Conflicts:
drivers/net/ethernet/freescale/fec_main.c
6ead9c98ca ("net: fec: remove the xdp_return_frame when lack of tx BDs")
144470c88c ("net: fec: using the standard return codes when xdp xmit errors")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-05-16
We've added 57 non-merge commits during the last 19 day(s) which contain
a total of 63 files changed, 3293 insertions(+), 690 deletions(-).
The main changes are:
1) Add precision propagation to verifier for subprogs and callbacks,
from Andrii Nakryiko.
2) Improve BPF's {g,s}setsockopt() handling with wrong option lengths,
from Stanislav Fomichev.
3) Utilize pahole v1.25 for the kernel's BTF generation to filter out
inconsistent function prototypes, from Alan Maguire.
4) Various dyn-pointer verifier improvements to relax restrictions,
from Daniel Rosenberg.
5) Add a new bpf_task_under_cgroup() kfunc for designated task,
from Feng Zhou.
6) Unblock tests for arm64 BPF CI after ftrace supporting direct call,
from Florent Revest.
7) Add XDP hint kfunc metadata for RX hash/timestamp for igc,
from Jesper Dangaard Brouer.
8) Add several new dyn-pointer kfuncs to ease their usability,
from Joanne Koong.
9) Add in-depth LRU internals description and dot function graph,
from Joe Stringer.
10) Fix KCSAN report on bpf_lru_list when accessing node->ref,
from Martin KaFai Lau.
11) Only dump unprivileged_bpf_disabled log warning upon write,
from Kui-Feng Lee.
12) Extend test_progs to directly passing allow/denylist file,
from Stephen Veiss.
13) Fix BPF trampoline memleak upon failure attaching to fentry,
from Yafang Shao.
14) Fix emitting struct bpf_tcp_sock type in vmlinux BTF,
from Yonghong Song.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (57 commits)
bpf: Fix memleak due to fentry attach failure
bpf: Remove bpf trampoline selector
bpf, arm64: Support struct arguments in the BPF trampoline
bpftool: JIT limited misreported as negative value on aarch64
bpf: fix calculation of subseq_idx during precision backtracking
bpf: Remove anonymous union in bpf_kfunc_call_arg_meta
bpf: Document EFAULT changes for sockopt
selftests/bpf: Correctly handle optlen > 4096
selftests/bpf: Update EFAULT {g,s}etsockopt selftests
bpf: Don't EFAULT for {g,s}setsockopt with wrong optlen
libbpf: fix offsetof() and container_of() to work with CO-RE
bpf: Address KCSAN report on bpf_lru_list
bpf: Add --skip_encoding_btf_inconsistent_proto, --btf_gen_optimized to pahole flags for v1.25
selftests/bpf: Accept mem from dynptr in helper funcs
bpf: verifier: Accept dynptr mem as mem in helpers
selftests/bpf: Check overflow in optional buffer
selftests/bpf: Test allowing NULL buffer in dynptr slice
bpf: Allow NULL buffers in bpf_dynptr_slice(_rw)
selftests/bpf: Add testcase for bpf_task_under_cgroup
bpf: Add bpf_task_under_cgroup() kfunc
...
====================
Link: https://lore.kernel.org/r/20230515225603.27027-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If it fails to attach fentry, the allocated bpf trampoline image will be
left in the system. That can be verified by checking /proc/kallsyms.
This meamleak can be verified by a simple bpf program as follows:
SEC("fentry/trap_init")
int fentry_run()
{
return 0;
}
It will fail to attach trap_init because this function is freed after
kernel init, and then we can find the trampoline image is left in the
system by checking /proc/kallsyms.
$ tail /proc/kallsyms
ffffffffc0613000 t bpf_trampoline_6442453466_1 [bpf]
ffffffffc06c3000 t bpf_trampoline_6442453466_1 [bpf]
$ bpftool btf dump file /sys/kernel/btf/vmlinux | grep "FUNC 'trap_init'"
[2522] FUNC 'trap_init' type_id=119 linkage=static
$ echo $((6442453466 & 0x7fffffff))
2522
Note that there are two left bpf trampoline images, that is because the
libbpf will fallback to raw tracepoint if -EINVAL is returned.
Fixes: e21aa34178 ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/20230515130849.57502-2-laoar.shao@gmail.com
After commit e21aa34178 ("bpf: Fix fexit trampoline."), the selector is only
used to indicate how many times the bpf trampoline image are updated and been
displayed in the trampoline ksym name. After the trampoline is freed, the
selector will start from 0 again. So the selector is a useless value to the
user. We can remove it.
If the user want to check whether the bpf trampoline image has been updated
or not, the user can compare the address. Each time the trampoline image is
updated, the address will change consequently. Jiri also pointed out another
issue that perf is still using the old name "bpf_trampoline_%lu", so this
change can fix the issue in perf.
Fixes: e21aa34178 ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/ZFvOOlrmHiY9AgXE@krava
Link: https://lore.kernel.org/bpf/20230515130849.57502-3-laoar.shao@gmail.com
Subsequent instruction index (subseq_idx) is an index of an instruction
that was verified/executed by verifier after the currently processed
instruction. It is maintained during precision backtracking processing
and is used to detect various subprog calling conditions.
This patch fixes the bug with incorrectly resetting subseq_idx to -1
when going from child state to parent state during backtracking. If we
don't maintain correct subseq_idx we can misidentify subprog calls
leading to precision tracking bugs.
