mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-12-27 10:01:39 -05:00
509d3f45847627f4c5cdce004c3ec79262b5239c
256 Commits
| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|
|
509d3f4584 |
Merge tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- "panic: sys_info: Refactor and fix a potential issue" (Andy Shevchenko)
fixes a build issue and does some cleanup in ib/sys_info.c
- "Implement mul_u64_u64_div_u64_roundup()" (David Laight)
enhances the 64-bit math code on behalf of a PWM driver and beefs up
the test module for these library functions
- "scripts/gdb/symbols: make BPF debug info available to GDB" (Ilya Leoshkevich)
makes BPF symbol names, sizes, and line numbers available to the GDB
debugger
- "Enable hung_task and lockup cases to dump system info on demand" (Feng Tang)
adds a sysctl which can be used to cause additional info dumping when
the hung-task and lockup detectors fire
- "lib/base64: add generic encoder/decoder, migrate users" (Kuan-Wei Chiu)
adds a general base64 encoder/decoder to lib/ and migrates several
users away from their private implementations
- "rbree: inline rb_first() and rb_last()" (Eric Dumazet)
makes TCP a little faster
- "liveupdate: Rework KHO for in-kernel users" (Pasha Tatashin)
reworks the KEXEC Handover interfaces in preparation for Live Update
Orchestrator (LUO), and possibly for other future clients
- "kho: simplify state machine and enable dynamic updates" (Pasha Tatashin)
increases the flexibility of KEXEC Handover. Also preparation for LUO
- "Live Update Orchestrator" (Pasha Tatashin)
is a major new feature targeted at cloud environments. Quoting the
cover letter:
This series introduces the Live Update Orchestrator, a kernel
subsystem designed to facilitate live kernel updates using a
kexec-based reboot. This capability is critical for cloud
environments, allowing hypervisors to be updated with minimal
downtime for running virtual machines. LUO achieves this by
preserving the state of selected resources, such as memory,
devices and their dependencies, across the kernel transition.
As a key feature, this series includes support for preserving
memfd file descriptors, which allows critical in-memory data, such
as guest RAM or any other large memory region, to be maintained in
RAM across the kexec reboot.
Mike Rappaport merits a mention here, for his extensive review and
testing work.
- "kexec: reorganize kexec and kdump sysfs" (Sourabh Jain)
moves the kexec and kdump sysfs entries from /sys/kernel/ to
/sys/kernel/kexec/ and adds back-compatibility symlinks which can
hopefully be removed one day
- "kho: fixes for vmalloc restoration" (Mike Rapoport)
fixes a BUG which was being hit during KHO restoration of vmalloc()
regions
* tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (139 commits)
calibrate: update header inclusion
Reinstate "resource: avoid unnecessary lookups in find_next_iomem_res()"
vmcoreinfo: track and log recoverable hardware errors
kho: fix restoring of contiguous ranges of order-0 pages
kho: kho_restore_vmalloc: fix initialization of pages array
MAINTAINERS: TPM DEVICE DRIVER: update the W-tag
init: replace simple_strtoul with kstrtoul to improve lpj_setup
KHO: fix boot failure due to kmemleak access to non-PRESENT pages
Documentation/ABI: new kexec and kdump sysfs interface
Documentation/ABI: mark old kexec sysfs deprecated
kexec: move sysfs entries to /sys/kernel/kexec
test_kho: always print restore status
kho: free chunks using free_page() instead of kfree()
selftests/liveupdate: add kexec test for multiple and empty sessions
selftests/liveupdate: add simple kexec-based selftest for LUO
selftests/liveupdate: add userspace API selftests
docs: add documentation for memfd preservation via LUO
mm: memfd_luo: allow preserving memfd
liveupdate: luo_file: add private argument to store runtime state
mm: shmem: export some functions to internal.h
...
|
||
|
|
ac20755937 |
Merge tag 'sysctl-6.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados: - Move jiffies converters out of kernel/sysctl.c Move the jiffies converters into kernel/time/jiffies.c and replace the pipe-max-size proc_handler converter with a macro based version. This is all part of the effort to relocate non-sysctl logic out of kernel/sysctl.c into more relevant subsystems. No functional changes. - Generalize proc handler converter creation Remove duplicated sysctl converter logic by consolidating it in macros. These are used inside sysctl core as well as in pipe.c and jiffies.c. Converter kernel and user space pointer args are now automatically const qualified for the convenience of the caller. No functional changes. - Miscellaneous Fix kernel-doc format warnings, remove unnecessary __user qualifiers, and move the nmi_watchdog sysctl into .rodata. - Testing This series was run through sysctl selftests/kunit test suite in x86_64. It went into linux-next after rc2, giving it a good 4/5 weeks of testing. * tag 'sysctl-6.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl: (21 commits) sysctl: Wrap do_proc_douintvec with the public function proc_douintvec_conv sysctl: Create pipe-max-size converter using sysctl UINT macros sysctl: Move proc_doulongvec_ms_jiffies_minmax to kernel/time/jiffies.c sysctl: Move jiffies converters to kernel/time/jiffies.c sysctl: Move UINT converter macros to sysctl header sysctl: Move INT converter macros to sysctl header sysctl: Allow custom converters from outside sysctl sysctl: remove __user qualifier from stack_erasing_sysctl buffer argument sysctl: Create macro for user-to-kernel uint converter sysctl: Add optional range checking to SYSCTL_UINT_CONV_CUSTOM sysctl: Create unsigned int converter using new macro sysctl: Add optional range checking to SYSCTL_INT_CONV_CUSTOM sysctl: Create integer converters with one macro sysctl: Create converter functions with two new macros sysctl: Discriminate between kernel and user converter params sysctl: Indicate the direction of operation with macro names sysctl: Remove superfluous __do_proc_* indirection sysctl: Remove superfluous tbl_data param from "dovec" functions sysctl: Replace void pointer with const pointer to ctl_table sysctl: fix kernel-doc format warning ... |
