Pull SoC fixes from Arnd Bergmann:
"Two people stepped up as platform co-maintainers: Andrew Jeffery for
ASpeed and Janne Grunau for Apple.
The rockchip platform gets 9 small fixes for devicetree files,
addressing both compile-time warnings and board specific bugs.
One bugfix for the optee firmware driver addresses a reboot-time hang.
Two drivers need improved Kconfig dependencies to allow wider compile-
testing while hiding the drivers on platforms that can't use them.
ARM SCMI and loongson-guts drivers get minor bugfixes"
* tag 'soc-fixes-6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc:
soc: loongson: loongson2_guts: Add check for devm_kstrdup()
tee: optee: Fix supplicant wait loop
platform: cznic: CZNIC_PLATFORMS should depend on ARCH_MVEBU
firmware: imx: IMX_SCMI_MISC_DRV should depend on ARCH_MXC
MAINTAINERS: arm: apple: Add Janne as maintainer
MAINTAINERS: Mark Andrew as M: for ASPEED MACHINE SUPPORT
firmware: arm_scmi: imx: Correct tx size of scmi_imx_misc_ctrl_set
arm64: dts: rockchip: adjust SMMU interrupt type on rk3588
arm64: dts: rockchip: disable IOMMU when running rk3588 in PCIe endpoint mode
dt-bindings: rockchip: pmu: Ensure all properties are defined
arm64: defconfig: Enable TISCI Interrupt Router and Aggregator
arm64: dts: rockchip: Fix lcdpwr_en pin for Cool Pi GenBook
arm64: dts: rockchip: fix fixed-regulator renames on rk3399-gru devices
arm64: dts: rockchip: Disable DMA for uart5 on px30-ringneck
arm64: dts: rockchip: Move uart5 pin configuration to px30 ringneck SoM
arm64: dts: rockchip: change eth phy mode to rgmii-id for orangepi r1 plus lts
arm64: dts: rockchip: Fix broken tsadc pinctrl names for rk3588
Pull kvm fixes from Paolo Bonzini:
"ARM:
- Large set of fixes for vector handling, especially in the
interactions between host and guest state.
This fixes a number of bugs affecting actual deployments, and
greatly simplifies the FP/SIMD/SVE handling. Thanks to Mark Rutland
for dealing with this thankless task.
- Fix an ugly race between vcpu and vgic creation/init, resulting in
unexpected behaviours
- Fix use of kernel VAs at EL2 when emulating timers with nVHE
- Small set of pKVM improvements and cleanups
x86:
- Fix broken SNP support with KVM module built-in, ensuring the PSP
module is initialized before KVM even when the module
infrastructure cannot be used to order initcalls
- Reject Hyper-V SEND_IPI hypercalls if the local APIC isn't being
emulated by KVM to fix a NULL pointer dereference
- Enter guest mode (L2) from KVM's perspective before initializing
the vCPU's nested NPT MMU so that the MMU is properly tagged for
L2, not L1
- Load the guest's DR6 outside of the innermost .vcpu_run() loop, as
the guest's value may be stale if a VM-Exit is handled in the
fastpath"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits)
x86/sev: Fix broken SNP support with KVM module built-in
KVM: SVM: Ensure PSP module is initialized if KVM module is built-in
crypto: ccp: Add external API interface for PSP module initialization
KVM: arm64: vgic: Hoist SGI/PPI alloc from vgic_init() to kvm_create_vgic()
KVM: arm64: timer: Drop warning on failed interrupt signalling
KVM: arm64: Fix alignment of kvm_hyp_memcache allocations
KVM: arm64: Convert timer offset VA when accessed in HYP code
KVM: arm64: Simplify warning in kvm_arch_vcpu_load_fp()
KVM: arm64: Eagerly switch ZCR_EL{1,2}
KVM: arm64: Mark some header functions as inline
KVM: arm64: Refactor exit handlers
KVM: arm64: Refactor CPTR trap deactivation
KVM: arm64: Remove VHE host restore of CPACR_EL1.SMEN
KVM: arm64: Remove VHE host restore of CPACR_EL1.ZEN
KVM: arm64: Remove host FPSIMD saving for non-protected KVM
KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
KVM: nSVM: Enter guest mode before initializing nested NPT MMU
KVM: selftests: Add CPUID tests for Hyper-V features that need in-kernel APIC
KVM: selftests: Manage CPUID array in Hyper-V CPUID test's core helper
...
KVM/arm64 fixes for 6.14, take #2
- Large set of fixes for vector handling, specially in the interactions
between host and guest state. This fixes a number of bugs affecting
actual deployments, and greatly simplifies the FP/SIMD/SVE handling.
Thanks to Mark Rutland for dealing with this thankless task.
- Fix an ugly race between vcpu and vgic creation/init, resulting in
unexpected behaviours.
- Fix use of kernel VAs at EL2 when emulating timers with nVHE.
- Small set of pKVM improvements and cleanups.