One such case was triggered by test_global_funcs/global_func9 test where
global subprog call happened to be the very last instruction in parent
state, leading to subseq_idx==-1, triggering WARN_ONCE:
[ 36.045754] verifier backtracking bug
[ 36.045764] WARNING: CPU: 13 PID: 2073 at kernel/bpf/verifier.c:3503 __mark_chain_precision+0xcc6/0xde0
[ 36.046819] Modules linked in: aesni_intel(E) crypto_simd(E) cryptd(E) kvm_intel(E) kvm(E) irqbypass(E) i2c_piix4(E) serio_raw(E) i2c_core(E) crc32c_intel)
[ 36.048040] CPU: 13 PID: 2073 Comm: test_progs Tainted: G W OE 6.3.0-07976-g4d585f48ee6b-dirty #972
[ 36.048783] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 36.049648] RIP: 0010:__mark_chain_precision+0xcc6/0xde0
[ 36.050038] Code: 3d 82 c6 05 bb 35 32 02 01 e8 66 21 ec ff 0f 0b b8 f2 ff ff ff e9 30 f5 ff ff 48 c7 c7 f3 61 3d 82 4c 89 0c 24 e8 4a 21 ec ff <0f> 0b 4c0
With the fix precision tracking across multiple states works correctly now:
mark_precise: frame0: last_idx 45 first_idx 38 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 44: (61) r7 = *(u32 *)(r10 -4)
mark_precise: frame0: regs=r8 stack= before 43: (85) call pc+41
mark_precise: frame0: regs=r8 stack= before 42: (07) r1 += -48
mark_precise: frame0: regs=r8 stack= before 41: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 40: (63) *(u32 *)(r10 -48) = r1
mark_precise: frame0: regs=r8 stack= before 39: (b4) w1 = 0
mark_precise: frame0: regs=r8 stack= before 38: (85) call pc+38
mark_precise: frame0: parent state regs=r8 stack=: R0_w=scalar() R1_w=map_value(off=4,ks=4,vs=8,imm=0) R6=1 R7_w=scalar() R8_r=P0 R10=fpm
mark_precise: frame0: last_idx 36 first_idx 28 subseq_idx 38
mark_precise: frame0: regs=r8 stack= before 36: (18) r1 = 0xffff888104f2ed14
mark_precise: frame0: regs=r8 stack= before 35: (85) call pc+33
mark_precise: frame0: regs=r8 stack= before 33: (18) r1 = 0xffff888104f2ed10
mark_precise: frame0: regs=r8 stack= before 32: (85) call pc+36
mark_precise: frame0: regs=r8 stack= before 31: (07) r1 += -4
mark_precise: frame0: regs=r8 stack= before 30: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 29: (63) *(u32 *)(r10 -4) = r7
mark_precise: frame0: regs=r8 stack= before 28: (4c) w7 |= w0
mark_precise: frame0: parent state regs=r8 stack=: R0_rw=scalar() R6=1 R7_rw=scalar() R8_rw=P0 R10=fp0 fp-48_r=mmmmmmmm
mark_precise: frame0: last_idx 27 first_idx 16 subseq_idx 28
mark_precise: frame0: regs=r8 stack= before 27: (85) call pc+31
mark_precise: frame0: regs=r8 stack= before 26: (b7) r1 = 0
mark_precise: frame0: regs=r8 stack= before 25: (b7) r8 = 0
Note how subseq_idx starts out as -1, then is preserved as 38 and then 28 as we
go up the parent state chain.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: fde2a3882b ("bpf: support precision propagation in the presence of subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230515180710.1535018-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For kfuncs like bpf_obj_drop and bpf_refcount_acquire - which take
user-defined types as input - the verifier needs to track the specific
type passed in when checking a particular kfunc call. This requires
tracking (btf, btf_id) tuple. In commit 7c50b1cb76
("bpf: Add bpf_refcount_acquire kfunc") I added an anonymous union with
inner structs named after the specific kfuncs tracking this information,
with the goal of making it more obvious which kfunc this data was being
tracked / expected to be tracked on behalf of.
In a recent series adding a new user of this tuple, Alexei mentioned
that he didn't like this union usage as it doesn't really help with
readability or bug-proofing ([0]). In an offline convo we agreed to
have the tuple be fields (arg_btf, arg_btf_id), with comments in
bpf_kfunc_call_arg_meta definition enumerating the uses of the fields by
kfunc-specific handling logic. Such a pattern is used by struct
bpf_reg_state without trouble.
Accordingly, this patch removes the anonymous union in favor of arg_btf
and arg_btf_id fields and comment enumerating their current uses. The
patch also removes struct btf_and_id, which was only being used by the
removed union's inner structs.
This is a mechanical change, existing linked_list and rbtree tests will
validate that correct (btf, btf_id) are being passed.
[0]: https://lore.kernel.org/bpf/20230505021707.vlyiwy57vwxglbka@dhcp-172-26-102-232.dhcp.thefacebook.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230510213047.1633612-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull locking fix from Borislav Petkov:
- Make sure __down_read_common() is always inlined so that the callers'
names land in traceevents output and thus the blocked function can be
identified
* tag 'locking_urgent_for_v6.4_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/rwsem: Add __always_inline annotation to __down_read_common() and inlined callers
Pull perf fixes from Borislav Petkov:
- Make sure the PEBS buffer is flushed before reprogramming the
hardware so that the correct record sizes are used
- Update the sample size for AMD BRS events
- Fix a confusion with using the same on-stack struct with different
events in the event processing path
* tag 'perf_urgent_for_v6.4_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG
perf/x86: Fix missing sample size update on AMD BRS
perf/core: Fix perf_sample_data not properly initialized for different swevents in perf_tp_event()
Pull scheduler fix from Borislav Petkov:
- Fix a couple of kernel-doc warnings
* tag 'sched_urgent_for_v6.4_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: fix cid_lock kernel-doc warnings
With the way the hooks implemented right now, we have a special
condition: optval larger than PAGE_SIZE will expose only first 4k into
BPF; any modifications to the optval are ignored. If the BPF program
doesn't handle this condition by resetting optlen to 0,
the userspace will get EFAULT.
