Let's disallow handing out PFN ranges with non-contiguous pages, so we can
remove the nth-page usage in __cma_alloc(), and so any callers don't have
to worry about that either when wanting to blindly iterate pages.
This is really only a problem in configs with SPARSEMEM but without
SPARSEMEM_VMEMMAP, and only when we would cross memory sections in some
cases.
Will this cause harm? Probably not, because it's mostly 32bit that does
not support SPARSEMEM_VMEMMAP. If this ever becomes a problem we could
look into allocating the memmap for the memory sections spanned by a
single CMA region in one go from memblock.
[david@redhat.com: we can have NUMMU configs with SPARSEMEM enabled]
Link: https://lkml.kernel.org/r/6ec933b1-b3f7-41c0-95d8-e518bb87375e@redhat.com
Link: https://lkml.kernel.org/r/20250901150359.867252-23-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
__cma_declare_contiguous_nid() tries to allocate memory in several ways:
* on systems with 64 bit physical address and enough memory it first
attempts to allocate memory just above 4GiB
* if that fails, on systems with HIGHMEM the next attempt is from high
memory
* and at last, if none of the previous attempts succeeded, or was even
tried because of incompatible configuration, the memory is allocated
anywhere within specified limits.
Move all the allocation logic to a helper function to make these steps more
obvious.
Link: https://lkml.kernel.org/r/20250703184711.3485940-4-rppt@kernel.org
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexandre Ghiti <alexghiti@rivosinc.com>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
migratetype is no longer overwritten during pageblock isolation,
start_isolate_page_range(), has_unmovable_pages(), and
set_migratetype_isolate() no longer need which migratetype to restore
during isolation failure.
For has_unmoable_pages(), it needs to know if the isolation is for CMA
allocation, so adding PB_ISOLATE_MODE_CMA_ALLOC provide the information.
At the same time change isolation flags to enum pb_isolate_mode
(PB_ISOLATE_MODE_MEM_OFFLINE, PB_ISOLATE_MODE_CMA_ALLOC,
PB_ISOLATE_MODE_OTHER). Remove REPORT_FAILURE and check
PB_ISOLATE_MODE_MEM_OFFLINE, since only PB_ISOLATE_MODE_MEM_OFFLINE
reports isolation failures.
alloc_contig_range() no longer needs migratetype. Replace it with a newly
defined acr_flags_t to tell if an allocation is for CMA. So does
__alloc_contig_migrate_range(). Add ACR_FLAGS_NONE (set to 0) to indicate
ordinary allocations.
Link: https://lkml.kernel.org/r/20250617021115.2331563-7-ziy@nvidia.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Brendan Jackman <jackmanb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Richard Chang <richardycc@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull MM updates from Andrew Morton:
- "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
creating a pte which addresses the first page in a folio and reduces
the amount of plumbing which architecture must implement to provide
this.
- "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
largely unrelated folio infrastructure changes which clean things up
and better prepare us for future work.
- "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
Price adds early-init code to prevent x86 from leaving physical
memory unused when physical address regions are not aligned to memory
block size.
- "mm/compaction: allow more aggressive proactive compaction" from
Michal Clapinski provides some tuning of the (sadly, hard-coded (more
sadly, not auto-tuned)) thresholds for our invokation of proactive
compaction. In a simple test case, the reduction of a guest VM's
memory consumption was dramatic.
- "Minor cleanups and improvements to swap freeing code" from Kemeng
Shi provides some code cleaups and a small efficiency improvement to
this part of our swap handling code.
- "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
adds the ability for a ptracer to modify syscalls arguments. At this
time we can alter only "system call information that are used by
strace system call tampering, namely, syscall number, syscall
arguments, and syscall return value.
This series should have been incorporated into mm.git's "non-MM"
branch, but I goofed.
- "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
against /proc/pid/pagemap. This permits CRIU to more efficiently get
at the info about guard regions.
- "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
implements that fix. No runtime effect is expected because
validate_page_before_insert() happens to fix up this error.
- "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
Hildenbrand basically brings uprobe text poking into the current
decade. Remove a bunch of hand-rolled implementation in favor of
using more current facilities.
