Files
linux/drivers/md/dm-pcache/cache_dev.c
Dongsheng Yang 1d57628ff9 dm-pcache: add persistent cache target in device-mapper
This patch introduces dm-pcache, a new DM target that places a DAX-
capable persistent-memory device in front of any slower block device and
uses it as a high-throughput, low-latency  cache.

Design highlights
-----------------
- DAX data path – data is copied directly between DRAM and the pmem
  mapping, bypassing the block layer’s overhead.

- Segmented, crash-consistent layout
  - all layout metadata are dual-replicated CRC-protected.
  - atomic kset flushes; key replay on mount guarantees cache integrity
    even after power loss.

- Striped multi-tree index
  - Multi‑tree indexing for high parallelism.
  - overlap-resolution logic ensures non-intersecting cached extents.

- Background services
  - write-back worker flushes dirty keys in order, preserving backing-device
    crash consistency. This is important for checkpoint in cloud storage.
  - garbage collector reclaims clean segments when utilisation exceeds a
    tunable threshold.

- Data integrity – optional CRC32 on cached payload; metadata always protected.

Comparison with existing block-level caches
---------------------------------------------------------------------------------------------------------------------------------
| Feature                          | pcache (this patch)             | bcache                       | dm-writecache             |
|----------------------------------|---------------------------------|------------------------------|---------------------------|
| pmem access method               | DAX                             | bio (block I/O)              | DAX                       |
| Write latency (4 K rand-write)   | ~5 µs                           | ~20 µs                       | ~5 µs                     |
| Concurrency                      | multi subtree index             | global index tree            | single tree + wc_lock     |
| IOPS (4K randwrite, 32 numjobs)  | 2.1 M                           | 352 K                        | 283 K                     |
| Read-cache support               | YES                             | YES                          | NO                        |
| Deployment                       | no re-format of backend         | backend devices must be      | no re-format of backend   |
|                                  |                                 | reformatted                  |                           |
| Write-back ordering              | log-structured;                 | no ordering guarantee        | no ordering guarantee     |
|                                  | preserves app-IO-order          |                              |                           |
| Data integrity checks            | metadata + data CRC(optional)   | metadata CRC only            | none                      |
---------------------------------------------------------------------------------------------------------------------------------

Signed-off-by: Dongsheng Yang <dongsheng.yang@linux.dev>
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
2025-08-25 15:25:29 +02:00