The intention of the EFAULT was to make it apparent to the
developers that the program is doing something wrong.
However, this inadvertently might affect production workloads
with the BPF programs that are not too careful (i.e., returning EFAULT
for perfectly valid setsockopt/getsockopt calls).
Let's try to minimize the chance of BPF program screwing up userspace
by ignoring the output of those BPF programs (instead of returning
EFAULT to the userspace). pr_info_once those cases to
the dmesg to help with figuring out what's going wrong.
Fixes: 0d01da6afc ("bpf: implement getsockopt and setsockopt hooks")
Suggested-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230511170456.1759459-2-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
KCSAN reported a data-race when accessing node->ref.
Although node->ref does not have to be accurate,
take this chance to use a more common READ_ONCE() and WRITE_ONCE()
pattern instead of data_race().
There is an existing bpf_lru_node_is_ref() and bpf_lru_node_set_ref().
This patch also adds bpf_lru_node_clear_ref() to do the
WRITE_ONCE(node->ref, 0) also.
==================================================================
BUG: KCSAN: data-race in __bpf_lru_list_rotate / __htab_lru_percpu_map_update_elem
write to 0xffff888137038deb of 1 bytes by task 11240 on cpu 1:
__bpf_lru_node_move kernel/bpf/bpf_lru_list.c:113 [inline]
__bpf_lru_list_rotate_active kernel/bpf/bpf_lru_list.c:149 [inline]
__bpf_lru_list_rotate+0x1bf/0x750 kernel/bpf/bpf_lru_list.c:240
bpf_lru_list_pop_free_to_local kernel/bpf/bpf_lru_list.c:329 [inline]
bpf_common_lru_pop_free kernel/bpf/bpf_lru_list.c:447 [inline]
bpf_lru_pop_free+0x638/0xe20 kernel/bpf/bpf_lru_list.c:499
prealloc_lru_pop kernel/bpf/hashtab.c:290 [inline]
__htab_lru_percpu_map_update_elem+0xe7/0x820 kernel/bpf/hashtab.c:1316
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888137038deb of 1 bytes by task 11241 on cpu 0:
bpf_lru_node_set_ref kernel/bpf/bpf_lru_list.h:70 [inline]
__htab_lru_percpu_map_update_elem+0x2f1/0x820 kernel/bpf/hashtab.c:1332
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x01 -> 0x00
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 11241 Comm: syz-executor.3 Not tainted 6.3.0-rc7-syzkaller-00136-g6a66fdd29ea1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
==================================================================
Reported-by: syzbot+ebe648a84e8784763f82@syzkaller.appspotmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230511043748.1384166-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a tick broadcast clockevent device is initialized for one shot mode
then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode
cpumask into the oneshot broadcast cpumask.
This is required when switching from periodic broadcast mode to oneshot
broadcast mode to ensure that CPUs which are waiting for periodic
broadcast are woken up on the next tick.
But it is subtly broken, when an active broadcast device is replaced and
the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed
this and debugged the issue.
Then the OR of the periodic broadcast CPU mask is wrong as the periodic
cpumask bits are sticky after tick_broadcast_enable() set it for a CPU
unless explicitly cleared via tick_broadcast_disable().
That means that this sets all other CPUs which have tick broadcasting
enabled at that point unconditionally in the oneshot broadcast mask.
If the affected CPUs were already idle and had their bits set in the
oneshot broadcast mask then this does no harm. But for non idle CPUs
which were not set this corrupts their state.
On their next invocation of tick_broadcast_enable() they observe the bit
set, which indicates that the broadcast for the CPU is already set up.
As a consequence they fail to update the broadcast event even if their
earliest expiring timer is before the actually programmed broadcast
event.
If the programmed broadcast event is far in the future, then this can
cause stalls or trigger the hung task detector.
Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether
this is the initial switch over from periodic to oneshot broadcast which
must take the periodic broadcast mask into account. In the case of
initialization of a replacement device this prevents that the broadcast
oneshot mask is modified.
There is a second problem with broadcast device replacement in this
function. The broadcast device is only armed when the previous state of
the device was periodic.
That is correct for the switch from periodic broadcast mode to oneshot
broadcast mode as the underlying broadcast device could operate in
oneshot state already due to lack of periodic state in hardware. In that
case it is already armed to expire at the next tick.
For the replacement case this is wrong as the device is in shutdown
state. That means that any already pending broadcast event will not be
armed.
This went unnoticed because any CPU which goes idle will observe that
the broadcast device has an expiry time of KTIME_MAX and therefore any
CPUs next timer event will be earlier and cause a reprogramming of the
broadcast device. But that does not guarantee that the events of the
CPUs which were already in idle are delivered on time.
Fix this by arming the newly installed device for an immediate event
which will reevaluate the per CPU expiry times and reprogram the
broadcast device accordingly. This is simpler than caching the last
expiry time in yet another place or saving it before the device exchange
and handing it down to the setup function. Replacement of broadcast
devices is not a frequent operation and usually happens once somewhere
late in the boot process.
Fixes: 9c336c9935 ("tick/broadcast: Allow late registered device to enter oneshot mode")
Reported-by: Victor Hassan <victor@allwinnertech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
Fix kernel-doc warnings for cid_lock and use_cid_lock.