||
|
|
a9af76a787 |
watchdog: add sys_info sysctls to dump sys info on system lockup
When soft/hard lockup happens, developers may need different kinds of system information (call-stacks, memory info, locks, etc.) to help debugging. Add 'softlockup_sys_info' and 'hardlockup_sys_info' sysctl knobs to take human readable string like "tasks,mem,timers,locks,ftrace,...", and when system lockup happens, all requested information will be printed out. (refer kernel/sys_info.c for more details). Link: https://lkml.kernel.org/r/20251113111039.22701-4-feng.tang@linux.alibaba.com Signed-off-by: Feng Tang <feng.tang@linux.alibaba.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
1dcb98bbb7 |
sched_ext: Pass locked CPU parameter to scx_hardlockup() and add docs
With the buddy lockup detector, smp_processor_id() returns the detecting CPU, not the locked CPU, making scx_hardlockup()'s printouts confusing. Pass the locked CPU number from watchdog_hardlockup_check() as a parameter instead. Also add kerneldoc comments to handle_lockup(), scx_hardlockup(), and scx_rcu_cpu_stall() documenting their return value semantics. Suggested-by: Doug Anderson <dianders@chromium.org> Reviewed-by: Douglas Anderson <dianders@chromium.org> Acked-by: Andrea Righi <arighi@nvidia.com> Reviewed-by: Emil Tsalapatis <emil@etsalapatis.com> Signed-off-by: Tejun Heo <tj@kernel.org> |
||
|
|
582f700e1b |
sched_ext: Hook up hardlockup detector
A poorly behaving BPF scheduler can trigger hard lockup. For example, on a
large system with many tasks pinned to different subsets of CPUs, if the BPF
scheduler puts all tasks in a single DSQ and lets all CPUs at it, the DSQ lock
can be contended to the point where hardlockup triggers. Unfortunately,
hardlockup can be the first signal out of such situations, thus requiring
hardlockup handling.
Hook scx_hardlockup() into the hardlockup detector to try kicking out the
current scheduler in an attempt to recover the system to a good state. The
handling strategy can delay watchdog taking its own action by one polling
period; however, given that the only remediation for hardlockup is crash, this
is likely an acceptable trade-off.
v2: Add missing dummy scx_hardlockup() definition for
!CONFIG_SCHED_CLASS_EXT (kernel test bot).
Reported-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Cc: Emil Tsalapatis <etsal@meta.com>
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
||
|
|
18c4e02884 |
watchdog: move nmi_watchdog sysctl into .rodata
Move nmi_watchdog into the watchdog_sysctls array to prevent it from
unnecessary modification. This move effectively moves it inside the
.rodata section.
Initially moved out into its own non-const array in commit
|
||
|
|
3d5f4f15b7 |
watchdog: skip checks when panic is in progress
This issue was found when an EFI pstore was configured for kdump logging
with the NMI hard lockup detector enabled. The efi-pstore write operation
was slow, and with a large number of logs, the pstore dump callback within
kmsg_dump() took a long time.
This delay triggered the NMI watchdog, leading to a nested panic. The
call flow demonstrates how the secondary panic caused an
emergency_restart() to be triggered before the initial pstore operation
could finish, leading to a failure to dump the logs:
real panic() {
kmsg_dump() {
...
pstore_dump() {
start_dump();
... // long time operation triggers NMI watchdog
nmi panic() {
...
emergency_restart(); // pstore unfinished
}
...
finish_dump(); // never reached
}
}
}
Both watchdog_buddy_check_hardlockup() and watchdog_overflow_callback()
may trigger during a panic. This can lead to recursive panic handling.
Add panic_in_progress() checks so watchdog activity is skipped once a
panic has begun.
This prevents recursive panic and keeps the panic path more reliable.
Link: https://lkml.kernel.org/r/20250825022947.1596226-10-wangjinchao600@gmail.com
Signed-off-by: Jinchao Wang <wangjinchao600@gmail.com>
Reviewed-by: Yury Norov (NVIDIA) <yury.norov@gmail.com>
Cc: Anna Schumaker <anna.schumaker@oracle.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Young <dyoung@redhat.com>
Cc: Doug Anderson <dianders@chromium.org>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joanthan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joel Granados <joel.granados@kernel.org>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Kees Cook <kees@kernel.org>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Luo Gengkun <luogengkun@huaweicloud.com>
Cc: Max Kellermann <max.kellermann@ionos.com>
Cc: Nam Cao <namcao@linutronix.de>
Cc: oushixiong <oushixiong@kylinos.cn>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Qianqiang Liu <qianqiang.liu@163.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Sohil Mehta <sohil.mehta@intel.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Zimemrmann <tzimmermann@suse.de>
Cc: Thorsten Blum <thorsten.blum@linux.dev>
Cc: Ville Syrjala <ville.syrjala@linux.intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Cc: Yunhui Cui <cuiyunhui@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
||
|
|
95f091274f |
watchdog/softlockup: fix incorrect CPU utilization output during softlockup
Since we use 16-bit precision, the raw data will undergo integer division,
which may sometimes result in data loss. This can lead to slightly
inaccurate CPU utilization calculations. Under normal circumstances, this
isn't an issue. However, when CPU utilization reaches 100%, the
calculated result might exceed 100%. For example, with raw data like the
following:
sample_period 400000134 new_stat 83648414036 old_stat 83247417494
sample_period=400000134/2^24=23
new_stat=83648414036/2^24=4985
old_stat=83247417494/2^24=4961
util=105%
Below log will output:
CPU#3 Utilization every 0s during lockup:
#1: 0% system, 0% softirq, 105% hardirq, 0% idle
#2: 0% system, 0% softirq, 105% hardirq, 0% idle
#3: 0% system, 0% softirq, 100% hardirq, 0% idle
#4: 0% system, 0% softirq, 105% hardirq, 0% idle
#5: 0% system, 0% softirq, 105% hardirq, 0% idle
To avoid confusion, we enforce a 100% display cap when calculations exceed
this threshold.
