Files
linux/drivers/cpufreq/tegra186-cpufreq.c
Aaron Kling 85976d3774 cpufreq: tegra186: add OPP support and set bandwidth
Add support to use OPP table from DT in Tegra186 cpufreq driver.
Tegra SoC's receive the frequency lookup table (LUT) from BPMP-FW.
Cross check the OPP's present in DT against the LUT from BPMP-FW
and enable only those DT OPP's which are present in LUT also.

The OPP table in DT has CPU Frequency to bandwidth mapping where
the bandwidth value is per MC channel. DRAM bandwidth depends on the
number of MC channels which can vary as per the boot configuration.
This per channel bandwidth from OPP table will be later converted by
MC driver to final bandwidth value by multiplying with number of
channels before being handled in the EMC driver.

If OPP table is not present in DT, then use the LUT from BPMP-FW
directly as the CPU frequency table and not do the DRAM frequency
scaling which is same as the current behavior.

Signed-off-by: Aaron Kling <webgeek1234@gmail.com>
[ Viresh: Fix _free() definitions ]
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
2025-10-23 12:10:11 +05:30

445 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved
*/
#include <linux/cpufreq.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/units.h>
#include <soc/tegra/bpmp.h>
#include <soc/tegra/bpmp-abi.h>
#define TEGRA186_NUM_CLUSTERS 2
#define EDVD_OFFSET_A57(core) ((SZ_64K * 6) + (0x20 + (core) * 0x4))
#define EDVD_OFFSET_DENVER(core) ((SZ_64K * 7) + (0x20 + (core) * 0x4))
#define EDVD_CORE_VOLT_FREQ_F_SHIFT 0
#define EDVD_CORE_VOLT_FREQ_F_MASK 0xffff
#define EDVD_CORE_VOLT_FREQ_V_SHIFT 16
struct tegra186_cpufreq_cpu {
unsigned int bpmp_cluster_id;
unsigned int edvd_offset;
};
static const struct tegra186_cpufreq_cpu tegra186_cpus[] = {
/* CPU0 - A57 Cluster */
{
.bpmp_cluster_id = 1,
.edvd_offset = EDVD_OFFSET_A57(0)
},
/* CPU1 - Denver Cluster */
{
.bpmp_cluster_id = 0,
.edvd_offset = EDVD_OFFSET_DENVER(0)
},
/* CPU2 - Denver Cluster */
{
.bpmp_cluster_id = 0,
.edvd_offset = EDVD_OFFSET_DENVER(1)
},
/* CPU3 - A57 Cluster */
{
.bpmp_cluster_id = 1,
.edvd_offset = EDVD_OFFSET_A57(1)
},
/* CPU4 - A57 Cluster */
{
.bpmp_cluster_id = 1,
.edvd_offset = EDVD_OFFSET_A57(2)
},
/* CPU5 - A57 Cluster */
{
.bpmp_cluster_id = 1,
.edvd_offset = EDVD_OFFSET_A57(3)
},
};
struct tegra186_cpufreq_cluster {
struct cpufreq_frequency_table *bpmp_lut;
u32 ref_clk_khz;
u32 div;
};
struct tegra186_cpufreq_data {
void __iomem *regs;
const struct tegra186_cpufreq_cpu *cpus;
bool icc_dram_bw_scaling;
struct tegra186_cpufreq_cluster clusters[];
};
static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
{
struct tegra186_cpufreq_data *data = cpufreq_get_driver_data();
struct device *dev;
int ret;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
struct dev_pm_opp *opp __free(put_opp) =
dev_pm_opp_find_freq_exact(dev, freq_khz * HZ_PER_KHZ, true);
if (IS_ERR(opp))
return PTR_ERR(opp);
ret = dev_pm_opp_set_opp(dev, opp);
if (ret)
data->icc_dram_bw_scaling = false;
return ret;
}
static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *bpmp_lut,
struct cpufreq_frequency_table **opp_table)
{
struct tegra186_cpufreq_data *data = cpufreq_get_driver_data();
struct cpufreq_frequency_table *freq_table = NULL;
struct cpufreq_frequency_table *pos;
struct device *cpu_dev;
unsigned long rate;
int ret, max_opps;
int j = 0;
cpu_dev = get_cpu_device(policy->cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
return -ENODEV;
}
/* Initialize OPP table mentioned in operating-points-v2 property in DT */
ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
if (ret) {
dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
data->icc_dram_bw_scaling = false;
return ret;
}
max_opps = dev_pm_opp_get_opp_count(cpu_dev);
if (max_opps <= 0) {
dev_err(cpu_dev, "Failed to add OPPs\n");
return max_opps;
}
/* Disable all opps and cross-validate against LUT later */
for (rate = 0; ; rate++) {
struct dev_pm_opp *opp __free(put_opp) =
dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
if (IS_ERR(opp))
break;
dev_pm_opp_disable(cpu_dev, rate);
}
freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
if (!freq_table)
return -ENOMEM;
/*
* Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
* Enable only those DT OPP's which are present in LUT also.
