We only had a couple of array[] declarations, and changing them to just
use 'MAX()' instead of 'max()' fixes the issue.
This will allow us to simplify our min/max macros enormously, since they
can now unconditionally use temporary variables to avoid using the
argument values multiple times.
Cc: David Laight <David.Laight@aculab.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In prevision to add new UAPI for hwtstamp we will be limited to the struct
ethtool_ts_info that is currently passed in fixed binary format through the
ETHTOOL_GET_TS_INFO ethtool ioctl. It would be good if new kernel code
already started operating on an extensible kernel variant of that
structure, similar in concept to struct kernel_hwtstamp_config vs struct
hwtstamp_config.
Since struct ethtool_ts_info is in include/uapi/linux/ethtool.h, here
we introduce the kernel-only structure in include/linux/ethtool.h.
The manual copy is then made in the function called by ETHTOOL_GET_TS_INFO.
Acked-by: Shannon Nelson <shannon.nelson@amd.com>
Acked-by: Alexandra Winter <wintera@linux.ibm.com>
Signed-off-by: Kory Maincent <kory.maincent@bootlin.com>
Link: https://patch.msgid.link/20240709-feature_ptp_netnext-v17-6-b5317f50df2a@bootlin.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch updates the workaround for a problem similar to erratum
DS80000789E 6 of the mcp2518fd, the other variants of the chip
family (mcp2517fd and mcp251863) are probably also affected.
Erratum DS80000789E 6 says "reading of the FIFOCI bits in the FIFOSTA
register for an RX FIFO may be corrupted". However observation shows
that this problem is not limited to RX FIFOs but also effects the TEF
FIFO.
In the bad case, the driver reads a too large head index. As the FIFO
is implemented as a ring buffer, this results in re-handling old CAN
transmit complete events.
Every transmit complete event contains with a sequence number that
equals to the sequence number of the corresponding TX request. This
way old TX complete events can be detected.
If the original driver detects a non matching sequence number, it
prints an info message and tries again later. As wrong sequence
numbers can be explained by the erratum DS80000789E 6, demote the info
message to debug level, streamline the code and update the comments.
Keep the behavior: If an old CAN TX complete event is detected, abort
the iteration and mark the number of valid CAN TX complete events as
processed in the chip by incrementing the FIFO's tail index.
Cc: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Cc: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This is a preparatory patch to work around a problem similar to
erratum DS80000789E 6 of the mcp2518fd, the other variants of the chip
family (mcp2517fd and mcp251863) are probably also affected.
Erratum DS80000789E 6 says "reading of the FIFOCI bits in the FIFOSTA
register for an RX FIFO may be corrupted". However observation shows
that this problem is not limited to RX FIFOs but also effects the TEF
FIFO.
When handling the TEF interrupt, the driver reads the FIFO header
index from the TEF FIFO STA register of the chip.
In the bad case, the driver reads a too large head index. In the
original code, the driver always trusted the read value, which caused
old CAN transmit complete events that were already processed to be
re-processed.
Instead of reading and trusting the head index, read the head index
and calculate the number of CAN frames that were supposedly received -
replace mcp251xfd_tef_ring_update() with mcp251xfd_get_tef_len().
The mcp251xfd_handle_tefif() function reads the CAN transmit complete
events from the chip, iterates over them and pushes them into the
network stack. The original driver already contains code to detect old
CAN transmit complete events, that will be updated in the next patch.
Cc: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Cc: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This patch tries to works around erratum DS80000789E 6 of the
mcp2518fd, the other variants of the chip family (mcp2517fd and
mcp251863) are probably also affected.
In the bad case, the driver reads a too large head index. In the
original code, the driver always trusted the read value, which caused
old, already processed CAN frames or new, incompletely written CAN
frames to be (re-)processed.
To work around this issue, keep a per FIFO timestamp [1] of the last
valid received CAN frame and compare against the timestamp of every
received CAN frame. If an old CAN frame is detected, abort the
iteration and mark the number of valid CAN frames as processed in the
chip by incrementing the FIFO's tail index.