- "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
Khandual provides enhancements and generalizations to the pte dumping
code. This might be needed when 128-bit Page Table Descriptors are
enabled for ARM.
- "Always call constructor for kernel page tables" from Kevin Brodsky
ensures that the ctor/dtor is always called for kernel pgtables, as
it already is for user pgtables.
This permits the addition of more functionality such as "insert hooks
to protect page tables". This change does result in various
architectures performing unnecesary work, but this is fixed up where
it is anticipated to occur.
- "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
Ryhl adds plumbing to permit Rust access to core MM structures.
- "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
Stoakes takes advantage of some VMA merging opportunities which we've
been missing for 15 years.
- "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
SeongJae Park optimizes process_madvise()'s TLB flushing.
Instead of flushing each address range in the provided iovec, we
batch the flushing across all the iovec entries. The syscall's cost
was approximately halved with a microbenchmark which was designed to
load this particular operation.
- "Track node vacancy to reduce worst case allocation counts" from
Sidhartha Kumar makes the maple tree smarter about its node
preallocation.
stress-ng mmap performance increased by single-digit percentages and
the amount of unnecessarily preallocated memory was dramaticelly
reduced.
- "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
a few unnecessary things which Baoquan noted when reading the code.
- ""Enhance sysfs handling for memory hotplug in weighted interleave"
from Rakie Kim "enhances the weighted interleave policy in the memory
management subsystem by improving sysfs handling, fixing memory
leaks, and introducing dynamic sysfs updates for memory hotplug
support". Fixes things on error paths which we are unlikely to hit.
- "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
from SeongJae Park introduces new DAMOS quota goal metrics which
eliminate the manual tuning which is required when utilizing DAMON
for memory tiering.
- "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
provides cleanups and small efficiency improvements which Baoquan
found via code inspection.
- "vmscan: enforce mems_effective during demotion" from Gregory Price
changes reclaim to respect cpuset.mems_effective during demotion when
possible. because presently, reclaim explicitly ignores
cpuset.mems_effective when demoting, which may cause the cpuset
settings to violated.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently.
- "Clean up split_huge_pmd_locked() and remove unnecessary folio
pointers" from Gavin Guo provides minor cleanups and efficiency gains
in in the huge page splitting and migrating code.
- "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
for `struct mem_cgroup', yielding improved memory utilization.
- "add max arg to swappiness in memory.reclaim and lru_gen" from
Zhongkun He adds a new "max" argument to the "swappiness=" argument
for memory.reclaim MGLRU's lru_gen.
This directs proactive reclaim to reclaim from only anon folios
rather than file-backed folios.
- "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
first step on the path to permitting the kernel to maintain existing
VMs while replacing the host kernel via file-based kexec. At this
time only memblock's reserve_mem is preserved.
- "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
and uses a smarter way of looping over a pfn range. By skipping
ranges of invalid pfns.
- "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
when a task is pinned a single NUMA mode.
Dramatic performance benefits were seen in some real world cases.
- "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
Garg addresses a warning which occurs during memory compaction when
using JFS.
- "move all VMA allocation, freeing and duplication logic to mm" from
Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
appropriate mm/vma.c.
- "mm, swap: clean up swap cache mapping helper" from Kairui Song
provides code consolidation and cleanups related to the folio_index()
function.
- "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.
- "memcg: Fix test_memcg_min/low test failures" from Waiman Long
addresses some bogus failures which are being reported by the
test_memcontrol selftest.
- "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
Stoakes commences the deprecation of file_operations.mmap() in favor
of the new file_operations.mmap_prepare().
The latter is more restrictive and prevents drivers from messing with
things in ways which, amongst other problems, may defeat VMA merging.
- "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
the per-cpu memcg charge cache from the objcg's one.
This is a step along the way to making memcg and objcg charging
NMI-safe, which is a BPF requirement.
- "mm/damon: minor fixups and improvements for code, tests, and
documents" from SeongJae Park is yet another batch of miscellaneous
DAMON changes. Fix and improve minor problems in code, tests and
documents.