Pull arm64 fixes from Will Deacon:
- Fix kexec and hibernation when using 5-level page-table configuration
- Remove references to non-existent SF8MM4 and SF8MM8 ID register
fields, hooking up hwcaps for the FPRCVT, F8MM4 and F8MM8 fields
instead
- Drop unused .ARM.attributes ELF sections
- Fix array indexing when probing CPU cache topology from firmware
- Fix potential use-after-free in AMU initialisation code
- Work around broken GTDT entries by tolerating excessively large timer
arrays
- Force use of Rust's "softfloat" target to avoid a threatening warning
about the NEON target feature
- Typo fix in GCS documentation and removal of duplicate Kconfig select
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: rust: clean Rust 1.85.0 warning using softfloat target
arm64: Add missing registrations of hwcaps
ACPI: GTDT: Relax sanity checking on Platform Timers array count
arm64: amu: Delay allocating cpumask for AMU FIE support
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
arm64: Handle .ARM.attributes section in linker scripts
arm64/hwcap: Remove stray references to SF8MMx
arm64/gcs: Fix documentation for HWCAP
arm64: Kconfig: Remove selecting replaced HAVE_FUNCTION_GRAPH_RETVAL
arm64: Fix 5-level paging support in kexec/hibernate trampoline
Fixes for the IOMMU used together with the PCIe controllers on rk3588,
some board-level fixes for wrong pins, pinctrl and regulators, and
disabling DMA on a board where the DMA+uart causes the dma controller to
hang, as well as improved network stability for the OrangePi R1.
* tag 'v6.14-rockchip-dtsfixes1' of https://git.kernel.org/pub/scm/linux/kernel/git/mmind/linux-rockchip:
arm64: dts: rockchip: adjust SMMU interrupt type on rk3588
arm64: dts: rockchip: disable IOMMU when running rk3588 in PCIe endpoint mode
dt-bindings: rockchip: pmu: Ensure all properties are defined
arm64: dts: rockchip: Fix lcdpwr_en pin for Cool Pi GenBook
arm64: dts: rockchip: fix fixed-regulator renames on rk3399-gru devices
arm64: dts: rockchip: Disable DMA for uart5 on px30-ringneck
arm64: dts: rockchip: Move uart5 pin configuration to px30 ringneck SoM
arm64: dts: rockchip: change eth phy mode to rgmii-id for orangepi r1 plus lts
arm64: dts: rockchip: Fix broken tsadc pinctrl names for rk3588
Link: https://lore.kernel.org/r/3004814.3ZeAukHxDK@diego
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
If userspace creates vcpus, then a vgic, we end-up in a situation
where irqchip_in_kernel() will return true, but no private interrupt
has been allocated for these vcpus. This situation will continue
until userspace initialises the vgic, at which point we fix the
early vcpus. Should a vcpu run or be initialised in the interval,
bad things may happen.
An obvious solution is to move this fix-up phase to the point where
the vgic is created. This ensures that from that point onwards,
all vcpus have their private interrupts, as new vcpus will directly
allocate them.
With that, we have the invariant that when irqchip_in_kernel() is
true, all vcpus have their private interrupts.
Reported-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250212182558.2865232-3-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
We currently spit out a warning if making a timer interrupt pending
fails. But not only this is loud and easy to trigger from userspace,
we also fail to do anything useful with that information.
Dropping the warning is the easiest thing to do for now. We can
always add error reporting if we really want in the future.
Reported-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250212182558.2865232-2-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
When allocating guest stage-2 page-table pages at EL2, pKVM can consume
pages from the host-provided kvm_hyp_memcache. As pgtable.c expects
zeroed pages, guest_s2_zalloc_page() actively implements this zeroing
with a PAGE_SIZE memset. Unfortunately, we don't check the page
alignment of the host-provided address before doing so, which could
lead to the memset overrunning the page if the host was malicious.
Fix this by simply force-aligning all kvm_hyp_memcache allocations to
page boundaries.
Fixes: 60dfe093ec ("KVM: arm64: Instantiate guest stage-2 page-tables at EL2")
Reported-by: Ben Simner <ben.simner@cl.cam.ac.uk>
Signed-off-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20250213153615.3642515-1-qperret@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that EL2 has gained some early timer emulation, it accesses
the offsets pointed to by the timer structure, both of which
live in the KVM structure.
Of course, these are *kernel* pointers, so the dereferencing
of these pointers in non-kernel code must be itself be offset.
Given switch.h its own version of timer_get_offset() and use that
instead.
Fixes: b86fc215dc ("KVM: arm64: Handle counter access early in non-HYP context")
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Link: https://lore.kernel.org/r/20250212173454.2864462-1-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
At the end of kvm_arch_vcpu_load_fp() we check that no bits are set in
SVCR. We only check this for protected mode despite this mattering
equally for non-protected mode, and the comment above this is confusing.