We also round to the nearest multiple of 16.8 milliseconds to improve the
accuracy.
[yaozhenguo1@gmail.com: make get_16bit_precision() more accurate, fix comment layout]
Link: https://lkml.kernel.org/r/20250818081438.40540-1-yaozhenguo@jd.com
Link: https://lkml.kernel.org/r/20250812082510.32291-1-yaozhenguo@jd.com
Signed-off-by: ZhenguoYao <yaozhenguo1@gmail.com>
Cc: Bitao Hu <yaoma@linux.alibaba.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Max Kellermann <max.kellermann@ionos.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
||
|
|
41f88ddfd4 |
watchdog/softlockup: fix wrong output when watchdog_thresh < 3
When watchdog_thresh is below 3, sample_period will be less than 1 second. So the following output will print when softlockup: CPU#3 Utilization every 0s during lockup Fix this by changing time unit from seconds to milliseconds. Link: https://lkml.kernel.org/r/20250812074132.27810-1-yaozhenguo@jd.com Signed-off-by: ZhenguoYao <yaozhenguo1@gmail.com> Cc: Bitao Hu <yaoma@linux.alibaba.com> Cc: Li Huafei <lihuafei1@huawei.com> Cc: Max Kellermann <max.kellermann@ionos.com> Cc: Thomas Gleinxer <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
aaf05e96e9 |
kernel/watchdog: add /sys/kernel/{hard,soft}lockup_count
Patch series "sysfs: add counters for lockups and stalls", v2. Commits |
||
|
|
7123dbbef8 |
watchdog: fix watchdog may detect false positive of softlockup
When updating `watchdog_thresh`, there is a race condition between writing the new `watchdog_thresh` value and stopping the old watchdog timer. If the old timer triggers during this window, it may falsely detect a softlockup due to the old interval and the new `watchdog_thresh` value being used. The problem can be described as follow: # We asuume previous watchdog_thresh is 60, so the watchdog timer is # coming every 24s. echo 10 > /proc/sys/kernel/watchdog_thresh (User space) | +------>+ update watchdog_thresh (We are in kernel now) | | # using old interval and new `watchdog_thresh` +------>+ watchdog hrtimer (irq context: detect softlockup) | | +-------+ | | + softlockup_stop_all To fix this problem, introduce a shadow variable for `watchdog_thresh`. The update to the actual `watchdog_thresh` is delayed until after the old timer is stopped, preventing false positives. The following testcase may help to understand this problem. --------------------------------------------- echo RT_RUNTIME_SHARE > /sys/kernel/debug/sched/features echo -1 > /proc/sys/kernel/sched_rt_runtime_us echo 0 > /sys/kernel/debug/sched/fair_server/cpu3/runtime echo 60 > /proc/sys/kernel/watchdog_thresh taskset -c 3 chrt -r 99 /bin/bash -c "while true;do true; done" & echo 10 > /proc/sys/kernel/watchdog_thresh & --------------------------------------------- The test case above first removes the throttling restrictions for real-time tasks. It then sets watchdog_thresh to 60 and executes a real-time task ,a simple while(1) loop, on cpu3. Consequently, the final command gets blocked because the presence of this real-time thread prevents kworker:3 from being selected by the scheduler. This eventually triggers a softlockup detection on cpu3 due to watchdog_timer_fn operating with inconsistent variable - using both the old interval and the updated watchdog_thresh simultaneously. [nysal@linux.ibm.com: fix the SOFTLOCKUP_DETECTOR=n case] Link: https://lkml.kernel.org/r/20250502111120.282690-1-nysal@linux.ibm.com Link: https://lkml.kernel.org/r/20250421035021.3507649-1-luogengkun@huaweicloud.com Signed-off-by: Luo Gengkun <luogengkun@huaweicloud.com> Signed-off-by: Nysal Jan K.A. <nysal@linux.ibm.com> Cc: Doug Anderson <dianders@chromium.org> Cc: Joel Granados <joel.granados@kernel.org> Cc: Song Liu <song@kernel.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: "Nysal Jan K.A." <nysal@linux.ibm.com> Cc: Venkat Rao Bagalkote <venkat88@linux.ibm.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
a50b4fe095 |
Merge tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer cleanups from Thomas Gleixner: "A treewide hrtimer timer cleanup hrtimers are initialized with hrtimer_init() and a subsequent store to the callback pointer. This turned out to be suboptimal for the upcoming Rust integration and is obviously a silly implementation to begin with. This cleanup replaces the hrtimer_init(T); T->function = cb; sequence with hrtimer_setup(T, cb); The conversion was done with Coccinelle and a few manual fixups. Once the conversion has completely landed in mainline, hrtimer_init() will be removed and the hrtimer::function becomes a private member" * tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits) wifi: rt2x00: Switch to use hrtimer_update_function() io_uring: Use helper function hrtimer_update_function() serial: xilinx_uartps: Use helper function hrtimer_update_function() ASoC: fsl: imx-pcm-fiq: Switch to use hrtimer_setup() RDMA: Switch to use hrtimer_setup() virtio: mem: Switch to use hrtimer_setup() drm/vmwgfx: Switch to use hrtimer_setup() drm/xe/oa: Switch to use hrtimer_setup() drm/vkms: Switch to use hrtimer_setup() drm/msm: Switch to use hrtimer_setup() drm/i915/request: Switch to use hrtimer_setup() drm/i915/uncore: Switch to use hrtimer_setup() drm/i915/pmu: Switch to use hrtimer_setup() drm/i915/perf: Switch to use hrtimer_setup() drm/i915/gvt: Switch to use hrtimer_setup() drm/i915/huc: Switch to use hrtimer_setup() drm/amdgpu: Switch to use hrtimer_setup() stm class: heartbeat: Switch to use hrtimer_setup() i2c: Switch to use hrtimer_setup() iio: Switch to use hrtimer_setup() ... |
||
|
|
d6834d9c99 |
watchdog/hardlockup/perf: Fix perf_event memory leak
During stress-testing, we found a kmemleak report for perf_event:
unreferenced object 0xff110001410a33e0 (size 1328):
comm "kworker/4:11", pid 288, jiffies 4294916004
hex dump (first 32 bytes):
b8 be c2 3b 02 00 11 ff 22 01 00 00 00 00 ad de ...;....".......