- "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
stats to be irq safe. Another step along the way to making memcg
charging and stats updates NMI-safe, a BPF requirement.
- "Let unmap_hugepage_range() and several related functions take folio
instead of page" from Fan Ni provides folio conversions in the
hugetlb code.
* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
mm: pcp: increase pcp->free_count threshold to trigger free_high
mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
mm/hugetlb: pass folio instead of page to unmap_ref_private()
memcg: objcg stock trylock without irq disabling
memcg: no stock lock for cpu hot-unplug
memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
memcg: make count_memcg_events re-entrant safe against irqs
memcg: make mod_memcg_state re-entrant safe against irqs
memcg: move preempt disable to callers of memcg_rstat_updated
memcg: memcg_rstat_updated re-entrant safe against irqs
mm: khugepaged: decouple SHMEM and file folios' collapse
selftests/eventfd: correct test name and improve messages
alloc_tag: check mem_profiling_support in alloc_tag_init
Docs/damon: update titles and brief introductions to explain DAMOS
selftests/damon/_damon_sysfs: read tried regions directories in order
mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
...
Pratyush Yadav reports the following crash:
------------[ cut here ]------------
kernel BUG at arch/x86/mm/physaddr.c:23!
ception 0x06 IP 10:ffffffff812ebbf8 error 0 cr2 0xffff88903ffff000
CPU: 0 UID: 0 PID: 0 Comm: swapper Not tainted 6.15.0-rc6+ #231 PREEMPT(undef)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
RIP: 0010:__phys_addr+0x58/0x60
Code: 01 48 89 c2 48 d3 ea 48 85 d2 75 05 e9 91 52 cf 00 0f 0b 48 3d ff ff ff 1f 77 0f 48 8b 05 20 54 55 01 48 01 d0 e9 78 52 cf 00 <0f> 0b 90 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90
RSP: 0000:ffffffff82803dd8 EFLAGS: 00010006 ORIG_RAX: 0000000000000000
RAX: 000000007fffffff RBX: 00000000ffffffff RCX: 0000000000000000
RDX: 000000007fffffff RSI: 0000000280000000 RDI: ffffffffffffffff
RBP: ffffffff82803e68 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff83153180 R11: ffffffff82803e48 R12: ffffffff83c9aed0
R13: 0000000000000000 R14: 0000001040000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:0000000000000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffff88903ffff000 CR3: 0000000002838000 CR4: 00000000000000b0
Call Trace:
<TASK>
? __cma_declare_contiguous_nid+0x6e/0x340
? cma_declare_contiguous_nid+0x33/0x70
? dma_contiguous_reserve_area+0x2f/0x70
? setup_arch+0x6f1/0x870
? start_kernel+0x52/0x4b0
? x86_64_start_reservations+0x29/0x30
? x86_64_start_kernel+0x7c/0x80
? common_startup_64+0x13e/0x141
The reason is that __cma_declare_contiguous_nid() does:
highmem_start = __pa(high_memory - 1) + 1;
If dma_contiguous_reserve_area() (or any other CMA declaration) is
called before free_area_init(), high_memory is uninitialized. Without
CONFIG_DEBUG_VIRTUAL, it will likely work but use the wrong value for
highmem_start.
The issue occurs because commit e120d1bc12 ("arch, mm: set high_memory
in free_area_init()") moved initialization of high_memory after the call
to dma_contiguous_reserve() -> __cma_declare_contiguous_nid() on several
architectures.
In the case CONFIG_HIGHMEM is enabled, some architectures that actually
support HIGHMEM (arm, powerpc and x86) have initialization of high_memory
before a possible call to __cma_declare_contiguous_nid() and some
initialized high_memory late anyway (arc, csky, microblase, mips, sparc,
xtensa) even before the commit e120d1bc12 so they are fine with using
uninitialized value of high_memory.
And in the case CONFIG_HIGHMEM is disabled high_memory essentially becomes
the first address after memory end, so instead of relying on high_memory
to calculate highmem_start use memblock_end_of_DRAM() and eliminate the
dependency of CMA area creation on high_memory in majority of
configurations.