Remove the comment and simplify the check, moving from WARN_ON() to
WARN_ON_ONCE() to avoid spamming the log.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
In non-protected KVM modes, while the guest FPSIMD/SVE/SME state is live on the
CPU, the host's active SVE VL may differ from the guest's maximum SVE VL:
* For VHE hosts, when a VM uses NV, ZCR_EL2 contains a value constrained
by the guest hypervisor, which may be less than or equal to that
guest's maximum VL.
Note: in this case the value of ZCR_EL1 is immaterial due to E2H.
* For nVHE/hVHE hosts, ZCR_EL1 contains a value written by the guest,
which may be less than or greater than the guest's maximum VL.
Note: in this case hyp code traps host SVE usage and lazily restores
ZCR_EL2 to the host's maximum VL, which may be greater than the
guest's maximum VL.
This can be the case between exiting a guest and kvm_arch_vcpu_put_fp().
If a softirq is taken during this period and the softirq handler tries
to use kernel-mode NEON, then the kernel will fail to save the guest's
FPSIMD/SVE state, and will pend a SIGKILL for the current thread.
This happens because kvm_arch_vcpu_ctxsync_fp() binds the guest's live
FPSIMD/SVE state with the guest's maximum SVE VL, and
fpsimd_save_user_state() verifies that the live SVE VL is as expected
before attempting to save the register state:
| if (WARN_ON(sve_get_vl() != vl)) {
| force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
| return;
| }
Fix this and make this a bit easier to reason about by always eagerly
switching ZCR_EL{1,2} at hyp during guest<->host transitions. With this
happening, there's no need to trap host SVE usage, and the nVHE/nVHE
__deactivate_cptr_traps() logic can be simplified to enable host access
to all present FPSIMD/SVE/SME features.
In protected nVHE/hVHE modes, the host's state is always saved/restored
by hyp, and the guest's state is saved prior to exit to the host, so
from the host's PoV the guest never has live FPSIMD/SVE/SME state, and
the host's ZCR_EL1 is never clobbered by hyp.
Fixes: 8c8010d69c ("KVM: arm64: Save/restore SVE state for nVHE")
Fixes: 2e3cf82063 ("KVM: arm64: nv: Ensure correct VL is loaded before saving SVE state")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-9-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
The shared hyp switch header has a number of static functions which
might not be used by all files that include the header, and when unused
they will provoke compiler warnings, e.g.
| In file included from arch/arm64/kvm/hyp/nvhe/hyp-main.c:8:
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:703:13: warning: 'kvm_hyp_handle_dabt_low' defined but not used [-Wunused-function]
| 703 | static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
| | ^~~~~~~~~~~~~~~~~~~~~~~
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:682:13: warning: 'kvm_hyp_handle_cp15_32' defined but not used [-Wunused-function]
| 682 | static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
| | ^~~~~~~~~~~~~~~~~~~~~~
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:662:13: warning: 'kvm_hyp_handle_sysreg' defined but not used [-Wunused-function]
| 662 | static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
| | ^~~~~~~~~~~~~~~~~~~~~
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:458:13: warning: 'kvm_hyp_handle_fpsimd' defined but not used [-Wunused-function]
| 458 | static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
| | ^~~~~~~~~~~~~~~~~~~~~
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:329:13: warning: 'kvm_hyp_handle_mops' defined but not used [-Wunused-function]
| 329 | static bool kvm_hyp_handle_mops(struct kvm_vcpu *vcpu, u64 *exit_code)
| | ^~~~~~~~~~~~~~~~~~~
Mark these functions as 'inline' to suppress this warning. This
shouldn't result in any functional change.
At the same time, avoid the use of __alias() in the header and alias
kvm_hyp_handle_iabt_low() and kvm_hyp_handle_watchpt_low() to
kvm_hyp_handle_memory_fault() using CPP, matching the style in the rest
of the kernel. For consistency, kvm_hyp_handle_memory_fault() is also
marked as 'inline'.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-8-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
The hyp exit handling logic is largely shared between VHE and nVHE/hVHE,
with common logic in arch/arm64/kvm/hyp/include/hyp/switch.h. The code
in the header depends on function definitions provided by
arch/arm64/kvm/hyp/vhe/switch.c and arch/arm64/kvm/hyp/nvhe/switch.c
when they include the header.
This is an unusual header dependency, and prevents the use of
arch/arm64/kvm/hyp/include/hyp/switch.h in other files as this would
result in compiler warnings regarding missing definitions, e.g.
| In file included from arch/arm64/kvm/hyp/nvhe/hyp-main.c:8:
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:733:31: warning: 'kvm_get_exit_handler_array' used but never defined
| 733 | static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
| | ^~~~~~~~~~~~~~~~~~~~~~~~~~
| ./arch/arm64/kvm/hyp/include/hyp/switch.h:735:13: warning: 'early_exit_filter' used but never defined
| 735 | static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
| | ^~~~~~~~~~~~~~~~~
Refactor the logic such that the header doesn't depend on anything from
the C files. There should be no functional change as a result of this
patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-7-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
For historical reasons, the VHE and nVHE/hVHE implementations of
__activate_cptr_traps() pair with a common implementation of
__kvm_reset_cptr_el2(), which ideally would be named
__deactivate_cptr_traps().
Rename __kvm_reset_cptr_el2() to __deactivate_cptr_traps(), and split it
into separate VHE and nVHE/hVHE variants so that each can be paired with
its corresponding implementation of __activate_cptr_traps().