f0 33 0a 41 01 00 11 ff f0 33 0a 41 01 00 11 ff .3.A.....3.A....
backtrace (crc 24eb7b3a):
[<00000000e211b653>] kmem_cache_alloc_node_noprof+0x269/0x2e0
[<000000009d0985fa>] perf_event_alloc+0x5f/0xcf0
[<00000000084ad4a2>] perf_event_create_kernel_counter+0x38/0x1b0
[<00000000fde96401>] hardlockup_detector_event_create+0x50/0xe0
[<0000000051183158>] watchdog_hardlockup_enable+0x17/0x70
[<00000000ac89727f>] softlockup_start_fn+0x15/0x40
...
Our stress test includes CPU online and offline cycles, and updating the
watchdog configuration.
After reading the code, I found that there may be a race between cleaning up
perf_event after updating watchdog and disabling event when the CPU goes offline:
CPU0 CPU1 CPU2
(update watchdog) (hotplug offline CPU1)
... _cpu_down(CPU1)
cpus_read_lock() // waiting for cpu lock
softlockup_start_all
smp_call_on_cpu(CPU1)
softlockup_start_fn
...
watchdog_hardlockup_enable(CPU1)
perf create E1
watchdog_ev[CPU1] = E1
cpus_read_unlock()
cpus_write_lock()
cpuhp_kick_ap_work(CPU1)
cpuhp_thread_fun
...
watchdog_hardlockup_disable(CPU1)
watchdog_ev[CPU1] = NULL
dead_event[CPU1] = E1
__lockup_detector_cleanup
for each dead_events_mask
release each dead_event
/*
* CPU1 has not been added to
* dead_events_mask, then E1
* will not be released
*/
CPU1 -> dead_events_mask
cpumask_clear(&dead_events_mask)
// dead_events_mask is cleared, E1 is leaked
In this case, the leaked perf_event E1 matches the perf_event leak
reported by kmemleak. Due to the low probability of problem recurrence
(only reported once), I added some hack delays in the code:
static void __lockup_detector_reconfigure(void)
{
...
watchdog_hardlockup_start();
cpus_read_unlock();
+ mdelay(100);
/*
* Must be called outside the cpus locked section to prevent
* recursive locking in the perf code.
...
}
void watchdog_hardlockup_disable(unsigned int cpu)
{
...
perf_event_disable(event);
this_cpu_write(watchdog_ev, NULL);
this_cpu_write(dead_event, event);
+ mdelay(100);
cpumask_set_cpu(smp_processor_id(), &dead_events_mask);
atomic_dec(&watchdog_cpus);
...
}
void hardlockup_detector_perf_cleanup(void)
{
...
perf_event_release_kernel(event);
per_cpu(dead_event, cpu) = NULL;
}
+ mdelay(100);
cpumask_clear(&dead_events_mask);
}
Then, simultaneously performing CPU on/off and switching watchdog, it is
almost certain to reproduce this leak.