These comments are not in kernel-doc format.
kernel/sched/core.c:11496: warning: Cannot understand * @cid_lock: Guarantee forward-progress of cid allocation.
on line 11496 - I thought it was a doc line
kernel/sched/core.c:11505: warning: Cannot understand * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
on line 11505 - I thought it was a doc line
Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230428031111.322-1-rdunlap@infradead.org
Apparently despite it being marked inline, the compiler
may not inline __down_read_common() which makes it difficult
to identify the cause of lock contention, as the blocked
function in traceevents will always be listed as
__down_read_common().
So this patch adds __always_inline annotation to the common
function (as well as the inlined helper callers) to force it to
be inlined so the blocking function will be listed (via Wchan)
in traceevents.
Fixes: c995e638cc ("locking/rwsem: Fold __down_{read,write}*()")
Reported-by: Tim Murray <timmurray@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20230503023351.2832796-1-jstultz@google.com
bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.
This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull more tracing updates from Steven Rostedt:
- Make buffer_percent read/write.
The buffer_percent file is how users can state how long to block on
the tracing buffer depending on how much is in the buffer. When it
hits the "buffer_percent" it will wake the task waiting on the
buffer. For some reason it was set to read-only.
This was not noticed because testing was done as root without
SELinux, but with SELinux it will prevent even root to write to it
without having CAP_DAC_OVERRIDE.
- The "touched_functions" was added this merge window, but one of the
reasons for adding it was not implemented.
That was to show what functions were not only touched, but had either
a direct trampoline attached to it, or a kprobe or live kernel
patching that can "hijack" the function to run a different function.
The point is to know if there's functions in the kernel that may not
be behaving as the kernel code shows. This can be used for debugging.
TODO: Add this information to kernel oops too.
* tag 'trace-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ftrace: Add MODIFIED flag to show if IPMODIFY or direct was attached
tracing: Fix permissions for the buffer_percent file
Pull locking updates from Ingo Molnar:
- Introduce local{,64}_try_cmpxchg() - a slightly more optimal
primitive, which will be used in perf events ring-buffer code
- Simplify/modify rwsems on PREEMPT_RT, to address writer starvation
- Misc cleanups/fixes
* tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomic: Correct (cmp)xchg() instrumentation
locking/x86: Define arch_try_cmpxchg_local()
locking/arch: Wire up local_try_cmpxchg()
locking/generic: Wire up local{,64}_try_cmpxchg()
locking/atomic: Add generic try_cmpxchg{,64}_local() support
locking/rwbase: Mitigate indefinite writer starvation
locking/arch: Rename all internal __xchg() names to __arch_xchg()
If a function had ever had IPMODIFY or DIRECT attached to it, where this
is how live kernel patching and BPF overrides work, mark them and display
an "M" in the enabled_functions and touched_functions files. This can be
used for debugging. If a function had been modified and later there's a bug
in the code related to that function, this can be used to know if the cause
is possibly from a live kernel patch or a BPF program that changed the
behavior of the code.
Also update the documentation on the enabled_functions and
touched_functions output, as it was missing direct callers and CALL_OPS.
And include this new modify attribute.
Link: https://lore.kernel.org/linux-trace-kernel/20230502213233.004e3ae4@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add support precision backtracking in the presence of subprogram frames in
jump history.
This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
- static subprogram calls;
- global subprogram calls;
- callback-calling helpers/kfuncs.
For each of those we need to handle a few precision propagation cases:
- what to do with precision of subprog returns (r0);
- what to do with precision of input arguments;
- for all of them callee-saved registers in caller function should be
propagated ignoring subprog/callback part of jump history.
N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.
Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; fr0: r1, r6
22: r0 = r1; fr0: r6; fr1: r1
23: exit fr0: r6; fr1: r0
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6
15: exit
As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.
First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise. When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.
This example demonstrates two sets of rules:
- r0 returned after subprog call has to be moved into subprog's r0 set;
- *static* subprog arguments (r1-r5) are moved back to caller precision set.
Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.
That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.
Let's look at what happens when we have global subprog invocation.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; # global subprog fr0: r6
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.
Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.
Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.
frame 0 frame 1 precision set
======= ======= =============
8: r6 = 456;
9: r1 = 123; fr0: r6
10: r2 = &callback; fr0: r6
11: call bpf_loop; fr0: r6
22: r0 = r1; fr0: r6 fr1:
23: exit fr0: r6 fr1:
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.
For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).
Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.
That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.