Further tests showed that this workaround can recognize old CAN
frames, but a small time window remains in which partially written CAN
frames [2] are not recognized but then processed. These CAN frames
have the correct data and time stamps, but the DLC has not yet been
updated.
[1] As the raw timestamp overflows every 107 seconds (at the usual
clock rate of 40 MHz) convert it to nanoseconds with the
timecounter framework and use this to detect stale CAN frames.
Link: https://lore.kernel.org/all/BL3PR11MB64844C1C95CA3BDADAE4D8CCFBC99@BL3PR11MB6484.namprd11.prod.outlook.com [2]
Reported-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Closes: https://lore.kernel.org/all/FR0P281MB1966273C216630B120ABB6E197E89@FR0P281MB1966.DEUP281.PROD.OUTLOOK.COM
Tested-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Tested-by: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This is a preparatory patch to work around erratum DS80000789E 6 of
the mcp2518fd, the other variants of the chip family (mcp2517fd and
mcp251863) are probably also affected.
When handling the RX interrupt, the driver iterates over all pending
FIFOs (which are implemented as ring buffers in hardware) and reads
the FIFO header index from the RX FIFO STA register of the chip.
In the bad case, the driver reads a too large head index. In the
original code, the driver always trusted the read value, which caused
old CAN frames that were already processed, or new, incompletely
written CAN frames to be (re-)processed.
Instead of reading and trusting the head index, read the head index
and calculate the number of CAN frames that were supposedly received -
replace mcp251xfd_rx_ring_update() with mcp251xfd_get_rx_len().
The mcp251xfd_handle_rxif_ring() function reads the received CAN
frames from the chip, iterates over them and pushes them into the
network stack. Prepare that the iteration can be stopped if an old CAN
frame is detected. The actual code to detect old or incomplete frames
and abort will be added in the next patch.
Link: https://lore.kernel.org/all/BL3PR11MB64844C1C95CA3BDADAE4D8CCFBC99@BL3PR11MB6484.namprd11.prod.outlook.com
Reported-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Closes: https://lore.kernel.org/all/FR0P281MB1966273C216630B120ABB6E197E89@FR0P281MB1966.DEUP281.PROD.OUTLOOK.COM
Tested-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Tested-by: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This is a preparation patch.
Sending the UINC messages followed by incrementing the tail pointer
will be called in more than one place in upcoming patches, so factor
this out into a separate function.
Also make mcp251xfd_handle_rxif_ring_uinc() safe to be called with a
"len" of 0.
Tested-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Tested-by: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The mcp251xfd chip is configured to provide a timestamp with each
received and transmitted CAN frame. The timestamp is derived from the
internal free-running timer, which can also be read from the TBC
register via SPI. The timer is 32 bits wide and is clocked by the
external oscillator (typically 20 or 40 MHz).
To avoid confusion, we call this timestamp "timestamp_raw" or "ts_raw"
for short.
Using the timecounter framework, the "ts_raw" is converted to 64 bit
nanoseconds since the epoch. This is what we call "timestamp".
This is a preparation for the next patches which use the "timestamp"
to work around a bug where so far only the "ts_raw" is used.
Tested-by: Stefan Althöfer <Stefan.Althoefer@janztec.com>
Tested-by: Thomas Kopp <thomas.kopp@microchip.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The mcp251xfd wakes up from Low Power or Sleep Mode when SPI activity
is detected. To avoid this, make sure that the timestamp worker is
stopped before shutting down the chip.
Split the starting of the timestamp worker out of
mcp251xfd_timestamp_init() into the separate function
mcp251xfd_timestamp_start().
Call mcp251xfd_timestamp_init() before mcp251xfd_chip_start(), move
mcp251xfd_timestamp_start() to mcp251xfd_chip_start(). In this way,
mcp251xfd_timestamp_stop() can be called unconditionally by
mcp251xfd_chip_stop().
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Since the errata references have been added to the driver, new errata
sheets have been published. Update the references for the mcp2517fd
and mcp2518fd. For completeness add references for the mcp251863.
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Cross-merge networking fixes after downstream PR.
No conflicts.
