Pull x86 core updates from Borislav Petkov:
- Add the call depth tracking mitigation for Retbleed which has been
long in the making. It is a lighterweight software-only fix for
Skylake-based cores where enabling IBRS is a big hammer and causes a
significant performance impact.
What it basically does is, it aligns all kernel functions to 16 bytes
boundary and adds a 16-byte padding before the function, objtool
collects all functions' locations and when the mitigation gets
applied, it patches a call accounting thunk which is used to track
the call depth of the stack at any time.
When that call depth reaches a magical, microarchitecture-specific
value for the Return Stack Buffer, the code stuffs that RSB and
avoids its underflow which could otherwise lead to the Intel variant
of Retbleed.
This software-only solution brings a lot of the lost performance
back, as benchmarks suggest:
https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
That page above also contains a lot more detailed explanation of the
whole mechanism
- Implement a new control flow integrity scheme called FineIBT which is
based on the software kCFI implementation and uses hardware IBT
support where present to annotate and track indirect branches using a
hash to validate them
- Other misc fixes and cleanups
* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
x86/paravirt: Use common macro for creating simple asm paravirt functions
x86/paravirt: Remove clobber bitmask from .parainstructions
x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
x86/Kconfig: Enable kernel IBT by default
x86,pm: Force out-of-line memcpy()
objtool: Fix weak hole vs prefix symbol
objtool: Optimize elf_dirty_reloc_sym()
x86/cfi: Add boot time hash randomization
x86/cfi: Boot time selection of CFI scheme
x86/ibt: Implement FineIBT
objtool: Add --cfi to generate the .cfi_sites section
x86: Add prefix symbols for function padding
objtool: Add option to generate prefix symbols
objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
objtool: Slice up elf_create_section_symbol()
kallsyms: Revert "Take callthunks into account"
x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
x86/retpoline: Fix crash printing warning
x86/paravirt: Fix a !PARAVIRT build warning
...
Pull memblock updates from Mike Rapoport:
"Extend test coverage:
- add tests that trigger reallocation of memblock structures from
memblock itself via memblock_double_array()
- add tests for memblock_alloc_exact_nid_raw() that verify that
requested node and memory range constraints are respected"
* tag 'memblock-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock:
memblock tests: remove completed TODO item
memblock tests: add generic NUMA tests for memblock_alloc_exact_nid_raw
memblock tests: add bottom-up NUMA tests for memblock_alloc_exact_nid_raw
memblock tests: add top-down NUMA tests for memblock_alloc_exact_nid_raw
memblock tests: introduce range tests for memblock_alloc_exact_nid_raw
memblock test: Update TODO list
memblock test: Add test to memblock_reserve() 129th region
memblock test: Add test to memblock_add() 129th region
The -D/--delay option is to delay the measure after the program starts.
But the current code goes to sleep before starting the program so the
program is delayed too. This is not the intention, let's fix it.
Before:
$ time sudo ./perf stat -a -e cycles -D 3000 sleep 4
Events disabled
Events enabled
Performance counter stats for 'system wide':
4,326,949,337 cycles
4.007494118 seconds time elapsed
real 0m7.474s
user 0m0.356s
sys 0m0.120s
It ran the workload for 4 seconds and gave the 3 second delay. So it
should skip the first 3 second and measure the last 1 second only. But
as you can see, it delays 3 seconds and ran the workload after that for
4 seconds. So the total time (real) was 7 seconds.
After:
$ time sudo ./perf stat -a -e cycles -D 3000 sleep 4
Events disabled
Events enabled
Performance counter stats for 'system wide':
1,063,551,013 cycles
1.002769510 seconds time elapsed
real 0m4.484s
user 0m0.385s
sys 0m0.086s
The bug was introduced when it changed enablement of system-wide events
with a command line workload. But it should've considered the initial
delay case. The code was reworked since then (in bb8bc52e75) so I'm
afraid it won't be applied cleanly.