The problem here is that releasing perf_event is not within the CPU
hotplug read-write lock. Commit:
|
||
|
|
d2254b0643 |
watchdog: Switch to use hrtimer_setup()
hrtimer_setup() takes the callback function pointer as argument and initializes the timer completely. Replace hrtimer_init() and the open coded initialization of hrtimer::function with the new setup mechanism. Patch was created by using Coccinelle. Signed-off-by: Nam Cao <namcao@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/a5c62f2b5e1ea1cf4d32f37bc2d21a8eeab2f875.1738746821.git.namcao@linutronix.de |
||
|
|
1751f872cc |
treewide: const qualify ctl_tables where applicable
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit
|
||
|
|
3c16fc0c91 |
watchdog: output this_cpu when printing hard LOCKUP
When printing "Watchdog detected hard LOCKUP on cpu", also output the detecting CPU. It's more intuitive. Link: https://lkml.kernel.org/r/20241210095238.63444-1-cuiyunhui@bytedance.com Signed-off-by: Yunhui Cui <cuiyunhui@bytedance.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Cc: Bitao Hu <yaoma@linux.alibaba.com> Cc: Joel Granados <joel.granados@kernel.org> Cc: John Ogness <john.ogness@linutronix.de> Cc: Liu Song <liusong@linux.alibaba.com> Cc: Song Liu <song@kernel.org> Cc: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
f5f4745a7f |
Merge tag 'mm-nonmm-stable-2024-11-24-02-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- The series "resource: A couple of cleanups" from Andy Shevchenko
performs some cleanups in the resource management code
- The series "Improve the copy of task comm" from Yafang Shao addresses
possible race-induced overflows in the management of
task_struct.comm[]
- The series "Remove unnecessary header includes from
{tools/}lib/list_sort.c" from Kuan-Wei Chiu adds some cleanups and a
small fix to the list_sort library code and to its selftest
- The series "Enhance min heap API with non-inline functions and
optimizations" also from Kuan-Wei Chiu optimizes and cleans up the
min_heap library code
- The series "nilfs2: Finish folio conversion" from Ryusuke Konishi
finishes off nilfs2's folioification
- The series "add detect count for hung tasks" from Lance Yang adds
more userspace visibility into the hung-task detector's activity
- Apart from that, singelton patches in many places - please see the
individual changelogs for details
* tag 'mm-nonmm-stable-2024-11-24-02-05' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (71 commits)
gdb: lx-symbols: do not error out on monolithic build
kernel/reboot: replace sprintf() with sysfs_emit()
lib: util_macros_kunit: add kunit test for util_macros.h
util_macros.h: fix/rework find_closest() macros
Improve consistency of '#error' directive messages
ocfs2: fix uninitialized value in ocfs2_file_read_iter()
hung_task: add docs for hung_task_detect_count
hung_task: add detect count for hung tasks
dma-buf: use atomic64_inc_return() in dma_buf_getfile()
fs/proc/kcore.c: fix coccinelle reported ERROR instances
resource: avoid unnecessary resource tree walking in __region_intersects()
ocfs2: remove unused errmsg function and table
ocfs2: cluster: fix a typo
lib/scatterlist: use sg_phys() helper
checkpatch: always parse orig_commit in fixes tag
nilfs2: convert metadata aops from writepage to writepages
nilfs2: convert nilfs_recovery_copy_block() to take a folio
nilfs2: convert nilfs_page_count_clean_buffers() to take a folio
nilfs2: remove nilfs_writepage
nilfs2: convert checkpoint file to be folio-based
...
|
||
|
|
e32c260195 |
sched_ext: Enable the ops breather and eject BPF scheduler on softlockup
On 2 x Intel Sapphire Rapids machines with 224 logical CPUs, a poorly behaving BPF scheduler can live-lock the system by making multiple CPUs bang on the same DSQ to the point where soft-lockup detection triggers before SCX's own watchdog can take action. It also seems possible that the machine can be live-locked enough to prevent scx_ops_helper, which is an RT task, from running in a timely manner. Implement scx_softlockup() which is called when three quarters of soft-lockup threshold has passed. The function immediately enables the ops breather and triggers an ops error to initiate ejection of the BPF scheduler. The previous and this patch combined enable the kernel to reliably recover the system from live-lock conditions that can be triggered by a poorly behaving BPF scheduler on Intel dual socket systems. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Douglas Anderson <dianders@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
8380101802 |
kernel/watchdog: always restore watchdog_softlockup(,hardlockup)_user_enabled after proc show
Otherwise when watchdog_enabled becomes 0, watchdog_softlockup(,hardlockup)_user_enabled will changes to 0 after proc show. Steps to reproduce: step 1: # cat /proc/sys/kernel/*watchdog 1 1 1 | name | value |----------------------------------|-------------------------- | watchdog_enabled | 1 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_user_enabled | 1 |----------------------------------|-------------------------- step 2: # echo 0 > /proc/sys/kernel/watchdog | name | value |----------------------------------|-------------------------- | watchdog_enabled | 0 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_user_enabled | 0 |----------------------------------|-------------------------- step 3: # cat /proc/sys/kernel/*watchdog 0 0 0 | name | value |----------------------------------|-------------------------- | watchdog_enabled | 0 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 0 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 0 |----------------------------------|-------------------------- | watchdog_user_enabled | 0 |----------------------------------|-------------------------- step 4: # echo 1 > /proc/sys/kernel/watchdog | name | value |----------------------------------|-------------------------- | watchdog_enabled | 0 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 0 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 0 |----------------------------------|-------------------------- | watchdog_user_enabled | 0 |----------------------------------|-------------------------- step 5: # cat /proc/sys/kernel/*watchdog 0 0 0 If we dont do "step 3", do "step 4" right after "step 2", it will be | name | value |----------------------------------|-------------------------- | watchdog_enabled | 1 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_user_enabled | 1 |----------------------------------|-------------------------- then everything works correctly. So this patch fix "step 3"'s value into | name | value |----------------------------------|-------------------------- | watchdog_enabled | 0 |----------------------------------|-------------------------- | watchdog_hardlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_softlockup_user_enabled | 1 |----------------------------------|-------------------------- | watchdog_user_enabled | 0 |----------------------------------|-------------------------- And still print 0 as before. Link: https://lkml.kernel.org/r/20240906094700.GA30052@didi-ThinkCentre-M930t-N000 Signed-off-by: Tio Zhang <tiozhang@didiglobal.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Cc: Ben Segall <bsegall@google.com> Cc: Daniel Bristot de Oliveira <bristot@redhat.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Krister Johansen <kjlx@templeofstupid.com> Cc: Li Zhe <lizhe.67@bytedance.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt (Google) <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Weißschuh <linux@weissschuh.net> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
97cf8f5f93 |
watchdog: handle the ENODEV failure case of lockup_detector_delay_init() separately
When watchdog_hardlockup_probe() is being called by lockup_detector_delay_init(), an error return of -ENODEV will happen for the arm64 arch when arch_perf_nmi_is_available() returns false. This means that NMI is not usable by the hard lockup detector and so has to be disabled. This can be considered a deficiency in that particular arm64 chip, but there is nothing we can do about it. That also means the following error will always be reported when the kernel boot up. watchdog: Delayed init of the lockup detector failed: -19 The word "failed" itself has a connotation that there is something wrong with the kernel which is not really the case here. Handle this special ENODEV case separately and explain the reason behind disabling hard lockup detector without causing anxiety for those users who read the above message and wonder about it. Link: https://lkml.kernel.org/r/20240802151621.617244-1-longman@redhat.com Signed-off-by: Waiman Long <longman@redhat.com> Cc: Douglas Anderson <dianders@chromium.org> Cc: Joel Granados <j.granados@samsung.com> Cc: Li Zhe <lizhe.67@bytedance.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
78eb4ea25c |
sysctl: treewide: constify the ctl_table argument of proc_handlers
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
|
||
|
|
eb6a9339ef |
Merge tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-mm updates from Andrew Morton:
"Mainly singleton patches, documented in their respective changelogs.