Adjacent changes:
e3f02f32a0 ("ionic: fix kernel panic due to multi-buffer handling")
d9c0420999 ("ionic: Mark error paths in the data path as unlikely")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When the mcp251xfd_start_xmit() function fails, the driver stops
processing messages, and the interrupt routine does not return,
running indefinitely even after killing the running application.
Error messages:
[ 441.298819] mcp251xfd spi2.0 can0: ERROR in mcp251xfd_start_xmit: -16
[ 441.306498] mcp251xfd spi2.0 can0: Transmit Event FIFO buffer not empty. (seq=0x000017c7, tef_tail=0x000017cf, tef_head=0x000017d0, tx_head=0x000017d3).
... and repeat forever.
The issue can be triggered when multiple devices share the same SPI
interface. And there is concurrent access to the bus.
The problem occurs because tx_ring->head increments even if
mcp251xfd_start_xmit() fails. Consequently, the driver skips one TX
package while still expecting a response in
mcp251xfd_handle_tefif_one().
Resolve the issue by starting a workqueue to write the tx obj
synchronously if err = -EBUSY. In case of another error, decrement
tx_ring->head, remove skb from the echo stack, and drop the message.
Fixes: 55e5b97f00 ("can: mcp25xxfd: add driver for Microchip MCP25xxFD SPI CAN")
Cc: stable@vger.kernel.org
Signed-off-by: Vitor Soares <vitor.soares@toradex.com>
Link: https://lore.kernel.org/all/20240517134355.770777-1-ivitro@gmail.com
[mkl: use more imperative wording in patch description]
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
The m_can driver sets and clears the CCCR.INIT bit during probe (both
when testing the NON-ISO bit, and when configuring the chip). After
clearing the CCCR.INIT bit, the transceiver enters normal mode, where it
affects the CAN bus (i.e. it ACKs frames). This can cause troubles when
the m_can node is only used for monitoring the bus, as one cannot setup
listen-only mode before the device is probed.
Rework the probe flow, so that the CCCR.INIT bit is only cleared when
upping the device. First, the tcan4x5x driver is changed to stay in
standby mode during/after probe. This in turn requires changes when
setting bits in the CCCR register, as its CSR and CSA bits are always
high in standby mode.
Signed-off-by: Martin Hundebøll <martin@geanix.com>
Reviewed-by: Markus Schneider-Pargmann <msp@baylibre.com>
Tested-by: Markus Schneider-Pargmann <msp@baylibre.com>
Link: https://lore.kernel.org/all/20240607105210.155435-1-martin@geanix.com
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
Replace the variable name err used for return codes with the more
generic name ret. An upcoming patch series for adding MSI interrupts
will introduce code which also returns values other than return codes.
Renaming the variable to ret enables using it for both purposes.
This is applied to the whole file to make it consistent.
Signed-off-by: Martin Jocic <martin.jocic@kvaser.com>
Link: https://lore.kernel.org/all/20240614151524.2718287-8-martin.jocic@kvaser.com
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This check is already done at the creation of the net devices in
kvaser_pciefd_setup_can_ctrls called from kvaser_pciefd_probe.
If it fails, the driver won't load, so there should be no need to
repeat the check inside the ISR. The number of channels is read
from the FPGA and should be trusted.
Signed-off-by: Martin Jocic <martin.jocic@kvaser.com>
Link: https://lore.kernel.org/all/20240614151524.2718287-3-martin.jocic@kvaser.com
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
In a future patch HAS_IOPORT=n will disable inb()/outb() and friends at
compile time. We thus need to add HAS_IOPORT as dependency for
those drivers requiring them. For the DEFXX driver the use of I/O
ports is optional and we only need to fence specific code paths. It also
turns out that with HAS_IOPORT handled explicitly HAMRADIO does not need
the !S390 dependency and successfully builds the bpqether driver.
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Maciej W. Rozycki <macro@orcam.me.uk>
Co-developed-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@kernel.org>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to be able to run rtnl_fill_ifinfo() under RCU protection
instead of RTNL in the future.
This patch prepares dev_get_iflink() and nla_put_iflink()
to run either with RTNL or RCU held.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>