As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
---------------------------------------- ------------- --------- --------- ----------------
pyperf600_bpf_loop.bpf.linked1.o on_event 2060 2002 -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o cls_redirect 15660 2914 -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 61620 59088 -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 109980 86278 -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 97716 85147 -12569 (-12.86%)
Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
------------- ------------------------------ --------- --------- ------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 12475 12504 +29 (+0.23%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6363 6371 +8 (+0.13%)
Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program Insns (A) Insns (B) Insns (DIFF)
------------------------ --------- --------- ----------------
on_request_context_event 597 585 -12 (-2.01%)
read_async_py_stack 43789 43657 -132 (-0.30%)
read_sync_py_stack 35041 37599 +2558 (+7.30%)
rrm_usdt 946 940 -6 (-0.63%)
sysarmor_inet6_bind 28863 28249 -614 (-2.13%)
sysarmor_inet_bind 28845 28240 -605 (-2.10%)
syar_bind4_protect4 154145 147640 -6505 (-4.22%)
syar_bind6_protect6 165242 137088 -28154 (-17.04%)
syar_task_exit_setgid 21289 19720 -1569 (-7.37%)
syar_task_exit_setuid 21290 19721 -1569 (-7.37%)
do_uprobe 19967 19413 -554 (-2.77%)
tw_twfw_ingress 215877 204833 -11044 (-5.12%)
tw_twfw_tc_in 215877 204833 -11044 (-5.12%)
But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program Duration (us) (A) Duration (us) (B) Duration (us) (DIFF)
---------------------------------------- ----------------- ----------------- --------------------
tw_twfw_ingress 4488374 272836 -4215538 (-93.92%)
tw_twfw_tc_in 4339111 268175 -4070936 (-93.82%)
tw_twfw_egress 3521816 270751 -3251065 (-92.31%)
tw_twfw_tc_eg 3472878 284294 -3188584 (-91.81%)
balancer_ingress 343119 291391 -51728 (-15.08%)
syar_bind6_protect6 78992 64782 -14210 (-17.99%)
ttls_tc_ingress 11739 8176 -3563 (-30.35%)
kprobe__security_inode_link 13864 11341 -2523 (-18.20%)
read_sync_py_stack 21927 19442 -2485 (-11.33%)
read_async_py_stack 30444 28136 -2308 (-7.58%)
syar_task_exit_setuid 10256 8440 -1816 (-17.71%)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When precision backtracking bails out due to some unsupported sequence
of instructions (e.g., stack access through register other than r10), we
need to mark all SCALAR registers as precise to be safe. Currently,
though, we mark SCALARs precise only starting from the state we detected
unsupported condition, which could be one of the parent states of the
actual current state. This will leave some registers potentially not
marked as precise, even though they should. So make sure we start
marking scalars as precise from current state (env->cur_state).
Further, we don't currently detect a situation when we end up with some
stack slots marked as needing precision, but we ran out of available
states to find the instructions that populate those stack slots. This is
akin the `i >= func->allocated_stack / BPF_REG_SIZE` check and should be
handled similarly by falling back to marking all SCALARs precise. Add
this check when we run out of states.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix propagate_precision() logic to perform propagation of all necessary
registers and stack slots across all active frames *in one batch step*.
Doing this for each register/slot in each individual frame is wasteful,
but the main problem is that backtracking of instruction in any frame
except the deepest one just doesn't work. This is due to backtracking
logic relying on jump history, and available jump history always starts
(or ends, depending how you view it) in current frame. So, if
prog A (frame #0) called subprog B (frame #1) and we need to propagate
precision of, say, register R6 (callee-saved) within frame #0, we
actually don't even know where jump history that corresponds to prog
A even starts. We'd need to skip subprog part of jump history first to
be able to do this.
Luckily, with struct backtrack_state and __mark_chain_precision()
handling bitmasks tracking/propagation across all active frames at the
same time (added in previous patch), propagate_precision() can be both
fixed and sped up by setting all the necessary bits across all frames
and then performing one __mark_chain_precision() pass. This makes it
unnecessary to skip subprog parts of jump history.
We also improve logging along the way, to clearly specify which
registers' and slots' precision markings are propagated within which
frame. Each frame will have dedicated line and all registers and stack
slots from that frame will be reported in format similar to precision
backtrack regs/stack logging. E.g.:
frame 1: propagating r1,r2,r3,fp-8,fp-16
frame 0: propagating r3,r9,fp-120
Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach __mark_chain_precision logic to maintain register/stack masks
across all active frames when going from child state to parent state.
Currently this should be mostly no-op, as precision backtracking usually
bails out when encountering subprog entry/exit.
It's not very apparent from the diff due to increased indentation, but
the logic remains the same, except everything is done on specific `fr`
frame index. Calls to bt_clear_reg() and bt_clear_slot() are replaced
with frame-specific bt_clear_frame_reg() and bt_clear_frame_slot(),
where frame index is passed explicitly, instead of using current frame
number.
We also adjust logging to emit affected frame number. And we also add
better logging of human-readable register and stack slot masks, similar
to previous patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add helper to format register and stack masks in more human-readable
format. Adjust logging a bit during backtrack propagation and especially
during forcing precision fallback logic to make it clearer what's going
on (with log_level=2, of course), and also start reporting affected
frame depth. This is in preparation for having more than one active
frame later when precision propagation between subprog calls is added.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add struct backtrack_state and straightforward API around it to keep
track of register and stack masks used and maintained during precision
backtracking process. Having this logic separately allow to keep
high-level backtracking algorithm cleaner, but also it sets us up to
cleanly keep track of register and stack masks per frame, allowing (with
some further logic adjustments) to perform precision backpropagation
across multiple frames (i.e., subprog calls).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull hitfixes from Andrew Morton:
"Five hotfixes. Three are cc:stable, two for this -rc cycle"
* tag 'mm-hotfixes-stable-2023-05-03-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm: change per-VMA lock statistics to be disabled by default
MAINTAINERS: update Michal Simek's email
mm/mempolicy: correctly update prev when policy is equal on mbind
relayfs: fix out-of-bounds access in relay_file_read
kasan: hw_tags: avoid invalid virt_to_page()
Pull more MM updates from Andrew Morton:
- Some DAMON cleanups from Kefeng Wang
- Some KSM work from David Hildenbrand, to make the PR_SET_MEMORY_MERGE
ioctl's behavior more similar to KSM's behavior.