*/
cpufreq_for_each_valid_entry(pos, bpmp_lut) {
struct dev_pm_opp *opp __free(put_opp) =
dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * HZ_PER_KHZ, false);
if (IS_ERR(opp))
continue;
ret = dev_pm_opp_enable(cpu_dev, pos->frequency * HZ_PER_KHZ);
if (ret < 0)
return ret;
freq_table[j].driver_data = pos->driver_data;
freq_table[j].frequency = pos->frequency;
j++;
}
freq_table[j].driver_data = pos->driver_data;
freq_table[j].frequency = CPUFREQ_TABLE_END;
*opp_table = &freq_table[0];
dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
/* Prime interconnect data */
tegra_cpufreq_set_bw(policy, freq_table[j - 1].frequency);
return ret;
}
static int tegra186_cpufreq_init(struct cpufreq_policy *policy)
{
struct tegra186_cpufreq_data *data = cpufreq_get_driver_data();
unsigned int cluster = data->cpus[policy->cpu].bpmp_cluster_id;
struct cpufreq_frequency_table *freq_table;
struct cpufreq_frequency_table *bpmp_lut;
u32 cpu;
int ret;
policy->cpuinfo.transition_latency = 300 * 1000;
policy->driver_data = NULL;
/* set same policy for all cpus in a cluster */
for (cpu = 0; cpu < ARRAY_SIZE(tegra186_cpus); cpu++) {
if (data->cpus[cpu].bpmp_cluster_id == cluster)
cpumask_set_cpu(cpu, policy->cpus);
}
bpmp_lut = data->clusters[cluster].bpmp_lut;
if (data->icc_dram_bw_scaling) {
ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
if (!ret) {
policy->freq_table = freq_table;
return 0;
}
}
data->icc_dram_bw_scaling = false;
policy->freq_table = bpmp_lut;
pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
return 0;
}
static int tegra186_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct tegra186_cpufreq_data *data = cpufreq_get_driver_data();
struct cpufreq_frequency_table *tbl = policy->freq_table + index;
unsigned int edvd_offset;
u32 edvd_val = tbl->driver_data;
u32 cpu;
for_each_cpu(cpu, policy->cpus) {
edvd_offset = data->cpus[cpu].edvd_offset;
writel(edvd_val, data->regs + edvd_offset);
}
if (data->icc_dram_bw_scaling)
tegra_cpufreq_set_bw(policy, tbl->frequency);
return 0;
}
static unsigned int tegra186_cpufreq_get(unsigned int cpu)
{
struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
struct tegra186_cpufreq_data *data = cpufreq_get_driver_data();
struct tegra186_cpufreq_cluster *cluster;
unsigned int edvd_offset, cluster_id;
u32 ndiv;
if (!policy)
return 0;
edvd_offset = data->cpus[policy->cpu].edvd_offset;
ndiv = readl(data->regs + edvd_offset) & EDVD_CORE_VOLT_FREQ_F_MASK;
cluster_id = data->cpus[policy->cpu].bpmp_cluster_id;
cluster = &data->clusters[cluster_id];
return (cluster->ref_clk_khz * ndiv) / cluster->div;
}
static struct cpufreq_driver tegra186_cpufreq_driver = {
.name = "tegra186",
.flags = CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.get = tegra186_cpufreq_get,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = tegra186_cpufreq_set_target,
.init = tegra186_cpufreq_init,
};
static struct cpufreq_frequency_table *tegra_cpufreq_bpmp_read_lut(
struct platform_device *pdev, struct tegra_bpmp *bpmp,
struct tegra186_cpufreq_cluster *cluster, unsigned int cluster_id,
int *num_rates)
{
struct cpufreq_frequency_table *table;
struct mrq_cpu_vhint_request req;
struct tegra_bpmp_message msg;
struct cpu_vhint_data *data;
int err, i, j;
dma_addr_t phys;
void *virt;
virt = dma_alloc_coherent(bpmp->dev, sizeof(*data), &phys,
GFP_KERNEL);
if (!virt)
return ERR_PTR(-ENOMEM);
data = (struct cpu_vhint_data *)virt;
memset(&req, 0, sizeof(req));
req.addr = phys;
req.cluster_id = cluster_id;
memset(&msg, 0, sizeof(msg));
msg.mrq = MRQ_CPU_VHINT;