304 lines
6.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/blkdev.h>
#include <linux/dax.h>
#include <linux/vmalloc.h>
#include <linux/parser.h>
#include "cache_dev.h"
#include "backing_dev.h"
#include "cache.h"
#include "dm_pcache.h"
static void cache_dev_dax_exit(struct pcache_cache_dev *cache_dev)
{
if (cache_dev->use_vmap)
vunmap(cache_dev->mapping);
}
static int build_vmap(struct dax_device *dax_dev, long total_pages, void **vaddr)
{
struct page **pages;
long i = 0, chunk;
unsigned long pfn;
int ret;
pages = vmalloc_array(total_pages, sizeof(struct page *));
if (!pages)
return -ENOMEM;
do {
chunk = dax_direct_access(dax_dev, i, total_pages - i,
DAX_ACCESS, NULL, &pfn);
if (chunk <= 0) {
ret = chunk ? chunk : -EINVAL;
goto out_free;
}
if (!pfn_valid(pfn)) {
ret = -EOPNOTSUPP;
goto out_free;
}
while (chunk-- && i < total_pages) {
pages[i++] = pfn_to_page(pfn);
pfn++;
if (!(i & 15))
cond_resched();
}
} while (i < total_pages);
*vaddr = vmap(pages, total_pages, VM_MAP, PAGE_KERNEL);
if (!*vaddr) {
ret = -ENOMEM;
goto out_free;
}
ret = 0;
out_free:
vfree(pages);
return ret;
}
static int cache_dev_dax_init(struct pcache_cache_dev *cache_dev)
{
struct dm_pcache *pcache = CACHE_DEV_TO_PCACHE(cache_dev);
struct dax_device *dax_dev;
long total_pages, mapped_pages;
u64 bdev_size;
void *vaddr;
int ret;
int id;
unsigned long pfn;
dax_dev = cache_dev->dm_dev->dax_dev;
/* total size check */
bdev_size = bdev_nr_bytes(cache_dev->dm_dev->bdev);
if (bdev_size < PCACHE_CACHE_DEV_SIZE_MIN) {
pcache_dev_err(pcache, "dax device is too small, required at least %llu",
PCACHE_CACHE_DEV_SIZE_MIN);
ret = -ENOSPC;
goto out;
}
total_pages = bdev_size >> PAGE_SHIFT;
/* attempt: direct-map the whole range */
id = dax_read_lock();
mapped_pages = dax_direct_access(dax_dev, 0, total_pages,
DAX_ACCESS, &vaddr, &pfn);
if (mapped_pages < 0) {
pcache_dev_err(pcache, "dax_direct_access failed: %ld\n", mapped_pages);
ret = mapped_pages;
goto unlock;
}
if (!pfn_valid(pfn)) {
ret = -EOPNOTSUPP;
goto unlock;
}
if (mapped_pages == total_pages) {
/* success: contiguous direct mapping */
cache_dev->mapping = vaddr;
} else {
/* need vmap fallback */
ret = build_vmap(dax_dev, total_pages, &vaddr);
if (ret) {
pcache_dev_err(pcache, "vmap fallback failed: %d\n", ret);
goto unlock;
}
cache_dev->mapping = vaddr;
cache_dev->use_vmap = true;
}
dax_read_unlock(id);
return 0;
unlock:
dax_read_unlock(id);
out:
return ret;
}
void cache_dev_zero_range(struct pcache_cache_dev *cache_dev, void *pos, u32 size)
{
memset(pos, 0, size);
dax_flush(cache_dev->dm_dev->dax_dev, pos, size);
}
static int sb_read(struct pcache_cache_dev *cache_dev, struct pcache_sb *sb)
{
struct pcache_sb *sb_addr = CACHE_DEV_SB(cache_dev);
if (copy_mc_to_kernel(sb, sb_addr, sizeof(struct pcache_sb)))
return -EIO;
return 0;
}
static void sb_write(struct pcache_cache_dev *cache_dev, struct pcache_sb *sb)
{
struct pcache_sb *sb_addr = CACHE_DEV_SB(cache_dev);
memcpy_flushcache(sb_addr, sb, sizeof(struct pcache_sb));
pmem_wmb();
}
static int sb_init(struct pcache_cache_dev *cache_dev, struct pcache_sb *sb)
{
struct dm_pcache *pcache = CACHE_DEV_TO_PCACHE(cache_dev);
u64 nr_segs;
u64 cache_dev_size;
u64 magic;
u32 flags = 0;
magic = le64_to_cpu(sb->magic);
if (magic)
return -EEXIST;
cache_dev_size = bdev_nr_bytes(file_bdev(cache_dev->dm_dev->bdev_file));