[ Andrew called these "final", but I suspect we'll have a series fixing
up the fact that the last commit in the dmapools series in the
previous pull seems to have unintentionally just reverted all the
other commits in the same series.. - Linus ]
* tag 'mm-stable-2023-05-03-16-22' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm: hwpoison: coredump: support recovery from dump_user_range()
mm/page_alloc: add some comments to explain the possible hole in __pageblock_pfn_to_page()
mm/ksm: move disabling KSM from s390/gmap code to KSM code
selftests/ksm: ksm_functional_tests: add prctl unmerge test
mm/ksm: unmerge and clear VM_MERGEABLE when setting PR_SET_MEMORY_MERGE=0
mm/damon/paddr: fix missing folio_sz update in damon_pa_young()
mm/damon/paddr: minor refactor of damon_pa_mark_accessed_or_deactivate()
mm/damon/paddr: minor refactor of damon_pa_pageout()
Pull modules fix from Luis Chamberlain:
"One fix by Arnd far for modules which came in after the first pull
request.
The issue was found as part of some late compile tests with 0-day. I
take it 0-day does some secondary late builds with after some initial
ones"
* tag 'modules-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
module: include internal.h in module/dups.c
Pull more sysctl updates from Luis Chamberlain:
"As mentioned on my first pull request for sysctl-next, for v6.4-rc1
we're very close to being able to deprecating register_sysctl_paths().
I was going to assess the situation after the first week of the merge
window.
That time is now and things are looking good. We only have one which
had already an ACK for so I'm picking this up here now and the last
patch is the one that uses an axe.
I have boot tested the last patch and 0-day build completed
successfully"
* tag 'sysctl-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
sysctl: remove register_sysctl_paths()
kernel: pid_namespace: simplify sysctls with register_sysctl()
Pull more power management updates from Rafael Wysocki:
"These fix a hibernation test mode regression and clean up the
intel_idle driver.
Specifics:
- Make test_resume work again after the changes that made hibernation
open the snapshot device in exclusive mode (Chen Yu)
- Clean up code in several places in intel_idle (Artem Bityutskiy)"
* tag 'pm-6.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
intel_idle: mark few variables as __read_mostly
intel_idle: do not sprinkle module parameter definitions around
intel_idle: fix confusing message
intel_idle: improve C-state flags handling robustness
intel_idle: further intel_idle_init_cstates_icpu() cleanup
intel_idle: clean up intel_idle_init_cstates_icpu()
intel_idle: use pr_info() instead of printk()
PM: hibernate: Do not get block device exclusively in test_resume mode
PM: hibernate: Turn snapshot_test into global variable
Two newly introduced functions are declared in a header that is not
included before the definition, causing a warning with sparse or
'make W=1':
kernel/module/dups.c:118:6: error: no previous prototype for 'kmod_dup_request_exists_wait' [-Werror=missing-prototypes]
118 | bool kmod_dup_request_exists_wait(char *module_name, bool wait, int *dup_ret)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/module/dups.c:220:6: error: no previous prototype for 'kmod_dup_request_announce' [-Werror=missing-prototypes]
220 | void kmod_dup_request_announce(char *module_name, int ret)
| ^~~~~~~~~~~~~~~~~~~~~~~~~
Add an explicit include to ensure the prototypes match.
Fixes: 8660484ed1 ("module: add debugging auto-load duplicate module support")
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202304141440.DYO4NAzp-lkp@intel.com/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
There is a crash in relay_file_read, as the var from
point to the end of last subbuf.
The oops looks something like:
pc : __arch_copy_to_user+0x180/0x310
lr : relay_file_read+0x20c/0x2c8
Call trace:
__arch_copy_to_user+0x180/0x310
full_proxy_read+0x68/0x98
vfs_read+0xb0/0x1d0
ksys_read+0x6c/0xf0
__arm64_sys_read+0x20/0x28
el0_svc_common.constprop.3+0x84/0x108
do_el0_svc+0x74/0x90
el0_svc+0x1c/0x28
el0_sync_handler+0x88/0xb0
el0_sync+0x148/0x180
We get the condition by analyzing the vmcore:
1). The last produced byte and last consumed byte
both at the end of the last subbuf
2). A softirq calls function(e.g __blk_add_trace)
to write relay buffer occurs when an program is calling
relay_file_read_avail().
relay_file_read
relay_file_read_avail
relay_file_read_consume(buf, 0, 0);
//interrupted by softirq who will write subbuf
....
return 1;
//read_start point to the end of the last subbuf
read_start = relay_file_read_start_pos
//avail is equal to subsize
avail = relay_file_read_subbuf_avail
//from points to an invalid memory address
from = buf->start + read_start
//system is crashed
copy_to_user(buffer, from, avail)
Link: https://lkml.kernel.org/r/20230419040203.37676-1-zhang.zhengming@h3c.com
Fixes: 8d62fdebda ("relay file read: start-pos fix")
Signed-off-by: Zhang Zhengming <zhang.zhengming@h3c.com>
Reviewed-by: Zhao Lei <zhao_lei1@hoperun.com>
Reviewed-by: Zhou Kete <zhou.kete@h3c.com>
Reviewed-by: Pengcheng Yang <yangpc@wangsu.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Only print the warning message if you are writing to
"/proc/sys/kernel/unprivileged_bpf_disabled".
The kernel may print an annoying warning when you read
"/proc/sys/kernel/unprivileged_bpf_disabled" saying
WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible
via Spectre v2 BHB attacks!