Link: https://lkml.kernel.org/r/20250519171805.1288393-1-rppt@kernel.org
Fixes: e120d1bc12 ("arch, mm: set high_memory in free_area_init()")
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reported-by: Pratyush Yadav <ptyadav@amazon.de>
Tested-by: Pratyush Yadav <ptyadav@amazon.de>
Tested-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For different CMAs, concurrent allocation of CMA memory ideally should not
require synchronization using locks. Currently, a global cma_mutex lock
is employed to synchronize all CMA allocations, which can impact the
performance of concurrent allocations across different CMAs.
To test the performance impact, follow these steps:
1. Boot the kernel with the command line argument hugetlb_cma=30G to
allocate a 30GB CMA area specifically for huge page allocations. (note:
on my machine, which has 3 nodes, each node is initialized with 10G of
CMA)
2. Use the dd command with parameters if=/dev/zero of=/dev/shm/file bs=1G
count=30 to fully utilize the CMA area by writing zeroes to a file in
/dev/shm.
3. Open three terminals and execute the following commands simultaneously:
(Note: Each of these commands attempts to allocate 10GB [2621440 * 4KB
pages] of CMA memory.)
On Terminal 1: time echo 2621440 > /sys/kernel/debug/cma/hugetlb1/alloc
On Terminal 2: time echo 2621440 > /sys/kernel/debug/cma/hugetlb2/alloc
On Terminal 3: time echo 2621440 > /sys/kernel/debug/cma/hugetlb3/alloc
We attempt to allocate pages through the CMA debug interface and use the
time command to measure the duration of each allocation.
Performance comparison:
Without this patch With this patch
Terminal1 ~7s ~7s
Terminal2 ~14s ~8s
Terminal3 ~21s ~7s
To solve problem above, we could use per-CMA locks to improve concurrent
allocation performance. This would allow each CMA to be managed
independently, reducing the need for a global lock and thus improving
scalability and performance.
Link: https://lkml.kernel.org/r/1739152566-744-1-git-send-email-yangge1116@126.com
Signed-off-by: Ge Yang <yangge1116@126.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Aisheng Dong <aisheng.dong@nxp.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "hugetlb/CMA improvements for large systems", v5.
On large systems, we observed some issues with hugetlb and CMA:
1) When specifying a large number of hugetlb boot pages (hugepages= on
the commandline), the kernel may run out of memory before it even gets
to HVO. For example, if you have a 3072G system, and want to use 3024
1G hugetlb pages for VMs, that should leave you plenty of space for the
hypervisor, provided you have the hugetlb vmemmap optimization (HVO)
enabled. However, since the vmemmap pages are always allocated first,
and then later in boot freed, you will actually run yourself out of
memory before you can do HVO. This means not getting all the hugetlb
pages you want, and worse, failure to boot if there is an allocation
failure in the system from which it can't recover.
2) There is a system setup where you might want to use hugetlb_cma with
a large value (say, again, 3024 out of 3072G like above), and then
lower that if system usage allows it, to make room for non-hugetlb
processes. For this, a variation of the problem above applies: the
kernel runs out of unmovable space to allocate from before you finish
boot, since your CMA area takes up all the space.
3) CMA wants to use one big contiguous area for allocations. Which
fails if you have the aforementioned 3T system with a gap in the middle
of physical memory (like the < 40bits BIOS DMA area seen on some AMD
systems). You then won't be able to set up a CMA area for one of the
NUMA nodes, leading to loss of half of your hugetlb CMA area.
4) Under the scenario mentioned in 2), when trying to grow the number
of hugetlb pages after dropping it for a while, new CMA allocations may
fail occasionally. This is not unexpected, some transient references
on pages may prevent cma_alloc from succeeding under memory pressure.
However, the hugetlb code then falls back to a normal contiguous alloc,
which may end up succeeding. This is not always desired behavior. If
you have a large CMA area, then the kernel has a restricted amount of
memory it can do unmovable allocations from (a well known issue). A
normal contiguous alloc may eat further in to this space.