if (cache_dev_size < PCACHE_CACHE_DEV_SIZE_MIN) {
pcache_dev_err(pcache, "dax device is too small, required at least %llu",
PCACHE_CACHE_DEV_SIZE_MIN);
return -ENOSPC;
}
nr_segs = (cache_dev_size - PCACHE_SEGMENTS_OFF) / ((PCACHE_SEG_SIZE));
#if defined(__BYTE_ORDER) ? (__BIG_ENDIAN == __BYTE_ORDER) : defined(__BIG_ENDIAN)
flags |= PCACHE_SB_F_BIGENDIAN;
#endif
sb->flags = cpu_to_le32(flags);
sb->magic = cpu_to_le64(PCACHE_MAGIC);
sb->seg_num = cpu_to_le32(nr_segs);
sb->crc = cpu_to_le32(crc32c(PCACHE_CRC_SEED, (void *)(sb) + 4, sizeof(struct pcache_sb) - 4));
cache_dev_zero_range(cache_dev, CACHE_DEV_CACHE_INFO(cache_dev),
PCACHE_CACHE_INFO_SIZE * PCACHE_META_INDEX_MAX +
PCACHE_CACHE_CTRL_SIZE);
return 0;
}
static int sb_validate(struct pcache_cache_dev *cache_dev, struct pcache_sb *sb)
{
struct dm_pcache *pcache = CACHE_DEV_TO_PCACHE(cache_dev);
u32 flags;
u32 crc;
if (le64_to_cpu(sb->magic) != PCACHE_MAGIC) {
pcache_dev_err(pcache, "unexpected magic: %llx\n",
le64_to_cpu(sb->magic));
return -EINVAL;
}
crc = crc32c(PCACHE_CRC_SEED, (void *)(sb) + 4, sizeof(struct pcache_sb) - 4);
if (crc != le32_to_cpu(sb->crc)) {
pcache_dev_err(pcache, "corrupted sb: %u, expected: %u\n", crc, le32_to_cpu(sb->crc));
return -EINVAL;
}
flags = le32_to_cpu(sb->flags);
#if defined(__BYTE_ORDER) ? (__BIG_ENDIAN == __BYTE_ORDER) : defined(__BIG_ENDIAN)
if (!(flags & PCACHE_SB_F_BIGENDIAN)) {
pcache_dev_err(pcache, "cache_dev is not big endian\n");
return -EINVAL;
}
#else
if (flags & PCACHE_SB_F_BIGENDIAN) {
pcache_dev_err(pcache, "cache_dev is big endian\n");
return -EINVAL;
}
#endif
return 0;
}
static int cache_dev_init(struct pcache_cache_dev *cache_dev, u32 seg_num)
{
cache_dev->seg_num = seg_num;
cache_dev->seg_bitmap = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL);
if (!cache_dev->seg_bitmap)
return -ENOMEM;
return 0;
}
static void cache_dev_exit(struct pcache_cache_dev *cache_dev)
{
kvfree(cache_dev->seg_bitmap);
}
void cache_dev_stop(struct dm_pcache *pcache)
{
struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
cache_dev_exit(cache_dev);
cache_dev_dax_exit(cache_dev);
}
int cache_dev_start(struct dm_pcache *pcache)
{
struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
struct pcache_sb sb;
bool format = false;
int ret;
mutex_init(&cache_dev->seg_lock);
ret = cache_dev_dax_init(cache_dev);
if (ret) {
pcache_dev_err(pcache, "failed to init cache_dev %s via dax way: %d.",
cache_dev->dm_dev->name, ret);
goto err;
}
ret = sb_read(cache_dev, &sb);
if (ret)
goto dax_release;
if (le64_to_cpu(sb.magic) == 0) {
format = true;
ret = sb_init(cache_dev, &sb);
if (ret < 0)
goto dax_release;
}
ret = sb_validate(cache_dev, &sb);
if (ret)
goto dax_release;
cache_dev->sb_flags = le32_to_cpu(sb.flags);
ret = cache_dev_init(cache_dev, le32_to_cpu(sb.seg_num));
if (ret)
goto dax_release;
if (format)
sb_write(cache_dev, &sb);
return 0;
dax_release:
cache_dev_dax_exit(cache_dev);
err:
return ret;
}
int cache_dev_get_empty_segment_id(struct pcache_cache_dev *cache_dev, u32 *seg_id)
{
int ret;
mutex_lock(&cache_dev->seg_lock);
*seg_id = find_next_zero_bit(cache_dev->seg_bitmap, cache_dev->seg_num, 0);
if (*seg_id == cache_dev->seg_num) {
ret = -ENOSPC;
goto unlock;
}
__set_bit(*seg_id, cache_dev->seg_bitmap);
ret = 0;
unlock:
mutex_unlock(&cache_dev->seg_lock);
return ret;
}