However, this message is only meaningful when the feature is
disabled or enabled.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230502181418.308479-1-kuifeng@meta.com
Pull iommu updates from Joerg Roedel:
- Convert to platform remove callback returning void
- Extend changing default domain to normal group
- Intel VT-d updates:
- Remove VT-d virtual command interface and IOASID
- Allow the VT-d driver to support non-PRI IOPF
- Remove PASID supervisor request support
- Various small and misc cleanups
- ARM SMMU updates:
- Device-tree binding updates:
* Allow Qualcomm GPU SMMUs to accept relevant clock properties
* Document Qualcomm 8550 SoC as implementing an MMU-500
* Favour new "qcom,smmu-500" binding for Adreno SMMUs
- Fix S2CR quirk detection on non-architectural Qualcomm SMMU
implementations
- Acknowledge SMMUv3 PRI queue overflow when consuming events
- Document (in a comment) why ATS is disabled for bypass streams
- AMD IOMMU updates:
- 5-level page-table support
- NUMA awareness for memory allocations
- Unisoc driver: Support for reattaching an existing domain
- Rockchip driver: Add missing set_platform_dma_ops callback
- Mediatek driver: Adjust the dma-ranges
- Various other small fixes and cleanups
* tag 'iommu-updates-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (82 commits)
iommu: Remove iommu_group_get_by_id()
iommu: Make iommu_release_device() static
iommu/vt-d: Remove BUG_ON in dmar_insert_dev_scope()
iommu/vt-d: Remove a useless BUG_ON(dev->is_virtfn)
iommu/vt-d: Remove BUG_ON in map/unmap()
iommu/vt-d: Remove BUG_ON when domain->pgd is NULL
iommu/vt-d: Remove BUG_ON in handling iotlb cache invalidation
iommu/vt-d: Remove BUG_ON on checking valid pfn range
iommu/vt-d: Make size of operands same in bitwise operations
iommu/vt-d: Remove PASID supervisor request support
iommu/vt-d: Use non-privileged mode for all PASIDs
iommu/vt-d: Remove extern from function prototypes
iommu/vt-d: Do not use GFP_ATOMIC when not needed
iommu/vt-d: Remove unnecessary checks in iopf disabling path
iommu/vt-d: Move PRI handling to IOPF feature path
iommu/vt-d: Move pfsid and ats_qdep calculation to device probe path
iommu/vt-d: Move iopf code from SVA to IOPF enabling path
iommu/vt-d: Allow SVA with device-specific IOPF
dmaengine: idxd: Add enable/disable device IOPF feature
arm64: dts: mt8186: Add dma-ranges for the parent "soc" node
...
Pull s390 updates from Vasily Gorbik:
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code base
load addresses
- Rework decompressor memory tracking to support memory holes and
improve error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member
instead of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
* tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (118 commits)
s390/stackleak: provide fast __stackleak_poison() implementation
stackleak: allow to specify arch specific stackleak poison function
s390: select ARCH_USE_SYM_ANNOTATIONS
s390/mm: use VM_FLUSH_RESET_PERMS in module_alloc()
s390: wire up memfd_secret system call
s390/mm: enable ARCH_HAS_SET_DIRECT_MAP
s390/mm: use BIT macro to generate SET_MEMORY bit masks
s390/relocate_kernel: adjust indentation
s390/relocate_kernel: use SYM* macros instead of ENTRY(), etc.
s390/entry: use SYM* macros instead of ENTRY(), etc.
s390/purgatory: use SYM* macros instead of ENTRY(), etc.
s390/kprobes: use SYM* macros instead of ENTRY(), etc.
s390/reipl: use SYM* macros instead of ENTRY(), etc.
s390/head64: use SYM* macros instead of ENTRY(), etc.
s390/earlypgm: use SYM* macros instead of ENTRY(), etc.
s390/mcount: use SYM* macros instead of ENTRY(), etc.
s390/crc32le: use SYM* macros instead of ENTRY(), etc.
s390/crc32be: use SYM* macros instead of ENTRY(), etc.
s390/crypto,chacha: use SYM* macros instead of ENTRY(), etc.
s390/amode31: use SYM* macros instead of ENTRY(), etc.
...
Pull dma-mapping updates from Christoph Hellwig:
- fix a PageHighMem check in dma-coherent initialization (Doug Berger)
- clean up the coherency defaul initialiation (Jiaxun Yang)
- add cacheline to user/kernel dma-debug space dump messages (Desnes
Nunes, Geert Uytterhoeve)
- swiotlb statistics improvements (Michael Kelley)
- misc cleanups (Petr Tesarik)
* tag 'dma-mapping-6.4-2023-04-28' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: Omit total_used and used_hiwater if !CONFIG_DEBUG_FS
swiotlb: track and report io_tlb_used high water marks in debugfs
swiotlb: fix debugfs reporting of reserved memory pools
swiotlb: relocate PageHighMem test away from rmem_swiotlb_setup
of: address: always use dma_default_coherent for default coherency
dma-mapping: provide CONFIG_ARCH_DMA_DEFAULT_COHERENT
dma-mapping: provide a fallback dma_default_coherent
dma-debug: Use %pa to format phys_addr_t
dma-debug: add cacheline to user/kernel space dump messages
dma-debug: small dma_debug_entry's comment and variable name updates
dma-direct: cleanup parameters to dma_direct_optimal_gfp_mask
Pull more timer updates from Thomas Gleixner:
"Timekeeping and clocksource/event driver updates the second batch:
- A trivial documentation fix in the timekeeping core
- A really boring set of small fixes, enhancements and cleanups in
the drivers code. No new clocksource/clockevent drivers for a
change"
* tag 'timers-core-2023-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix references to nonexistent ktime_get_fast_ns()
dt-bindings: timer: rockchip: Add rk3588 compatible
dt-bindings: timer: rockchip: Drop superfluous rk3288 compatible
clocksource/drivers/ti: Use of_property_read_bool() for boolean properties
clocksource/drivers/timer-ti-dm: Fix finding alwon timer
clocksource/drivers/davinci: Fix memory leak in davinci_timer_register when init fails
clocksource/drivers/stm32-lp: Drop of_match_ptr for ID table
clocksource/drivers/timer-ti-dm: Convert to platform remove callback returning void
clocksource/drivers/timer-tegra186: Convert to platform remove callback returning void
clocksource/drivers/timer-ti-dm: Improve error message in .remove
clocksource/drivers/timer-stm32-lp: Mark driver as non-removable
clocksource/drivers/sh_mtu2: Mark driver as non-removable
clocksource/drivers/timer-ti-dm: Use of_address_to_resource()
clocksource/drivers/timer-imx-gpt: Remove non-DT function
clocksource/drivers/timer-mediatek: Split out CPUXGPT timers
clocksource/drivers/exynos_mct: Explicitly return 0 for shared timer
Pull cgroup updates from Tejun Heo:
- cpuset changes including the fix for an incorrect interaction with
CPU hotplug and an optimization
- Other doc and cosmetic changes
* tag 'cgroup-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1/cpusets: update libcgroup project link
cgroup/cpuset: Minor updates to test_cpuset_prs.sh
cgroup/cpuset: Include offline CPUs when tasks' cpumasks in top_cpuset are updated
cgroup/cpuset: Skip task update if hotplug doesn't affect current cpuset
cpuset: Clean up cpuset_node_allowed
cgroup: bpf: use cgroup_lock()/cgroup_unlock() wrappers
Pull workqueue updates from Tejun Heo:
"Mostly changes from Petr to improve warning and error reporting.