To resolve these issues, do the following:
* Add hooks to the section init code to do custom initialization of
memmap pages. Hugetlb bootmem (memblock) allocated pages can then be
pre-HVOed. This avoids allocating a large number of vmemmap pages early
in boot, only to have them be freed again later, and also avoids running
out of memory as described under 1). Using these hooks for hugetlb is
optional. It requires moving hugetlb bootmem allocation to an earlier
spot by the architecture. This has been enabled on x86.
* hugetlb_cma doesn't care about the CMA area it uses being one large
contiguous range. Multiple smaller ranges are fine. The only
requirements are that the areas should be on one NUMA node, and
individual gigantic pages should be allocatable from them. So,
implement multi-range support for CMA, avoiding issue 3).
* Introduce a hugetlb_cma_only option on the commandline. This only
allows allocations from CMA for gigantic pages, if hugetlb_cma= is also
specified.
* With hugetlb_cma_only active, it also makes sense to be able to
pre-allocate gigantic hugetlb pages at boot time from the CMA area(s).
Add a rudimentary early CMA allocation interface, that just grabs a
piece of memblock-allocated space from the CMA area, which gets marked
as allocated in the CMA bitmap when the CMA area is initialized. With
this, hugepages= can be supported with hugetlb_cma=, making scenario 2)
work.
Additionally, fix some minor bugs, with one worth mentioning: since
hugetlb gigantic bootmem pages are allocated by memblock, they may span
multiple zones, as memblock doesn't (and mostly can't) know about zones.
This can cause problems. A hugetlb page spanning multiple zones is bad,
and it's worse with HVO, when the de-HVO step effectively sneakily
re-assigns pages to a different zone than originally configured, since the
tail pages all inherit the zone from the first 60 tail pages. This
condition is not common, but can be easily reproduced using ZONE_MOVABLE.
To fix this, add checks to see if gigantic bootmem pages intersect with
multiple zones, and do not use them if they do, giving them back to the
page allocator instead.
The first patch is kind of along for the ride, except that maintaining an
available_count for a CMA area is convenient for the multiple range
support.
This patch (of 27):
In addition to the number of allocations and releases, system management
software may like to be aware of the size of CMA areas, and how many pages
are available in it. This information is currently not available, so
export it in total_page and available_pages, respectively.
The name 'available_pages' was picked over 'free_pages' because 'free'
implies that the pages are unused. But they might not be, they just
haven't been used by cma_alloc
The number of available pages is tracked regardless of CONFIG_CMA_SYSFS,
allowing for a few minor shortcuts in the code, avoiding bitmap
operations.
Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is a unnecessary return statement at the end of void function
cma_activate_area. This can be dropped.
While at it, also fix another warning related to unsigned.
These are reported by checkpatch as well.
WARNING: Prefer 'unsigned int' to bare use of 'unsigned'
+unsigned cma_area_count;
WARNING: void function return statements are not generally useful
+ return;
+}
Link: https://lkml.kernel.org/r/20240927181637.19941-1-quic_pintu@quicinc.com
Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com>
Cc: Pintu Agarwal <pintu.ping@gmail.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds the following new sysfs file tracking the number of successfully
released pages from a given CMA heap area. This file will be available
via CONFIG_CMA_SYSFS and help in determining active CMA pages available on
the CMA heap area. This adds a new 'nr_pages_released' (CONFIG_CMA_SYSFS)
into 'struct cma' which gets updated during cma_release().
/sys/kernel/mm/cma/<cma-heap-area>/release_pages_success
After this change, an user will be able to find active CMA pages available
in a given CMA heap area via the following method.
Active pages = alloc_pages_success - release_pages_success
That's valuable information for both software designers, and system admins
as it allows them to tune the number of CMA pages available in the system.
This increases user visibility for allocated CMA area and its
utilization.
Link: https://lkml.kernel.org/r/20240206045731.472759-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The current placement of trace_cma_alloc_start/finish misses the fail
cases: !cma || !cma->count || !cma->bitmap.
trace_cma_alloc_finish is also not emitted for the failure case
where bitmap_count > bitmap_maxno.