Notable series include:
- Some maintenance and performance work for ocfs2 in Heming Zhao's
series "improve write IO performance when fragmentation is high".
- Some ocfs2 bugfixes from Su Yue in the series "ocfs2 bugs fixes
exposed by fstests".
- kfifo header rework from Andy Shevchenko in the series "kfifo:
Clean up kfifo.h".
- GDB script fixes from Florian Rommel in the series "scripts/gdb:
Fixes for $lx_current and $lx_per_cpu".
- After much discussion, a coding-style update from Barry Song
explaining one reason why inline functions are preferred over
macros. The series is "codingstyle: avoid unused parameters for a
function-like macro""
* tag 'mm-nonmm-stable-2024-05-19-11-56' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (62 commits)
fs/proc: fix softlockup in __read_vmcore
nilfs2: convert BUG_ON() in nilfs_finish_roll_forward() to WARN_ON()
scripts: checkpatch: check unused parameters for function-like macro
Documentation: coding-style: ask function-like macros to evaluate parameters
nilfs2: use __field_struct() for a bitwise field
selftests/kcmp: remove unused open mode
nilfs2: remove calls to folio_set_error() and folio_clear_error()
kernel/watchdog_perf.c: tidy up kerneldoc
watchdog: allow nmi watchdog to use raw perf event
watchdog: handle comma separated nmi_watchdog command line
nilfs2: make superblock data array index computation sparse friendly
squashfs: remove calls to set the folio error flag
squashfs: convert squashfs_symlink_read_folio to use folio APIs
scripts/gdb: fix detection of current CPU in KGDB
scripts/gdb: make get_thread_info accept pointers
scripts/gdb: fix parameter handling in $lx_per_cpu
scripts/gdb: fix failing KGDB detection during probe
kfifo: don't use "proxy" headers
media: stih-cec: add missing io.h
media: rc: add missing io.h
...
|
||
|
|
91b6163be4 |
Merge tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl
Pull sysctl updates from Joel Granados:
- Remove sentinel elements from ctl_table structs in kernel/*
Removing sentinels in ctl_table arrays reduces the build time size
and runtime memory consumed by ~64 bytes per array. Removals for
net/, io_uring/, mm/, ipc/ and security/ are set to go into mainline
through their respective subsystems making the next release the most
likely place where the final series that removes the check for
proc_name == NULL will land.
This adds to removals already in arch/, drivers/ and fs/.
- Adjust ctl_table definitions and references to allow constification
- Remove unused ctl_table function arguments
- Move non-const elements from ctl_table to ctl_table_header
- Make ctl_table pointers const in ctl_table_root structure
Making the static ctl_table structs const will increase safety by
keeping the pointers to proc_handler functions in .rodata. Though no
ctl_tables where made const in this PR, the ground work for making
that possible has started with these changes sent by Thomas
Weißschuh.