Workqueue now reports more of the relevant failures with better
context which should help debugging"
* tag 'wq-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Introduce show_freezable_workqueues
workqueue: Print backtraces from CPUs with hung CPU bound workqueues
workqueue: Warn when a rescuer could not be created
workqueue: Interrupted create_worker() is not a repeated event
workqueue: Warn when a new worker could not be created
workqueue: Fix hung time report of worker pools
workqueue: Simplify a pr_warn() call in wq_select_unbound_cpu()
MAINTAINERS: Add workqueue_internal.h to the WORKQUEUE entry
On PREEMPT_RT, rw_semaphore and rwlock_t locks are unfair to writers.
Readers can indefinitely acquire the lock unless the writer fully acquired
the lock, which might never happen if there is always a reader in the
critical section owning the lock.
Mel Gorman reported that since LTP-20220121 the dio_truncate test case
went from having 1 reader to having 16 readers and that number of readers
is sufficient to prevent the down_write ever succeeding while readers
exist. Eventually the test is killed after 30 minutes as a failure.
Mel proposed a timeout to limit how long a writer can be blocked until
the reader is forced into the slowpath.
Thomas argued that there is no added value by providing this timeout. From
a PREEMPT_RT point of view, there are no critical rw_semaphore or rwlock_t
locks left where the reader must be preferred.
Mitigate indefinite writer starvation by forcing the READER into the
slowpath once the WRITER attempts to acquire the lock.
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/877cwbq4cq.ffs@tglx
Link: https://lore.kernel.org/r/20230321161140.HMcQEhHb@linutronix.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Pull tracing tools updates from Steven Rostedt:
- Add auto-analysis only option to rtla/timerlat
Add an --aa-only option to the tooling to perform only the auto
analysis and not to parse and format the data.
- Other minor fixes and clean ups
* tag 'trace-tools-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
rtla/timerlat: Fix "Previous IRQ" auto analysis' line
rtla/timerlat: Add auto-analysis only option
rv: Remove redundant assignment to variable retval
rv: Fix addition on an uninitialized variable 'run'
rtla: Add .gitignore file
Pull tracing updates from Steven Rostedt:
- User events are finally ready!
After lots of collaboration between various parties, we finally
locked down on a stable interface for user events that can also work
with user space only tracing.
This is implemented by telling the kernel (or user space library, but
that part is user space only and not part of this patch set), where
the variable is that the application uses to know if something is
listening to the trace.
There's also an interface to tell the kernel about these events,
which will show up in the /sys/kernel/tracing/events/user_events/
directory, where it can be enabled.
When it's enabled, the kernel will update the variable, to tell the
application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines.
Direct trampolines use the ftrace interface but instead of jumping to
the ftrace trampoline, applications (mostly BPF) can register their
own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient
than kprobes, as it does not need to save all the registers that
kprobes on ftrace do. More work needs to be done before the fprobes
will be exposed as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer
line by line instead of all at once.
There are users in production kernels that have a large data dump
that originally used printk() directly, but the data dump was larger
than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions
that was every traced by ftrace or a direct trampoline. This is used
for debugging issues where a traced function could have caused a
crash by a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields
of the events. It's easier to read by humans.
- Some minor fixes and clean ups.
* tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits)
ring-buffer: Sync IRQ works before buffer destruction
tracing: Add missing spaces in trace_print_hex_seq()
ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus
recordmcount: Fix memory leaks in the uwrite function
tracing/user_events: Limit max fault-in attempts
tracing/user_events: Prevent same address and bit per process
tracing/user_events: Ensure bit is cleared on unregister
tracing/user_events: Ensure write index cannot be negative
seq_buf: Add seq_buf_do_printk() helper
tracing: Fix print_fields() for __dyn_loc/__rel_loc
tracing/user_events: Set event filter_type from type
ring-buffer: Clearly check null ptr returned by rb_set_head_page()
tracing: Unbreak user events
tracing/user_events: Use print_format_fields() for trace output
tracing/user_events: Align structs with tabs for readability
tracing/user_events: Limit global user_event count
tracing/user_events: Charge event allocs to cgroups
tracing/user_events: Update documentation for ABI
tracing/user_events: Use write ABI in example
tracing/user_events: Add ABI self-test
...
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static