Fixes: d0a0a51149 ("perf stat: Fix forked applications enablement of counters")
Reported-by: Kevin Nomura <nomurak@google.com>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sumanth Korikkar <sumanthk@linux.ibm.com>
Link: https://lore.kernel.org/r/20221212230820.901382-1-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This is a small improvement in libbpf_strerror. When libbpf_strerror
is used to obtain the system error description, if the length of the
buf is insufficient, libbpf_sterror returns ERANGE and sets errno to
ERANGE.
However, this processing is not performed when the error code
customized by libbpf is obtained. Make some minor improvements here,
return -ERANGE and set errno to ERANGE when buf is not enough for
custom description.
Signed-off-by: Xin Liu <liuxin350@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221210082045.233697-1-liuxin350@huawei.com
BPF selftests require CONFIG_FUNCTION_ERROR_INJECTION to work. However,
CONFIG_FUNCTION_ERROR_INJECTION is no longer 'y' by default after recent
changes. As a result, we are seeing errors like the following from BPF CI:
bpf_testmod_test_read() is not modifiable
__x64_sys_setdomainname is not sleepable
__x64_sys_getpgid is not sleepable
Fix this by explicitly selecting CONFIG_FUNCTION_ERROR_INJECTION in the
selftest config.
Fixes: a4412fdd49 ("error-injection: Add prompt for function error injection")
Reported-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Müller <deso@posteo.net>
Link: https://lore.kernel.org/bpf/20221213220500.3427947-1-song@kernel.org
Kernel test robot reported bpf selftest build failure when CONFIG_SMP
is not set. The error message looks below:
>> progs/rcu_read_lock.c:256:34: error: no member named 'last_wakee' in 'struct task_struct'
last_wakee = task->real_parent->last_wakee;
~~~~~~~~~~~~~~~~~ ^
1 error generated.
When CONFIG_SMP is not set, the field 'last_wakee' is not available in struct
'task_struct'. Hence the above compilation failure. To fix the issue, let us
choose another field 'group_leader' which is available regardless of
CONFIG_SMP set or not.
Fixes: fe147956fc ("bpf/selftests: Add selftests for new task kfuncs")
Fixes: 48671232fc ("selftests/bpf: Add tests for bpf_rcu_read_lock()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20221213012224.379581-1-yhs@fb.com
Pull iommufd implementation from Jason Gunthorpe:
"iommufd is the user API to control the IOMMU subsystem as it relates
to managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU
device specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance
the combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a guest.
Dirty tracking enables VM live migration with SRIOV devices and PASID
support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs,
which is currently VFIO and VDPA"
For more background, see the extended explanations in Jason's pull request:
https://lore.kernel.org/lkml/Y5dzTU8dlmXTbzoJ@nvidia.com/
* tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (62 commits)
iommufd: Change the order of MSI setup
iommufd: Improve a few unclear bits of code
iommufd: Fix comment typos
vfio: Move vfio group specific code into group.c
vfio: Refactor dma APIs for emulated devices
vfio: Wrap vfio group module init/clean code into helpers
vfio: Refactor vfio_device open and close
vfio: Make vfio_device_open() truly device specific
vfio: Swap order of vfio_device_container_register() and open_device()
vfio: Set device->group in helper function
vfio: Create wrappers for group register/unregister
vfio: Move the sanity check of the group to vfio_create_group()
vfio: Simplify vfio_create_group()
iommufd: Allow iommufd to supply /dev/vfio/vfio
vfio: Make vfio_container optionally compiled
vfio: Move container related MODULE_ALIAS statements into container.c
vfio-iommufd: Support iommufd for emulated VFIO devices
vfio-iommufd: Support iommufd for physical VFIO devices
vfio-iommufd: Allow iommufd to be used in place of a container fd
vfio: Use IOMMU_CAP_ENFORCE_CACHE_COHERENCY for vfio_file_enforced_coherent()
...
Provide task-analyzer test cases for all possible arguments and a subset of possible
combinations.
12 Tests in total.
test_basic:
- cmd:"perf script report task-analyzer"
- Fundamental test of script without arguments.