At the same time, fold kvm_write_cptr_el2() into its callers. This
makes it clear in-context whether a write is made to the CPACR_EL1
encoding or the CPTR_EL2 encoding, and removes the possibility of
confusion as to whether kvm_write_cptr_el2() reformats the sysreg fields
as cpacr_clear_set() does.
In the nVHE/hVHE implementation of __activate_cptr_traps(), placing the
sysreg writes within the if-else blocks requires that the call to
__activate_traps_fpsimd32() is moved earlier, but as this was always
called before writing to CPTR_EL2/CPACR_EL1, this should not result in a
functional change.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-6-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
When KVM is in VHE mode, the host kernel tries to save and restore the
configuration of CPACR_EL1.SMEN (i.e. CPTR_EL2.SMEN when HCR_EL2.E2H=1)
across kvm_arch_vcpu_load_fp() and kvm_arch_vcpu_put_fp(), since the
configuration may be clobbered by hyp when running a vCPU. This logic
has historically been broken, and is currently redundant.
This logic was originally introduced in commit:
861262ab86 ("KVM: arm64: Handle SME host state when running guests")
At the time, the VHE hyp code would reset CPTR_EL2.SMEN to 0b00 when
returning to the host, trapping host access to SME state. Unfortunately,
this was unsafe as the host could take a softirq before calling
kvm_arch_vcpu_put_fp(), and if a softirq handler were to use kernel mode
NEON the resulting attempt to save the live FPSIMD/SVE/SME state would
result in a fatal trap.
That issue was limited to VHE mode. For nVHE/hVHE modes, KVM always
saved/restored the host kernel's CPACR_EL1 value, and configured
CPTR_EL2.TSM to 0b0, ensuring that host usage of SME would not be
trapped.
The issue above was incidentally fixed by commit:
375110ab51 ("KVM: arm64: Fix resetting SME trap values on reset for (h)VHE")
That commit changed the VHE hyp code to configure CPTR_EL2.SMEN to 0b01
when returning to the host, permitting host kernel usage of SME,
avoiding the issue described above. At the time, this was not identified
as a fix for commit 861262ab86.
Now that the host eagerly saves and unbinds its own FPSIMD/SVE/SME
state, there's no need to save/restore the state of the EL0 SME trap.
The kernel can safely save/restore state without trapping, as described
above, and will restore userspace state (including trap controls) before
returning to userspace.
Remove the redundant logic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-5-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
When KVM is in VHE mode, the host kernel tries to save and restore the
configuration of CPACR_EL1.ZEN (i.e. CPTR_EL2.ZEN when HCR_EL2.E2H=1)
across kvm_arch_vcpu_load_fp() and kvm_arch_vcpu_put_fp(), since the
configuration may be clobbered by hyp when running a vCPU. This logic is
currently redundant.
The VHE hyp code unconditionally configures CPTR_EL2.ZEN to 0b01 when
returning to the host, permitting host kernel usage of SVE.
Now that the host eagerly saves and unbinds its own FPSIMD/SVE/SME
state, there's no need to save/restore the state of the EL0 SVE trap.
The kernel can safely save/restore state without trapping, as described
above, and will restore userspace state (including trap controls) before
returning to userspace.
Remove the redundant logic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-4-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
Now that the host eagerly saves its own FPSIMD/SVE/SME state,
non-protected KVM never needs to save the host FPSIMD/SVE/SME state,
and the code to do this is never used. Protected KVM still needs to
save/restore the host FPSIMD/SVE state to avoid leaking guest state to
the host (and to avoid revealing to the host whether the guest used
FPSIMD/SVE/SME), and that code needs to be retained.
Remove the unused code and data structures.
To avoid the need for a stub copy of kvm_hyp_save_fpsimd_host() in the
VHE hyp code, the nVHE/hVHE version is moved into the shared switch
header, where it is only invoked when KVM is in protected mode.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-3-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
There are several problems with the way hyp code lazily saves the host's
FPSIMD/SVE state, including:
* Host SVE being discarded unexpectedly due to inconsistent
configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to
result in QEMU crashes where SVE is used by memmove(), as reported by
Eric Auger:
https://issues.redhat.com/browse/RHEL-68997
* Host SVE state is discarded *after* modification by ptrace, which was an
unintentional ptrace ABI change introduced with lazy discarding of SVE state.
* The host FPMR value can be discarded when running a non-protected VM,
where FPMR support is not exposed to a VM, and that VM uses
FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR
before unbinding the host's FPSIMD/SVE/SME state, leaving a stale
value in memory.
Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME
state when loading a vCPU such that KVM does not need to save any of the
host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is
removed and the necessary call to fpsimd_save_and_flush_cpu_state() is
placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr'
should not be used, they are set to NULL; all uses of these will be
removed in subsequent patches.
Historical problems go back at least as far as v5.17, e.g. erroneous
assumptions about TIF_SVE being clear in commit:
8383741ab2 ("KVM: arm64: Get rid of host SVE tracking/saving")
... and so this eager save+flush probably needs to be backported to ALL
stable trees.
Fixes: 93ae6b01ba ("KVM: arm64: Discard any SVE state when entering KVM guests")
Fixes: 8c845e2731 ("arm64/sve: Leave SVE enabled on syscall if we don't context switch")
Fixes: ef3be86021 ("KVM: arm64: Add save/restore support for FPMR")
Reported-by: Eric Auger <eauger@redhat.com>
Reported-by: Wilco Dijkstra <wilco.dijkstra@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Tested-by: Mark Brown <broonie@kernel.org>
Tested-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: Fuad Tabba <tabba@google.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250210195226.1215254-2-mark.rutland@arm.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
For the time being, the amu_fie_cpus cpumask is being exclusively used
by the AMU-related internals of FIE support and is guaranteed to be
valid on every access currently made. Still the mask is not being
invalidated on one of the error handling code paths, which leaves
a soft spot with theoretical risk of UAF for CPUMASK_OFFSTACK cases.
To make things sound, delay allocating said cpumask
(for CPUMASK_OFFSTACK) avoiding otherwise nasty sanitising case failing
to register the cpufreq policy notifications.
Signed-off-by: Beata Michalska <beata.michalska@arm.com>
Reviewed-by: Prasanna Kumar T S M <ptsm@linux.microsoft.com>
Reviewed-by: Sumit Gupta <sumitg@nvidia.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Link: https://lore.kernel.org/r/20250131155842.3839098-1-beata.michalska@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
The SMMU architecture requires wired interrupts to be edge triggered,
which does not align with the DT description for the RK3588. This leads
to interrupt storms, as the SMMU continues to hold the pin high and only
pulls it down for a short amount when issuing an IRQ. Update the DT
description to be in line with the spec and perceived reality.
Signed-off-by: Patrick Wildt <patrick@blueri.se>
Fixes: cd81d3a069 ("arm64: dts: rockchip: add rk3588 pcie and php IOMMUs")
Reviewed-by: Niklas Cassel <cassel@kernel.org>
Link: https://lore.kernel.org/r/Z6pxme2Chmf3d3uK@windev.fritz.box
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Commit da92d3dfc8 ("arm64: dts: rockchip: enable the mmu600_pcie IOMMU
on the rk3588 SoC") enabled the mmu600_pcie IOMMU, both in the normal case
(when all PCIe controllers are running in Root Complex mode) and in the
case when running the pcie3x4 PCIe controller in Endpoint mode.
There have been no issues detected when running the PCIe controllers in
Root Complex mode. During PCI probe time, we will add a SID to the IOMMU
for each PCI device enumerated on the bus, including the root port itself.
However, when running the pcie3x4 PCIe controller in Endpoint mode, we
will only add a single SID to the IOMMU (the SID specified in the iommus
DT property).
The enablement of IOMMU in endpoint mode was verified on setup with two
Rock 5b:s, where the BDF of the Root Complex has BDF (00:00.0).
A Root Complex sending a TLP to the Endpoint will have Requester ID set
to the BDF of the initiator. On the EP side, the Requester ID will then
be used as the SID. This works fine if the Root Complex has a BDF that
matches the iommus DT property, however, if the Root Complex has any other
BDF, we will see something like:
arm-smmu-v3 fc900000.iommu: event: C_BAD_STREAMID client: (unassigned sid) sid: 0x1600 ssid: 0x0
on the endpoint side.
For PCIe controllers running in endpoint mode that always uses the
incoming Requester ID as the SID, the iommus DT property simply isn't
a viable solution. (Neither is iommu-map a viable solution, as there is
no enumeration done on the endpoint side.)
Thus, partly revert commit da92d3dfc8 ("arm64: dts: rockchip: enable the
mmu600_pcie IOMMU on the rk3588 SoC") by disabling the PCI IOMMU when
running the pcie3x4 PCIe controller in Endpoint mode.
Since the PCI IOMMU is working as expected in the normal case, keep it
enabled when running all PCIe controllers in Root Complex mode.
Fixes: da92d3dfc8 ("arm64: dts: rockchip: enable the mmu600_pcie IOMMU on the rk3588 SoC")
Signed-off-by: Niklas Cassel <cassel@kernel.org>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20250207143900.2047949-2-cassel@kernel.org
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
When the handling of a guest stage-2 permission fault races with an MMU
notifier, the faulting page might be gone from the guest's stage-2 by
the point we attempt to call (p)kvm_pgtable_stage2_relax_perms(). In the
normal KVM case, this leads to returning -EAGAIN which user_mem_abort()
handles correctly by simply re-entering the guest. However, the pKVM
hypercall implementation has additional logic to check the page state
using __check_host_shared_guest() which gets confused with absence of a
page mapped at the requested IPA and returns -ENOENT, hence breaking
user_mem_abort() and hilarity ensues.