* tag 'sysctl-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/sysctl/sysctl:
sysctl: drop now unnecessary out-of-bounds check
sysctl: move sysctl type to ctl_table_header
sysctl: drop sysctl_is_perm_empty_ctl_table
sysctl: treewide: constify argument ctl_table_root::permissions(table)
sysctl: treewide: drop unused argument ctl_table_root::set_ownership(table)
bpf: Remove the now superfluous sentinel elements from ctl_table array
delayacct: Remove the now superfluous sentinel elements from ctl_table array
kprobes: Remove the now superfluous sentinel elements from ctl_table array
printk: Remove the now superfluous sentinel elements from ctl_table array
scheduler: Remove the now superfluous sentinel elements from ctl_table array
seccomp: Remove the now superfluous sentinel elements from ctl_table array
timekeeping: Remove the now superfluous sentinel elements from ctl_table array
ftrace: Remove the now superfluous sentinel elements from ctl_table array
umh: Remove the now superfluous sentinel elements from ctl_table array
kernel misc: Remove the now superfluous sentinel elements from ctl_table array
|
||
|
|
393fb313a2 |
watchdog: allow nmi watchdog to use raw perf event
NMI watchdog permanently consumes one hardware counters per CPU on the system. For systems that use many hardware counters, this causes more aggressive time multiplexing of perf events. OTOH, some CPUs (mostly Intel) support "ref-cycles" event, which is rarely used. Add kernel cmdline arg nmi_watchdog=rNNN to configure the watchdog to use raw event. For example, on Intel CPUs, we can use "r300" to configure the watchdog to use ref-cycles event. If the raw event does not work, fall back to use "cycles". [akpm@linux-foundation.org: fix kerneldoc] Link: https://lkml.kernel.org/r/20240430060236.1878002-2-song@kernel.org Signed-off-by: Song Liu <song@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
602ba77361 |
watchdog: handle comma separated nmi_watchdog command line
Per the document, the kernel can accept comma separated command line like nmi_watchdog=nopanic,0. However, the code doesn't really handle it. Fix the kernel to handle it properly. Link: https://lkml.kernel.org/r/20240430060236.1878002-1-song@kernel.org Signed-off-by: Song Liu <song@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
11a921909f |
kernel misc: Remove the now superfluous sentinel elements from ctl_table array
This commit comes at the tail end of a greater effort to remove the empty elements at the end of the ctl_table arrays (sentinels) which will reduce the overall build time size of the kernel and run time memory bloat by ~64 bytes per sentinel (further information Link : https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/) Remove the sentinel from ctl_table arrays. Reduce by one the values used to compare the size of the adjusted arrays. Signed-off-by: Joel Granados <j.granados@samsung.com> |
||
|
|
e9a9292e23 |
watchdog/softlockup: Report the most frequent interrupts
When the watchdog determines that the current soft lockup is due to an interrupt storm based on CPU utilization, reporting the most frequent interrupts could be good enough for further troubleshooting. Below is an example of interrupt storm. The call tree does not provide useful information, but analyzing which interrupt caused the soft lockup by comparing the counts of interrupts during the lockup period allows to identify the culprit. [ 638.870231] watchdog: BUG: soft lockup - CPU#9 stuck for 26s! [swapper/9:0] [ 638.870825] CPU#9 Utilization every 4s during lockup: [ 638.871194] #1: 0% system, 0% softirq, 100% hardirq, 0% idle [ 638.871652] #2: 0% system, 0% softirq, 100% hardirq, 0% idle [ 638.872107] #3: 0% system, 0% softirq, 100% hardirq, 0% idle [ 638.872563] #4: 0% system, 0% softirq, 100% hardirq, 0% idle [ 638.873018] #5: 0% system, 0% softirq, 100% hardirq, 0% idle [ 638.873494] CPU#9 Detect HardIRQ Time exceeds 50%. Most frequent HardIRQs: [ 638.873994] #1: 330945 irq#7 [ 638.874236] #2: 31 irq#82 [ 638.874493] #3: 10 irq#10 [ 638.874744] #4: 2 irq#89 [ 638.874992] #5: 1 irq#102 ... [ 638.875313] Call trace: [ 638.875315] __do_softirq+0xa8/0x364 Signed-off-by: Bitao Hu <yaoma@linux.alibaba.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Liu Song <liusong@linux.alibaba.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20240411074134.30922-6-yaoma@linux.alibaba.com |
||
|
|
d7037381d0 |
watchdog/softlockup: Low-overhead detection of interrupt storm
The following softlockup is caused by interrupt storm, but it cannot be
identified from the call tree. Because the call tree is just a snapshot
and doesn't fully capture the behavior of the CPU during the soft lockup.
watchdog: BUG: soft lockup - CPU#28 stuck for 23s! [fio:83921]
...
Call trace:
__do_softirq+0xa0/0x37c
__irq_exit_rcu+0x108/0x140
irq_exit+0x14/0x20
__handle_domain_irq+0x84/0xe0
gic_handle_irq+0x80/0x108
el0_irq_naked+0x50/0x58
Therefore, it is necessary to report CPU utilization during the
softlockup_threshold period (report once every sample_period, for a total
of 5 reportings), like this:
watchdog: BUG: soft lockup - CPU#28 stuck for 23s! [fio:83921]
CPU#28 Utilization every 4s during lockup:
#1: 0% system, 0% softirq, 100% hardirq, 0% idle
#2: 0% system, 0% softirq, 100% hardirq, 0% idle
#3: 0% system, 0% softirq, 100% hardirq, 0% idle
#4: 0% system, 0% softirq, 100% hardirq, 0% idle
#5: 0% system, 0% softirq, 100% hardirq, 0% idle
...
This is helpful in determining whether an interrupt storm has occurred or
in identifying the cause of the softlockup. The criteria for determination
are as follows:
a. If the hardirq utilization is high, then interrupt storm should be
considered and the root cause cannot be determined from the call tree.
b. If the softirq utilization is high, then the call might not necessarily
point at the root cause.
c. If the system utilization is high, then analyzing the root
cause from the call tree is possible in most cases.
The mechanism requires a considerable amount of global storage space
when configured for the maximum number of CPUs. Therefore, adding a
SOFTLOCKUP_DETECTOR_INTR_STORM Kconfig knob that defaults to "yes"
if the max number of CPUs is <= 128.