- Check for standard output.
test_ns_rename:
- cmd:"perf script report task-analyzer --ns --rename-comms-by-tids 0:random"
- Standard task with timestamps in nanoseconds and comm renamed.
- Check for standard output.
test_ms_filtertasks_highlight:
- cmd:"perf script report task-analyzer --ms --filter-tasks perf --highlight-tasks perf"
- Standard task with timestamps in milliseconds, task filtered out and highlighted.
- Check for standard output.
test_extended_times_timelimit_limittasks:
- cmd "perf script report task-analyzer --extended-times --time-limit :99999"
- Standard task with additional schedule out/in info and timlimit active at 99999.
- Check for extended table output.
test_summary:
- cmd:"perf script report task-analyzer --summary"
- Standard task with additional summary output.
- Check for summary print.
test_summary_extended:
- cmd:"perf script report task-analyzer --summary-extended"
- Standard task with summary and additional schedule in/out info.
- Chceck for extended table print.
test_summaryonly:
- cmd:"perf script report task-analyzer --summary-only"
- Only summary should be printed.
- Check for summary print.
test_extended_times_summary_ns:
- cmd:"perf script report task-analyzer --extended-times --summary --ns"
- Standard task with extended schedule in/out information and summary in ns.
- Check for extended table and summary.
test_csv:
- cmd:"perf script report task-analyzer --csv csv"
- Print standard task to csv file in csv format.
- Check for csv format.
test_csv_extended_times:
- cmd:"perf script report task-analyzer --csv csv --extended-times"
- Print standard task to csv file in csv format with additional schedule in/out
information.
- Check for additional information and csv format.
test_csvsummary:
- cmd:"perf script report task-analyzer --csv-summary csvsummary"
- Print summary to csvsummary file in csv format.
- Check for csv format.
test_csvsummary_extended:
- cmd:"perf script report task-analyzer --csv-summary csvsummary --summary-extended"
- Print summary to csvsummary file in csv format with additional schedule in/out
information.
- Check for additional information and csv format.
Suggested-by: Ian Rogers <irogers@google.com>
Signed-off-by: Petar Gligoric <petar.gligoric@rohde-schwarz.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20221206154406.41941-4-petar.gligor@gmail.com
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This patch adds the possibility to write the trace and the summary as csv files
to a user specified file. A format as such simplifies further data processing.
This is achieved by having ";" as separators instead of spaces and solely one
header per file.
Additional parameters are being considered, like in the normal usage of the
script. Colors are turned off in the case of a csv output, thus the highlight
option is also being ignored.
Usage:
Write standard task to csv file:
$ perf script report tasks-analyzer --csv <file>
write limited output to csv file in nanoseconds:
$ perf script report tasks-analyzer --csv <file> --ns --limit-to-tasks 1337
Write summary to a csv file:
$ perf script report tasks-analyzer --csv-summary <file>
Write summary to csv file with additional schedule information:
$ perf script report tasks-analyzer --csv-summary <file> --summary-extended
Write both summary and standard task to a csv file:
$ perf script report tasks-analyzer --csv --csv-summary
The following examples illustrate what is possible with the CSV output. The
first command sequence will record all scheduler switch events for 10 seconds,
the task-analyzer calculates task information like runtimes as CSV. A small
python snippet using pandas and matplotlib will visualize the most frequent
task (e.g. kworker/1:1) runtimes - each runtime as a bar in a bar chart:
$ perf record -e sched:sched_switch -a -- sleep 10
$ perf script report tasks-analyzer --ns --csv tasks.csv
$ cat << EOF > /tmp/freq-comm-runtimes-bar.py
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv("tasks.csv", sep=';')
most_freq_comm = df["COMM"].value_counts().idxmax()
most_freq_runtimes = df[df["COMM"]==most_freq_comm]["Runtime"]
plt.title(f"Runtimes for Task {most_freq_comm} in Nanoseconds")
plt.bar(range(len(most_freq_runtimes)), most_freq_runtimes)
plt.show()
$ python3 /tmp/freq-comm-runtimes-bar.py
As a seconds example, the subsequent script generates a pie chart of all
accumulated tasks runtimes for 10 seconds of system recordings:
$ perf record -e sched:sched_switch -a -- sleep 10
$ perf script report tasks-analyzer --csv-summary task-summary.csv
$ cat << EOF > /tmp/accumulated-task-pie.py
import pandas as pd
from matplotlib.pyplot import pie, axis, show
df = pd.read_csv("task-summary.csv", sep=';')
sums = df.groupby(df["Comm"])["Accumulated"].sum()
axis("equal")
pie(sums, labels=sums.index);
show()
EOF
$ python3 /tmp/accumulated-task-pie.py
A variety of other visualizations are possible in matplotlib and other
environments. Of course, pandas, numpy and co. also allow easy
statistical analysis of the data!