Luckily, several of the hypercalls for managing the stage-2 page-table
of NP guests have no effect on the pKVM ownership tracking (wrprotect,
test_clear_young, mkyoung, and crucially relax_perms), so the extra
state checking logic is in fact not strictly necessary. So, to fix the
discrepancy between standard KVM and pKVM, let's just drop the
superfluous __check_host_shared_guest() logic from those hypercalls and
make the extra state checking a debug assertion dependent on
CONFIG_NVHE_EL2_DEBUG as we already do for other transitions.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250207145438.1333475-3-qperret@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
The check_host_shared_guest() path expects to find a last-level valid
PTE in the guest's stage-2 page-table. However, it checks the PTE's
level before its validity, which makes it hard for callers to figure out
what went wrong.
To make error handling simpler, check the PTE's validity first.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250207145438.1333475-2-qperret@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level).
Fixes: 5d425c1865 ("arm64: kernel: add support for cpu cache information")
Signed-off-by: Radu Rendec <rrendec@redhat.com>
Link: https://lore.kernel.org/r/20250206174420.2178724-1-rrendec@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
A recent LLVM commit [1] started generating an .ARM.attributes section
similar to the one that exists for 32-bit, which results in orphan
section warnings (or errors if CONFIG_WERROR is enabled) from the linker
because it is not handled in the arm64 linker scripts.
ld.lld: error: arch/arm64/kernel/vdso/vgettimeofday.o:(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: arch/arm64/kernel/vdso/vgetrandom.o:(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/vsprintf.o):(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/win_minmax.o):(.ARM.attributes) is being placed in '.ARM.attributes'
ld.lld: error: vmlinux.a(lib/xarray.o):(.ARM.attributes) is being placed in '.ARM.attributes'
Discard the new sections in the necessary linker scripts to resolve the
warnings, as the kernel and vDSO do not need to retain it, similar to
the .note.gnu.property section.
Cc: stable@vger.kernel.org
Fixes: b3e5d80d0c ("arm64/build: Warn on orphan section placement")
Link: ee99c4d484 [1]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20250206-arm64-handle-arm-attributes-in-linker-script-v3-1-d53d169913eb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Enable TISCI Interrupt Router and Interrupt Aggregator drivers.
These IPs are found in all TI K3 SoCs like J721E, AM62X and is required
for core functionality like DMA, GPIO Interrupts which is necessary
during boot, thus make them built-in.
bloat-o-meter summary on vmlinux:
add/remove: 460/1 grow/shrink: 4/0 up/down: 162483/-8 (162475)
...
Total: Before=31615984, After=31778459, chg +0.51%
These configs were previously selected for ARCH_K3 in respective Kconfigs
till commit b8b26ae398 ("irqchip/ti-sci-inta : Add module build support")
and commit 2d95ffaecb ("irqchip/ti-sci-intr: Add module build support")
dropped them and few driver configs (TI_K3_UDMA, TI_K3_RINGACC)
dependent on these also got disabled due to this. While re-enabling the
TI_SCI_INT_*_IRQCHIP configs, these configs with missing dependencies
(which are already part of arm64 defconfig) also get re-enabled which
explains the slightly larger size increase from the bloat-o-meter summary.
Fixes: 2d95ffaecb ("irqchip/ti-sci-intr: Add module build support")
Fixes: b8b26ae398 ("irqchip/ti-sci-inta : Add module build support")
Signed-off-by: Vaishnav Achath <vaishnav.a@ti.com>
Tested-by: Dhruva Gole <d-gole@ti.com>
Reviewed-by: Dhruva Gole <d-gole@ti.com>
Link: https://lore.kernel.org/r/20250205062229.3869081-1-vaishnav.a@ti.com
Signed-off-by: Nishanth Menon <nm@ti.com>
KVM/arm64 fixes for 6.14, take #1
- Correctly clean the BSS to the PoC before allowing EL2 to access it
on nVHE/hVHE/protected configurations
- Propagate ownership of debug registers in protected mode after
the rework that landed in 6.14-rc1
- Stop pretending that we can run the protected mode without a GICv3
being present on the host
- Fix a use-after-free situation that can occur if a vcpu fails to
initialise the NV shadow S2 MMU contexts
- Always evaluate the need to arm a background timer for fully emulated
guest timers
- Fix the emulation of EL1 timers in the absence of FEAT_ECV
- Correctly handle the EL2 virtual timer, specially when HCR_EL2.E2H==0
The way we deal with the EL2 virtual timer is a bit odd.
We try to cope with E2H being flipped, and adjust which offset
applies to that timer depending on the current E2H value. But that's
a complexity we shouldn't have to worry about.