Fix these missed cases by moving the start event before the failure
checks and moving the finish event to the out label.
Link: https://lkml.kernel.org/r/20240110012234.3793639-1-kaleshsingh@google.com
Fixes: 7bc1aec5e2 ("mm: cma: add trace events for CMA alloc perf testing")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Use nth_page() in place of direct struct page manipulation",
v3.
On SPARSEMEM without VMEMMAP, struct page is not guaranteed to be
contiguous, since each memory section's memmap might be allocated
independently. hugetlb pages can go beyond a memory section size, thus
direct struct page manipulation on hugetlb pages/subpages might give wrong
struct page. Kernel provides nth_page() to do the manipulation properly.
Use that whenever code can see hugetlb pages.
This patch (of 5):
When dealing with hugetlb pages, manipulating struct page pointers
directly can get to wrong struct page, since struct page is not guaranteed
to be contiguous on SPARSEMEM without VMEMMAP. Use nth_page() to handle
it properly.
Without the fix, page_kasan_tag_reset() could reset wrong page tags,
causing a wrong kasan result. No related bug is reported. The fix
comes from code inspection.
Link: https://lkml.kernel.org/r/20230913201248.452081-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20230913201248.452081-2-zi.yan@sent.com
Fixes: 2813b9c029 ("kasan, mm, arm64: tag non slab memory allocated via pagealloc")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pull dma-maping updates from Christoph Hellwig:
- allow dynamic sizing of the swiotlb buffer, to cater for secure
virtualization workloads that require all I/O to be bounce buffered
(Petr Tesarik)
- move a declaration to a header (Arnd Bergmann)
- check for memory region overlap in dma-contiguous (Binglei Wang)
- remove the somewhat dangerous runtime swiotlb-xen enablement and
unexport is_swiotlb_active (Christoph Hellwig, Juergen Gross)
- per-node CMA improvements (Yajun Deng)
* tag 'dma-mapping-6.6-2023-08-29' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: optimize get_max_slots()
swiotlb: move slot allocation explanation comment where it belongs
swiotlb: search the software IO TLB only if the device makes use of it
swiotlb: allocate a new memory pool when existing pools are full
swiotlb: determine potential physical address limit
swiotlb: if swiotlb is full, fall back to a transient memory pool
swiotlb: add a flag whether SWIOTLB is allowed to grow
swiotlb: separate memory pool data from other allocator data
swiotlb: add documentation and rename swiotlb_do_find_slots()
swiotlb: make io_tlb_default_mem local to swiotlb.c
swiotlb: bail out of swiotlb_init_late() if swiotlb is already allocated
dma-contiguous: check for memory region overlap
dma-contiguous: support numa CMA for specified node
dma-contiguous: support per-numa CMA for all architectures
dma-mapping: move arch_dma_set_mask() declaration to header
swiotlb: unexport is_swiotlb_active
x86: always initialize xen-swiotlb when xen-pcifront is enabling
xen/pci: add flag for PCI passthrough being possible
The kernel parameter 'cma_pernuma=' only supports reserving the same
size of CMA area for each node. We need to reserve different sizes of
CMA area for specified nodes if these devices belong to different nodes.
Adding another kernel parameter 'numa_cma=' to reserve CMA area for
the specified node. If we want to use one of these parameters, we need to
enable DMA_NUMA_CMA.
At the same time, print the node id in cma_declare_contiguous_nid() if
CONFIG_NUMA is enabled.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Suppose memblock_alloc_range_nid() with highmem_start succeeds when
cma_declare_contiguous_nid is called with !fixed on a 32-bit system with
PHYS_ADDR_T_64BIT enabled with memblock.bottom_up == false.
But the next trial to memblock_alloc_range_nid() to allocate in [SIZE_4G,
limits) nullifies former successfully allocated addr and it retries
memblock_alloc_ragne_nid().
In this situation, the first successfully allocated address area is lost.
Change the order of allocation (SIZE_4G, high_memory and base) and check
whether the allocated succeeded to prevent potential memory loss.