Signed-off-by: Petar Gligoric <petar.gligoric@rohde-schwarz.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20221206154406.41941-3-petar.gligor@gmail.com
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Introduce a new 'perf script' to analyze task scheduling behavior.
During the task analysis, some data is always needed - which goes beyond
the simple time of switching on and off a task (process/thread). This
concerns for example the runtime of a process or the frequency with
which the process was called. This script serves to simplify this
recurring analyze process. It immediately provides the user with helpful
task characteristic information about the tasks runtimes.
Usage:
Recorded can be in two ways:
$ perf script record tasks-analyzer -- sleep 10
$ perf record -e sched:sched_switch -a -- sleep 10
The script can parse all perf.data files, most important: sched:sched_switch
events are mandatory, other events will be ignored.
Most simple report use case is to just call the script without arguments:
$ perf script report tasks-analyzer
Switched-In Switched-Out CPU PID TID Comm Runtime Time Out-In
15576.658891407 15576.659156086 4 2412 2428 gdbus 265 1949
15576.659111320 15576.659455410 0 2412 2412 gnome-shell 344 2267
15576.659491326 15576.659506173 2 74 74 kworker/2:1 15 13145
15576.659506173 15576.659825748 2 2858 2858 gnome-terminal- 320 63263
15576.659871270 15576.659902872 6 20932 20932 kworker/u16:0 32 2314582
15576.659909951 15576.659945501 3 27264 27264 sh 36 -1
15576.659853285 15576.659971052 7 27265 27265 perf 118 5050741
[...]
What is not shown here are the ASCII color sequences. For example, if
the task consists of only one thread, the TID is grayed out.
Runtime is the time the task was running on the CPU, Time Out-In is the
time between the process being scheduled *out* and scheduled back *in*.
So the last time span between two executions. If -1 is printed, then the
task simply ran the first time in the measurements - a Out-In delta
could not be calculated.
In addition to the chronological representation, there is a summary on
task level. This output can be additionally switched on via the
--summary option and provides information such as max, min & average
runtime per process. The maximum runtime is often important for
debugging. The call looks like this:
$ perf script report tasks-analyzer --summary
Summary
Task Information Runtime Information
PID TID Comm Runs Accumulated Mean Median Min Max Max At
14 14 ksoftirqd/0 13 334 26 15 9 127 15571.621211956
15 15 rcu_preempt 133 1778 13 13 2 33 15572.581176024
16 16 migration/0 3 49 16 13 12 24 15571.608915425
20 20 migration/1 3 34 11 13 8 13 15571.639101555
25 25 migration/2 3 32 11 12 9 12 15575.639239896
[...]