What we have to deal with is either E2H being RES1, in which case
there is no offset, or E2H being RES0, and the virtual timer simply
does not exist.
Drop the adjusting of the timer offset, which makes things a bit
simpler. At the same time, make sure that accessing the HV timer
when E2H is RES0 results in an UNDEF in the guest.
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250204110050.150560-4-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Both Wei-Lin Chang and Volodymyr Babchuk report that the way we
handle the emulation of EL1 timers with NV is completely wrong,
specially in the case of HCR_EL2.E2H==0.
There are three problems in about as many lines of code:
- With E2H==0, the EL1 timers are overwritten with the EL1 state,
while they should actually contain the EL2 state (as per the timer
map)
- With E2H==1, we run the full EL1 timer emulation even when ECV
is present, hiding a bug in timer_emulate() (see previous patch)
- The comments are actively misleading, and say all the wrong things.
This is only attributable to the code having been initially written
for FEAT_NV, hacked up to handle FEAT_NV2 *in parallel*, and vaguely
hacked again to be FEAT_NV2 only. Oh, and yours truly being a gold
plated idiot.
The fix is obvious: just delete most of the E2H==0 code, have a unified
handling of the timers (because they really are E2H agnostic), and
make sure we don't execute any of that when FEAT_ECV is present.
Fixes: 4bad3068cf ("KVM: arm64: nv: Sync nested timer state with FEAT_NV2")
Reported-by: Wei-Lin Chang <r09922117@csie.ntu.edu.tw>
Reported-by: Volodymyr Babchuk <Volodymyr_Babchuk@epam.com>
Link: https://lore.kernel.org/r/fqiqfjzwpgbzdtouu2pwqlu7llhnf5lmy4hzv5vo6ph4v3vyls@jdcfy3fjjc5k
Link: https://lore.kernel.org/r/87frl51tse.fsf@epam.com
Tested-by: Dmytro Terletskyi <dmytro_terletskyi@epam.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250204110050.150560-3-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
When updating the interrupt state for an emulated timer, we return
early and skip the setup of a soft timer that runs in parallel
with the guest.
While this is OK if we have set the interrupt pending, it is pretty
wrong if the guest moved CVAL into the future. In that case,
no timer is armed and the guest can wait for a very long time
(it will take a full put/load cycle for the situation to resolve).
This is specially visible with EDK2 running at EL2, but still
using the EL1 virtual timer, which in that case is fully emulated.
Any key-press takes ages to be captured, as there is no UART
interrupt and EDK2 relies on polling from a timer...
The fix is simply to drop the early return. If the timer interrupt
is pending, we will still return early, and otherwise arm the soft
timer.
Fixes: 4d74ecfa64 ("KVM: arm64: Don't arm a hrtimer for an already pending timer")
Cc: stable@vger.kernel.org
Tested-by: Dmytro Terletskyi <dmytro_terletskyi@epam.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20250204110050.150560-2-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
For each vcpu that userspace creates, we allocate a number of
s2_mmu structures that will eventually contain our shadow S2
page tables.
Since this is a dynamically allocated array, we reallocate
the array and initialise the newly allocated elements. Once
everything is correctly initialised, we adjust pointer and size
in the kvm structure, and move on.
But should that initialisation fail *and* the reallocation triggered
a copy to another location, we end-up returning early, with the
kvm structure still containing the (now stale) old pointer. Weeee!
Cure it by assigning the pointer early, and use this to perform
the initialisation. If everything succeeds, we adjust the size.
Otherwise, we just leave the size as it was, no harm done, and the
new memory is as good as the ol' one (we hope...).
Fixes: 4f128f8e1a ("KVM: arm64: nv: Support multiple nested Stage-2 mmu structures")
Reported-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/r/20250204145554.774427-1-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Commit a3ed4157b7 ("fgraph: Replace fgraph_ret_regs with ftrace_regs")
replaces the config HAVE_FUNCTION_GRAPH_RETVAL with the config
HAVE_FUNCTION_GRAPH_FREGS, and it replaces all the select commands in the
various architecture Kconfig files. In the arm64 architecture, the commit
adds the 'select HAVE_FUNCTION_GRAPH_FREGS', but misses to remove the
'select HAVE_FUNCTION_GRAPH_RETVAL', i.e., the select on the replaced
config.
Remove selecting the replaced config. No functional change, just cleanup.
Fixes: a3ed4157b7 ("fgraph: Replace fgraph_ret_regs with ftrace_regs")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@redhat.com>
Link: https://lore.kernel.org/r/20250117125522.99071-1-lukas.bulwahn@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
Add the missing code to allocate P4D level page tables when cloning the
the kernel page tables. This fixes a crash that may be observed when
attempting to resume from hibernation on an LPA2 capable system with 4k
pages, which therefore uses 5 levels of paging.