Link: https://lkml.kernel.org/r/20230118080523.44522-1-ppbuk5246@gmail.com
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The result of the allocation attempt is not printed in
trace_cma_alloc_finish, but it's important to do it so we can set filters
to catch specific errors on allocation or to trigger some operations on
specific errors.
We have printed the result in log, but the log is conditional and could
not be filtered by tracing events.
It introduces little overhead to print this result. The result of
allocation is named `errorno' in the trace.
Link: https://lkml.kernel.org/r/20221208142130.1501195-1-haowenchao@huawei.com
Signed-off-by: Wenchao Hao <haowenchao@huawei.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit a4efc174b3 which introduced a regression issue
that when there're multiple processes allocating dma memory in parallel by
calling dma_alloc_coherent(), it may fail sometimes as follows:
Error log:
cma: cma_alloc: linux,cma: alloc failed, req-size: 148 pages, ret: -16
cma: number of available pages:
3@125+20@172+12@236+4@380+32@736+17@2287+23@2473+20@36076+99@40477+108@40852+44@41108+20@41196+108@41364+108@41620+
108@42900+108@43156+483@44061+1763@45341+1440@47712+20@49324+20@49388+5076@49452+2304@55040+35@58141+20@58220+20@58284+
7188@58348+84@66220+7276@66452+227@74525+6371@75549=> 33161 free of 81920 total pages
When issue happened, we saw there were still 33161 pages (129M) free CMA
memory and a lot available free slots for 148 pages in CMA bitmap that we
want to allocate.
When dumping memory info, we found that there was also ~342M normal
memory, but only 1352K CMA memory left in buddy system while a lot of
pageblocks were isolated.
Memory info log:
Normal free:351096kB min:30000kB low:37500kB high:45000kB reserved_highatomic:0KB
active_anon:98060kB inactive_anon:98948kB active_file:60864kB inactive_file:31776kB
unevictable:0kB writepending:0kB present:1048576kB managed:1018328kB mlocked:0kB
bounce:0kB free_pcp:220kB local_pcp:192kB free_cma:1352kB lowmem_reserve[]: 0 0 0
Normal: 78*4kB (UECI) 1772*8kB (UMECI) 1335*16kB (UMECI) 360*32kB (UMECI) 65*64kB (UMCI)
36*128kB (UMECI) 16*256kB (UMCI) 6*512kB (EI) 8*1024kB (UEI) 4*2048kB (MI) 8*4096kB (EI)
8*8192kB (UI) 3*16384kB (EI) 8*32768kB (M) = 489288kB
The root cause of this issue is that since commit a4efc174b3 ("mm/cma.c:
remove redundant cma_mutex lock"), CMA supports concurrent memory
allocation. It's possible that the memory range process A trying to alloc
has already been isolated by the allocation of process B during memory
migration.
The problem here is that the memory range isolated during one allocation
by start_isolate_page_range() could be much bigger than the real size we
want to alloc due to the range is aligned to MAX_ORDER_NR_PAGES.
Taking an ARMv7 platform with 1G memory as an example, when
MAX_ORDER_NR_PAGES is big (e.g. 32M with max_order 14) and CMA memory is
relatively small (e.g. 128M), there're only 4 MAX_ORDER slot, then it's
very easy that all CMA memory may have already been isolated by other
processes when one trying to allocate memory using dma_alloc_coherent().
Since current CMA code will only scan one time of whole available CMA
memory, then dma_alloc_coherent() may easy fail due to contention with
other processes.
This patch simply falls back to the original method that using cma_mutex
to make alloc_contig_range() run sequentially to avoid the issue.
Link: https://lkml.kernel.org/r/20220509094551.3596244-1-aisheng.dong@nxp.com
Link: https://lore.kernel.org/all/20220315144521.3810298-2-aisheng.dong@nxp.com/
Fixes: a4efc174b3 ("mm/cma.c: remove redundant cma_mutex lock")
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [5.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: enforce pageblock_order < MAX_ORDER".
Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.
For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.
We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.
Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.
Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.
This patch (of 2):
Let's enforce pageblock_order < MAX_ORDER and simplify.
Especially patch #1 can be regarded a cleanup before:
[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
alignment. [2]
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>