Besides these two options, there are a number of other options that change the
output and behavior. This can be queried via --help. Options worth mentioning include:
- filter-tasks - filter out unneeded tasks, --filter-task 1337,/sbin/init
- highlight-tasks - more pleasant focusing, --highlight-tasks 1:red,mutt:yellow
- extended-times - show combinations of elapsed times between schedule in/schedule out
- summary-extended - summary with additional information, like maximum delta time statistics
- rename-comms-by-tids - handy for inexpressive processnames like python, --rename 1337:my-python-app
- ms - show timestamps in milliseconds, nanoseconds is also possible (--ns)
- time-limit - limit the analyzer to a time range, --time-limit 15576.0:15576.1
Script is tested and prime time ready for python2 & python3:
- make PYTHON=python3 prefix=/usr/local install
- make PYTHON=python2 prefix=/usr/local install
Signed-off-by: Hagen Paul Pfeifer <hagen@jauu.net>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20221206154406.41941-2-petar.gligor@gmail.com
Signed-off-by: Petar Gligoric <petar.gligoric@rohde-schwarz.com>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
The -l/--lock-addr option is to implement per-lock-instance contention
stat using LOCK_AGGR_ADDR. It displays lock address and optionally
symbol name if exists.
$ sudo ./perf lock con -abl sleep 1
contended total wait max wait avg wait address symbol
1 36.28 us 36.28 us 36.28 us ffff92615d6448b8
9 10.91 us 1.84 us 1.21 us ffffffffbaed50c0 rcu_state
1 10.49 us 10.49 us 10.49 us ffff9262ac4f0c80
8 4.68 us 1.67 us 585 ns ffffffffbae07a40 jiffies_lock
3 3.03 us 1.45 us 1.01 us ffff9262277861e0
1 924 ns 924 ns 924 ns ffff926095ba9d20
1 436 ns 436 ns 436 ns ffff9260bfda4f60
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Blake Jones <blakejones@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <song@kernel.org>
Cc: bpf@vger.kernel.org
Link: https://lore.kernel.org/r/20221209190727.759804-4-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Remove the LIBTRACEEVENT_DYNAMIC and LIBTRACEFS_DYNAMIC make command
line variables.
If libtraceevent isn't installed or NO_LIBTRACEEVENT=1 is passed to the
build, don't compile in libtraceevent and libtracefs support.
This also disables CONFIG_TRACE that controls "perf trace".
CONFIG_LIBTRACEEVENT is used to control enablement in Build/Makefiles,
HAVE_LIBTRACEEVENT is used in C code.
Without HAVE_LIBTRACEEVENT tracepoints are disabled and as such the
commands kmem, kwork, lock, sched and timechart are removed. The
majority of commands continue to work including "perf test".
Committer notes:
Fixed up a tools/perf/util/Build reject and added:
#include <traceevent/event-parse.h>
to tools/perf/util/scripting-engines/trace-event-perl.c.
Committer testing:
$ rpm -qi libtraceevent-devel
Name : libtraceevent-devel
Version : 1.5.3
Release : 2.fc36
Architecture: x86_64
Install Date: Mon 25 Jul 2022 03:20:19 PM -03
Group : Unspecified
Size : 27728
License : LGPLv2+ and GPLv2+
Signature : RSA/SHA256, Fri 15 Apr 2022 02:11:58 PM -03, Key ID 999f7cbf38ab71f4
Source RPM : libtraceevent-1.5.3-2.fc36.src.rpm
Build Date : Fri 15 Apr 2022 10:57:01 AM -03
Build Host : buildvm-x86-05.iad2.fedoraproject.org
Packager : Fedora Project
Vendor : Fedora Project
URL : https://git.kernel.org/pub/scm/libs/libtrace/libtraceevent.git/
Bug URL : https://bugz.fedoraproject.org/libtraceevent
Summary : Development headers of libtraceevent
Description :
Development headers of libtraceevent-libs
$
Default build:
$ ldd ~/bin/perf | grep tracee
libtraceevent.so.1 => /lib64/libtraceevent.so.1 (0x00007f1dcaf8f000)
$
# perf trace -e sched:* --max-events 10
0.000 migration/0/17 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, dest_cpu: 1)
0.005 migration/0/17 sched:sched_wake_idle_without_ipi(cpu: 1)
0.011 migration/0/17 sched:sched_switch(prev_comm: "", prev_pid: 17 (migration/0), prev_state: 1, next_comm: "", next_prio: 120)
1.173 :0/0 sched:sched_wakeup(comm: "", pid: 3138 (gnome-terminal-), prio: 120)
1.180 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 3138 (gnome-terminal-), next_prio: 120)
0.156 migration/1/21 sched:sched_migrate_task(comm: "", pid: 1603763 (perf), prio: 120, orig_cpu: 1, dest_cpu: 2)
0.160 migration/1/21 sched:sched_wake_idle_without_ipi(cpu: 2)
0.166 migration/1/21 sched:sched_switch(prev_comm: "", prev_pid: 21 (migration/1), prev_state: 1, next_comm: "", next_prio: 120)
1.183 :0/0 sched:sched_wakeup(comm: "", pid: 1602985 (kworker/u16:0-f), prio: 120, target_cpu: 1)
1.186 :0/0 sched:sched_switch(prev_comm: "", prev_prio: 120, next_comm: "", next_pid: 1602985 (kworker/u16:0-f), next_prio: 120)
#
Had to tweak tools/perf/util/setup.py to make sure the python binding
shared object links with libtraceevent if -DHAVE_LIBTRACEEVENT is
present in CFLAGS.