Presumably, kexec is equally affected.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250110175145.785702-2-ardb+git@google.com
Signed-off-by: Will Deacon <will@kernel.org>
rk3399-gru chromebooks have a regulator chains where one named regulator
supplies multiple regulators pp900-usb pp900_pcie that supply
the named peripherals.
The dtsi used somewhat creative structure to describe that in creating
the base node 3 times with different phandles and describing the EC
dependency in a comment.
This didn't register in the recent regulator-node renaming, as the
additional nodes were empty, so adapt the missing node names for now.
Fixes: 5c96e63301 ("arm64: dts: rockchip: adapt regulator nodenames to preferred form")
Tested-by: Vicente Bergas <vicencb@gmail.com>
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Link: https://lore.kernel.org/r/20250116143631.3650469-1-heiko@sntech.de
In the PX30-uQ7 (Ringneck) SoM, the hardware CTS and RTS pins for
uart5 cannot be used for the UART CTS/RTS, because they are already
allocated for different purposes. CTS pin is routed to SUS_S3#
signal, while RTS pin is used internally and is not available on
Q7 connector. Move definition of the pinctrl-0 property from
px30-ringneck-haikou.dts to px30-ringneck.dtsi.
This commit is a dependency to next commit in the patch series,
that disables DMA for uart5.
Cc: stable@vger.kernel.org
Reviewed-by: Quentin Schulz <quentin.schulz@cherry.de>
Signed-off-by: Lukasz Czechowski <lukasz.czechowski@thaumatec.com>
Link: https://lore.kernel.org/r/20250121125604.3115235-2-lukasz.czechowski@thaumatec.com
Signed-off-by: Heiko Stuebner <heiko@sntech.de>
Pull sysctl table constification from Joel Granados:
"All ctl_table declared outside of functions and that remain unmodified
after initialization are const qualified.
This prevents unintended modifications to proc_handler function
pointers by placing them in the .rodata section.
This is a continuation of the tree-wide effort started a few releases
ago with the constification of the ctl_table struct arguments in the
sysctl API done in 78eb4ea25c ("sysctl: treewide: constify the
ctl_table argument of proc_handlers")"
* tag 'constfy-sysctl-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
treewide: const qualify ctl_tables where applicable
Pull KVM/arm64 updates from Will Deacon:
"New features:
- Support for non-protected guest in protected mode, achieving near
feature parity with the non-protected mode
- Support for the EL2 timers as part of the ongoing NV support
- Allow control of hardware tracing for nVHE/hVHE
Improvements, fixes and cleanups:
- Massive cleanup of the debug infrastructure, making it a bit less
awkward and definitely easier to maintain. This should pave the way
for further optimisations
- Complete rewrite of pKVM's fixed-feature infrastructure, aligning
it with the rest of KVM and making the code easier to follow
- Large simplification of pKVM's memory protection infrastructure
- Better handling of RES0/RES1 fields for memory-backed system
registers
- Add a workaround for Qualcomm's Snapdragon X CPUs, which suffer
from a pretty nasty timer bug
- Small collection of cleanups and low-impact fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (87 commits)
arm64/sysreg: Get rid of TRFCR_ELx SysregFields
KVM: arm64: nv: Fix doc header layout for timers
KVM: arm64: nv: Apply RESx settings to sysreg reset values
KVM: arm64: nv: Always evaluate HCR_EL2 using sanitising accessors
KVM: arm64: Fix selftests after sysreg field name update
coresight: Pass guest TRFCR value to KVM
KVM: arm64: Support trace filtering for guests
KVM: arm64: coresight: Give TRBE enabled state to KVM
coresight: trbe: Remove redundant disable call
arm64/sysreg/tools: Move TRFCR definitions to sysreg
tools: arm64: Update sysreg.h header files
KVM: arm64: Drop pkvm_mem_transition for host/hyp donations
KVM: arm64: Drop pkvm_mem_transition for host/hyp sharing
KVM: arm64: Drop pkvm_mem_transition for FF-A
KVM: arm64: Explicitly handle BRBE traps as UNDEFINED
KVM: arm64: vgic: Use str_enabled_disabled() in vgic_v3_probe()
arm64: kvm: Introduce nvhe stack size constants
KVM: arm64: Fix nVHE stacktrace VA bits mask
KVM: arm64: Fix FEAT_MTE in pKVM
Documentation: Update the behaviour of "kvm-arm.mode"
...
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit 78eb4ea25c ("sysctl: treewide:
constify the ctl_table argument of proc_handlers") constified all the
proc_handlers.
Created this by running an spatch followed by a sed command:
Spatch:
virtual patch
@
depends on !(file in "net")
disable optional_qualifier
@
identifier table_name != {
watchdog_hardlockup_sysctl,
iwcm_ctl_table,
ucma_ctl_table,
memory_allocation_profiling_sysctls,
loadpin_sysctl_table
};
@@
+ const
struct ctl_table table_name [] = { ... };
sed:
sed --in-place \
-e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \
kernel/utsname_sysctl.c
Reviewed-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI
Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Acked-by: Anna Schumaker <anna.schumaker@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...