
return ret;
val &= params->mask;
switch (component->val_bytes) {
case 1:
((u8 *)data)[0] &= ~params->mask;
((u8 *)data)[0] |= val;
break;
case 2:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap, &mask, &mask);
if (ret != 0)
return ret;
((u16 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap, &val, &val);
if (ret != 0)
return ret;
((u16 *)data)[0] |= val;
break;
case 4:
mask = ~params->mask;
ret = regmap_parse_val(component->regmap, &mask, &mask);
if (ret != 0)
return ret;
((u32 *)data)[0] &= mask;
ret = regmap_parse_val(component->regmap, &val, &val);
if (ret != 0)
return ret;
((u32 *)data)[0] |= val;
break;
default:
return -EINVAL;
}
}
return regmap_raw_write(component->regmap, params->base, data, len);
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *ucontrol)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
ucontrol->count = params->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct soc_bytes_ext *params = (void *)kcontrol->private_value;
unsigned int count = size < params->max ? size : params->max;
int ret = -ENXIO;
switch (op_flag) {
case SNDRV_CTL_TLV_OP_READ:
if (params->get)
ret = params->get(kcontrol, tlv, count);
break;
case SNDRV_CTL_TLV_OP_WRITE:
if (params->put)
ret = params->put(kcontrol, tlv, count);
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
/**
* snd_soc_info_xr_sx - signed multi register info callback
* @kcontrol: mreg control
* @uinfo: control element information
*
* Callback to provide information of a control that can span multiple
* codec registers which together forms a single signed value. Note
* that unlike the non-xr variant of sx controls these may or may not
* include the sign bit, depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = mc->min;
uinfo->value.integer.max = mc->max;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
/**
* snd_soc_get_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to get the value of a control that can span multiple codec
* registers which together forms a single signed value. The control
* supports specifying total no of bits used to allow for bitfields
* across the multiple codec registers. Note that unlike the non-xr
* variant of sx controls these may or may not include the sign bit,
* depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = GENMASK(regwshift - 1, 0);
unsigned long mask = GENMASK(mc->nbits - 1, 0);
long val = 0;
unsigned int i;
for (i = 0; i < regcount; i++) {
unsigned int regval = snd_soc_component_read(component, regbase + i);
val |= (regval & regwmask) << (regwshift * (regcount - i - 1));
}
val &= mask;
if (mc->min < 0 && val > mc->max)
val |= ~mask;
if (mc->invert)
val = mc->max - val;
ucontrol->value.integer.value[0] = val;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
/**
* snd_soc_put_xr_sx - signed multi register get callback
* @kcontrol: mreg control
* @ucontrol: control element information
*
* Callback to set the value of a control that can span multiple codec
* registers which together forms a single signed value. The control
* supports specifying total no of bits used to allow for bitfields
* across the multiple codec registers. Note that unlike the non-xr
* variant of sx controls these may or may not include the sign bit,
* depending on nbits, and there is no shift.
*
* Returns 0 for success.
*/
int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mreg_control *mc =
(struct soc_mreg_control *)kcontrol->private_value;
unsigned int regbase = mc->regbase;
unsigned int regcount = mc->regcount;
unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
unsigned int regwmask = GENMASK(regwshift - 1, 0);
unsigned long mask = GENMASK(mc->nbits - 1, 0);
long val = ucontrol->value.integer.value[0];
int ret = 0;
unsigned int i;
if (val < mc->min || val > mc->max)
return -EINVAL;
if (mc->invert)
val = mc->max - val;
val &= mask;
for (i = 0; i < regcount; i++) {
unsigned int regval = (val >> (regwshift * (regcount - i - 1))) &
regwmask;
unsigned int regmask = (mask >> (regwshift * (regcount - i - 1))) &
regwmask;
int err = snd_soc_component_update_bits(component, regbase + i,
regmask, regval);
if (err < 0)
return err;
if (err > 0)
ret = err;
}
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
/**
* snd_soc_get_strobe - strobe get callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback get the value of a strobe mixer control.
*
* Returns 0 for success.
*/
int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int invert = mc->invert != 0;
unsigned int mask = BIT(mc->shift);
unsigned int val;
val = snd_soc_component_read(component, mc->reg);
val &= mask;
if (mc->shift != 0 && val != 0)
val = val >> mc->shift;
ucontrol->value.enumerated.item[0] = val ^ invert;
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
/**
* snd_soc_put_strobe - strobe put callback
* @kcontrol: mixer control
* @ucontrol: control element information
*
* Callback strobe a register bit to high then low (or the inverse)
* in one pass of a single mixer enum control.
*
* Returns 1 for success.
*/
int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
struct soc_mixer_control *mc =
(struct soc_mixer_control *)kcontrol->private_value;
unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
unsigned int invert = mc->invert != 0;
unsigned int mask = BIT(mc->shift);
unsigned int val1 = (strobe ^ invert) ? mask : 0;
unsigned int val2 = (strobe ^ invert) ? 0 : mask;
int ret;
ret = snd_soc_component_update_bits(component, mc->reg, mask, val1);
if (ret < 0)
return ret;
return snd_soc_component_update_bits(component, mc->reg, mask, val2);
}
EXPORT_SYMBOL_GPL(snd_soc_put_strobe);