Building with NO_LIBTRACEEVENT=1 uncovered some more build failures:
- Make building of data-convert-bt.c to CONFIG_LIBTRACEEVENT=y
- perf-$(CONFIG_LIBTRACEEVENT) += scripts/
- bpf_kwork.o needs also to be dependent on CONFIG_LIBTRACEEVENT=y
- The python binding needed some fixups and util/trace-event.c can't be
built and linked with the python binding shared object, so remove it
in tools/perf/util/setup.py and exclude it from the list of
dependencies in the python/perf.so Makefile.perf target.
Building without libtraceevent-devel installed uncovered more build
failures:
- The python binding tools/perf/util/python.c was assuming that
traceevent/parse-events.h was always available, which was the case
when we defaulted to using the in-kernel tools/lib/traceevent/ files,
now we need to enclose it under ifdef HAVE_LIBTRACEEVENT, just like
the other parts of it that deal with tracepoints.
- We have to ifdef the rules in the Build files with
CONFIG_LIBTRACEEVENT=y to build builtin-trace.c and
tools/perf/trace/beauty/ as we only ifdef setting CONFIG_TRACE=y when
setting NO_LIBTRACEEVENT=1 in the make command line, not when we don't
detect libtraceevent-devel installed in the system. Simplification here
to avoid these two ways of disabling builtin-trace.c and not having
CONFIG_TRACE=y when libtraceevent-devel isn't installed is the clean
way.
From Athira:
<quote>
tools/perf/arch/powerpc/util/Build
-perf-y += kvm-stat.o
+perf-$(CONFIG_LIBTRACEEVENT) += kvm-stat.o
</quote>
Then, ditto for arm64 and s390, detected by container cross build tests.
- s/390 uses test__checkevent_tracepoint() that is now only available if
HAVE_LIBTRACEEVENT is defined, enclose the callsite with ifder HAVE_LIBTRACEEVENT.
Also from Athira:
<quote>
With this change, I could successfully compile in these environment:
- Without libtraceevent-devel installed
- With libtraceevent-devel installed
- With “make NO_LIBTRACEEVENT=1”
</quote>
Then, finally rename CONFIG_TRACEEVENT to CONFIG_LIBTRACEEVENT for
consistency with other libraries detected in tools/perf/.
Signed-off-by: Ian Rogers <irogers@google.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: bpf@vger.kernel.org
Link: http://lore.kernel.org/lkml/20221205225940.3079667-3-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Currently the 'MetricExpr' json value is passed from the json
file to the pmu-events.c. This change introduces an expression
tree that is parsed into. The parsing is done largely by using
operator overloading and python's 'eval' function. Two advantages
in doing this are:
1) Broken metrics fail at compile time rather than relying on
`perf test` to detect. `perf test` remains relevant for checking
event encoding and actual metric use.
2) The conversion to a string from the tree can minimize the metric's
string size, for example, preferring 1e6 over 1000000, avoiding
multiplication by 1 and removing unnecessary whitespace. On x86
this reduces the string size by 2,930bytes (0.07%).