msg.tx.data = &req;
msg.tx.size = sizeof(req);
err = tegra_bpmp_transfer(bpmp, &msg);
if (err) {
table = ERR_PTR(err);
goto free;
}
if (msg.rx.ret) {
table = ERR_PTR(-EINVAL);
goto free;
}
*num_rates = 0;
for (i = data->vfloor; i <= data->vceil; i++) {
u16 ndiv = data->ndiv[i];
if (ndiv < data->ndiv_min || ndiv > data->ndiv_max)
continue;
/* Only store lowest voltage index for each rate */
if (i > 0 && ndiv == data->ndiv[i - 1])
continue;
(*num_rates)++;
}
table = devm_kcalloc(&pdev->dev, *num_rates + 1, sizeof(*table),
GFP_KERNEL);
if (!table) {
table = ERR_PTR(-ENOMEM);
goto free;
}
cluster->ref_clk_khz = data->ref_clk_hz / 1000;
cluster->div = data->pdiv * data->mdiv;
for (i = data->vfloor, j = 0; i <= data->vceil; i++) {
struct cpufreq_frequency_table *point;
u16 ndiv = data->ndiv[i];
u32 edvd_val = 0;
if (ndiv < data->ndiv_min || ndiv > data->ndiv_max)
continue;
/* Only store lowest voltage index for each rate */
if (i > 0 && ndiv == data->ndiv[i - 1])
continue;
edvd_val |= i << EDVD_CORE_VOLT_FREQ_V_SHIFT;
edvd_val |= ndiv << EDVD_CORE_VOLT_FREQ_F_SHIFT;
point = &table[j++];
point->driver_data = edvd_val;
point->frequency = (cluster->ref_clk_khz * ndiv) / cluster->div;
}
table[j].frequency = CPUFREQ_TABLE_END;
free:
dma_free_coherent(bpmp->dev, sizeof(*data), virt, phys);
return table;
}
static int tegra186_cpufreq_probe(struct platform_device *pdev)
{
struct tegra186_cpufreq_data *data;
struct tegra_bpmp *bpmp;
struct device *cpu_dev;
unsigned int i = 0, err, edvd_offset;
int num_rates = 0;
u32 edvd_val, cpu;
data = devm_kzalloc(&pdev->dev,
struct_size(data, clusters, TEGRA186_NUM_CLUSTERS),
GFP_KERNEL);
if (!data)
return -ENOMEM;
data->cpus = tegra186_cpus;
bpmp = tegra_bpmp_get(&pdev->dev);
if (IS_ERR(bpmp))
return PTR_ERR(bpmp);
data->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(data->regs)) {
err = PTR_ERR(data->regs);
goto put_bpmp;
}
for (i = 0; i < TEGRA186_NUM_CLUSTERS; i++) {
struct tegra186_cpufreq_cluster *cluster = &data->clusters[i];
cluster->bpmp_lut = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, cluster, i, &num_rates);
if (IS_ERR(cluster->bpmp_lut)) {
err = PTR_ERR(cluster->bpmp_lut);
goto put_bpmp;
} else if (!num_rates) {
err = -EINVAL;
goto put_bpmp;
}
for (cpu = 0; cpu < ARRAY_SIZE(tegra186_cpus); cpu++) {
if (data->cpus[cpu].bpmp_cluster_id == i) {
edvd_val = cluster->bpmp_lut[num_rates - 1].driver_data;
edvd_offset = data->cpus[cpu].edvd_offset;
writel(edvd_val, data->regs + edvd_offset);
}
}
}
tegra186_cpufreq_driver.driver_data = data;
/* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
cpu_dev = get_cpu_device(0);
if (!cpu_dev) {
err = -EPROBE_DEFER;
goto put_bpmp;
}
if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
if (!err)
data->icc_dram_bw_scaling = true;
}
err = cpufreq_register_driver(&tegra186_cpufreq_driver);
put_bpmp:
tegra_bpmp_put(bpmp);
return err;
}
static void tegra186_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&tegra186_cpufreq_driver);
}
static const struct of_device_id tegra186_cpufreq_of_match[] = {
{ .compatible = "nvidia,tegra186-ccplex-cluster", },
{ }
};
MODULE_DEVICE_TABLE(of, tegra186_cpufreq_of_match);
static struct platform_driver tegra186_cpufreq_platform_driver = {
.driver = {
.name = "tegra186-cpufreq",
.of_match_table = tegra186_cpufreq_of_match,
},
.probe = tegra186_cpufreq_probe,
.remove = tegra186_cpufreq_remove,
};
module_platform_driver(tegra186_cpufreq_platform_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra186 cpufreq driver");
MODULE_LICENSE("GPL v2");