In future changes it would be possible to programmatically
generate the json expressions (a single line of text and so a
pain to write manually) for an architecture using the expression
tree. This could avoid copy-pasting metrics for all architecture
variants.
v4. Doesn't simplify "0*SLOTS" to 0, as the pattern is used to fix
Intel metrics with topdown events.
v3. Avoids generic types on standard types like set that aren't
supported until Python 3.9, fixing an issue with Python 3.6
reported-by John Garry. v3 also fixes minor pylint issues and adds
a call to Simplify on the read expression tree.
v2. Improvements to type information.
Committer notes:
Added one-line fixer from Ian, see first Link: tag below.
Signed-off-by: Ian Rogers <irogers@google.com>
Reviewed-by: John Garry <john.g.garry@oracle.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Sumanth Korikkar <sumanthk@linux.ibm.com>
Cc: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lore.kernel.org/r/CAP-5=fWa=zNK_ecpWGoGggHCQx7z-oW0eGMQf19Maywg0QK=4g@mail.gmail.com
Link: https://lore.kernel.org/r/20221207055908.1385448-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
In 'perf stat' with CSV output option, number of fields in metrics
output is not matching with number of fields in other event output
lines.
Sample output below after applying patch to fix printing os->prefix.
# ./perf stat -x, --per-socket -a -C 1 ls
S0,1,82.11,msec,cpu-clock,82111626,100.00,1.000,CPUs utilized
S0,1,2,,context-switches,82109314,100.00,24.358,/sec
------
====> S0,1,,,,,,,1.71,stalled cycles per insn
The above command line uses field separator as "," via "-x," option and
per-socket option displays socket value as first field. But here the
last line for "stalled cycles per insn" has more separators. Each csv
output line is expected to have 8 field separators (for the 9 fields),
where as last line has 9 "," in the result. Patch fixes this issue.
The counter stats are displayed by function
"perf_stat__print_shadow_stats" in code "util/stat-shadow.c". While
printing the stats info for "stalled cycles per insn", function
"new_line_csv" is used as new_line callback.
The fields printed in each line contains: "Socket_id,aggr
nr,Avg,unit,event_name,run,enable_percent,ratio,unit"
The metric output prints Socket_id, aggr nr, ratio and unit. It has to
skip through remaining five fields ie,
Avg,unit,event_name,run,enable_percent. The csv line callback uses
"os->nfields" to know the number of fields to skip to match with other
lines.
Currently it is set as:
os.nfields = 3 + aggr_fields[config->aggr_mode] + (counter->cgrp ? 1 : 0);
But in case of aggregation modes, csv_sep already gets printed along
with each field (Function "aggr_printout" in util/stat-display.c). So
aggr_fields can be removed from nfields. And fixed number of fields to
skip has to be "4". This is to skip fields for: "avg, unit, event name,
run, enable_percent"
This needs 4 csv separators. Patch removes aggr_fields
and uses 4 as fixed number of os->nfields to skip.
After the patch:
# ./perf stat -x, --per-socket -a -C 1 ls
S0,1,79.08,msec,cpu-clock,79085956,100.00,1.000,CPUs utilized
S0,1,7,,context-switches,79084176,100.00,88.514,/sec
------
====> S0,1,,,,,,0.81,stalled cycles per insn
Fixes: 92a61f6412 ("perf stat: Implement CSV metrics output")
Reported-by: Disha Goel <disgoel@linux.vnet.ibm.com>
Reviewed-by: Kajol Jain <kjain@linux.ibm.com>
Signed-off-by: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Disha Goel <disgoel@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nageswara R Sastry <rnsastry@linux.ibm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: linuxppc-dev@lists.ozlabs.org
Link: https://lore.kernel.org/r/20221205042852.83382-1-atrajeev@linux.vnet.ibm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
We need to check if we have a OS prefix, otherwise we stumble on a
metric segv that I'm now seeing in Arnaldo's tree:
$ gdb --args perf stat -M Backend true
...
Performance counter stats for 'true':
4,712,355 TOPDOWN.SLOTS # 17.3 % tma_core_bound
Program received signal SIGSEGV, Segmentation fault.
__strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
77 ../sysdeps/x86_64/multiarch/strlen-evex.S: No such file or directory.
(gdb) bt
#0 __strlen_evex () at ../sysdeps/x86_64/multiarch/strlen-evex.S:77
#1 0x00007ffff74749a5 in __GI__IO_fputs (str=0x0, fp=0x7ffff75f5680 <_IO_2_1_stderr_>)
#2 0x0000555555779f28 in do_new_line_std (config=0x555555e077c0 <stat_config>, os=0x7fffffffbf10) at util/stat-display.c:356
#3 0x000055555577a081 in print_metric_std (config=0x555555e077c0 <stat_config>, ctx=0x7fffffffbf10, color=0x0, fmt=0x5555558b77b5 "%8.1f", unit=0x7fffffffbb10 "% tma_memory_bound", val=13.165355724442199) at util/stat-display.c:380
#4 0x00005555557768b6 in generic_metric (config=0x555555e077c0 <stat_config>, metric_expr=0x55555593d5b7 "((CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) / (CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) + EXE_ACTIVITY.BOUND_ON_STORES))"..., metric_events=0x555555f334e0, metric_refs=0x555555ec81d0, name=0x555555f32e80 "TOPDOWN.SLOTS", metric_name=0x555555f26c80 "tma_memory_bound", metric_unit=0x55555593d5b1 "100%", runtime=0, map_idx=0, out=0x7fffffffbd90, st=0x555555e9e620 <rt_stat>) at util/stat-shadow.c:934
#5 0x0000555555778cac in perf_stat__print_shadow_stats (config=0x555555e077c0 <stat_config>, evsel=0x555555f289d0, avg=4712355, map_idx=0, out=0x7fffffffbd90, metric_events=0x555555e078e8 <stat_config+296>, st=0x555555e9e620 <rt_stat>) at util/stat-shadow.c:1329
#6 0x000055555577b6a0 in printout (config=0x555555e077c0 <stat_config>, os=0x7fffffffbf10, uval=4712355, run=325322, ena=325322, noise=4712355, map_idx=0) at util/stat-display.c:741
#7 0x000055555577bc74 in print_counter_aggrdata (config=0x555555e077c0 <stat_config>, counter=0x555555f289d0, s=0, os=0x7fffffffbf10) at util/stat-display.c:838
#8 0x000055555577c1d8 in print_counter (config=0x555555e077c0 <stat_config>, counter=0x555555f289d0, os=0x7fffffffbf10) at util/stat-display.c:957
#9 0x000055555577dba0 in evlist__print_counters (evlist=0x555555ec3610, config=0x555555e077c0 <stat_config>, _target=0x555555e01c80 <target>, ts=0x0, argc=1, argv=0x7fffffffe450) at util/stat-display.c:1413
#10 0x00005555555fc821 in print_counters (ts=0x0, argc=1, argv=0x7fffffffe450) at builtin-stat.c:1040
#11 0x000055555560091a in cmd_stat (argc=1, argv=0x7fffffffe450) at builtin-stat.c:2665
#12 0x00005555556b1eea in run_builtin (p=0x555555e11f70 <commands+336>, argc=4, argv=0x7fffffffe450) at perf.c:322
#13 0x00005555556b2181 in handle_internal_command (argc=4, argv=0x7fffffffe450) at perf.c:376
#14 0x00005555556b22d7 in run_argv (argcp=0x7fffffffe27c, argv=0x7fffffffe270) at perf.c:420
#15 0x00005555556b26ef in main (argc=4, argv=0x7fffffffe450) at perf.c:550
(gdb)
Fixes: f123b2d84e ("perf stat: Remove prefix argument in print_metric_headers()")
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Athira Jajeev <atrajeev@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: James Clark <james.clark@arm.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Link: http://lore.kernel.org/lkml/CAP-5=fUOjSM5HajU9TCD6prY39LbX4OQbkEbtKPPGRBPBN=_VQ@mail.gmail.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...