Signed-off-by: Bitao Hu <yaoma@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Liu Song <liusong@linux.alibaba.com>
Link: https://lore.kernel.org/r/20240411074134.30922-5-yaoma@linux.alibaba.com
|
||
|
|
75060b6ead |
watchdog/core: remove sysctl handlers from public header
The functions are only used in the file where they are defined. Remove them from the header and make them static. Also guard proc_soft_watchdog with a #define-guard as it is not used otherwise. Link: https://lkml.kernel.org/r/20240306-const-sysctl-prep-watchdog-v1-1-bd45da3a41cf@weissschuh.net Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
55efe4abf9 |
watchdog: if panicking and we dumped everything, don't re-enable dumping
If, as part of handling a hardlockup or softlockup, we've already dumped all CPUs and we're just about to panic, don't reenable dumping and give some other CPU a chance to hop in there and add some confusing logs right as the panic is happening. Link: https://lkml.kernel.org/r/20231220131534.4.Id3a9c7ec2d7d83e4080da6f8662ba2226b40543f@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: John Ogness <john.ogness@linutronix.de> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Li Zhe <lizhe.67@bytedance.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
ee6bdb3f4b |
watchdog/hardlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
If two CPUs end up reporting a hardlockup at the same time then their logs could get interleaved which is hard to read. The interleaving problem was especially bad with the "perf" hardlockup detector where the locked up CPU is always the same as the running CPU and we end up in show_regs(). show_regs() has no inherent serialization so we could mix together two crawls if two hardlockups happened at the same time (and if we didn't have `sysctl_hardlockup_all_cpu_backtrace` set). With this change we'll fully serialize hardlockups when using the "perf" hardlockup detector. The interleaving problem was less bad with the "buddy" hardlockup detector. With "buddy" we always end up calling `trigger_single_cpu_backtrace(cpu)` on some CPU other than the running one. trigger_single_cpu_backtrace() always at least serializes the individual stack crawls because it eventually uses printk_cpu_sync_get_irqsave(). Unfortunately the fact that trigger_single_cpu_backtrace() eventually calls printk_cpu_sync_get_irqsave() (on a different CPU) means that we have to drop the "lock" before calling it and we can't fully serialize all printouts associated with a given hardlockup. However, we still do get the advantage of serializing the output of print_modules() and print_irqtrace_events(). Aside from serializing hardlockups from each other, this change also has the advantage of serializing hardlockups and softlockups from each other if they happen to happen at the same time since they are both using the same "lock". Even though nobody is expected to hang while holding the lock associated with printk_cpu_sync_get_irqsave(), out of an abundance of caution, we don't call printk_cpu_sync_get_irqsave() until after we print out about the hardlockup. This makes extra sure that, even if printk_cpu_sync_get_irqsave() somehow never runs we at least print that we saw the hardlockup. This is different than the choice made for softlockup because hardlockup is really our last resort. Link: https://lkml.kernel.org/r/20231220131534.3.I6ff691b3b40f0379bc860f80c6e729a0485b5247@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: John Ogness <john.ogness@linutronix.de> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Li Zhe <lizhe.67@bytedance.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
896260a6d6 |
watchdog/softlockup: use printk_cpu_sync_get_irqsave() to serialize reporting
Instead of introducing a spinlock, use printk_cpu_sync_get_irqsave() and printk_cpu_sync_put_irqrestore() to serialize softlockup reporting. Alone this doesn't have any real advantage over the spinlock, but this will allow us to use the same function in a future change to also serialize hardlockup crawls. NOTE: for the most part this serialization is important because we often end up in the show_regs() path and that has no built-in serialization if there are multiple callers at once. However, even in the case where we end up in the dump_stack() path this still has some advantages because the stack will be guaranteed to be together in the logs with the lockup message with no interleaving. NOTE: the fact that printk_cpu_sync_get_irqsave() is allowed to be called multiple times on the same CPU is important here. Specifically we hold the "lock" while calling dump_stack() which also gets the same "lock". This is explicitly documented to be OK and means we don't need to introduce a variant of dump_stack() that doesn't grab the lock. Link: https://lkml.kernel.org/r/20231220131534.2.Ia5906525d440d8e8383cde31b7c61c2aadc8f907@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: John Ogness <john.ogness@linutronix.de> Reviewed-by: Li Zhe <lizhe.67@bytedance.com> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
6dcde5d5f2 |
watchdog/hardlockup: adopt softlockup logic avoiding double-dumps
Patch series "watchdog: Better handling of concurrent lockups".
When we get multiple lockups at roughly the same time, the output in the
kernel logs can be very confusing since the reports about the lockups end
up interleaved in the logs. There is some code in the kernel to try to
handle this but it wasn't that complete.
Li Zhe recently made this a bit better for softlockups (specifically for
the case where `kernel.softlockup_all_cpu_backtrace` is not set) in commit
|
||
|
|
9d02330abd |
softlockup: serialized softlockup's log
If multiple CPUs trigger softlockup at the same time with 'softlockup_all_cpu_backtrace=0', the softlockup's logs will appear staggeredly in dmesg, which will affect the viewing of the logs for developer. Since the code path for outputting softlockup logs is not a kernel hotspot and the performance requirements for the code are not strict, locks are used to serialize the softlockup log output to improve the readability of the logs. Link: https://lkml.kernel.org/r/20231123084022.10302-1-lizhe.67@bytedance.com Signed-off-by: Li Zhe <lizhe.67@bytedance.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Zefan Li <lizefan.x@bytedance.com> Cc: John Ogness <john.ogness@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
8b793bcda6 |
watchdog: move softlockup_panic back to early_param
Setting softlockup_panic from do_sysctl_args() causes it to take effect later in boot. The lockup detector is enabled before SMP is brought online, but do_sysctl_args runs afterwards. If a user wants to set softlockup_panic on boot and have it trigger should a softlockup occur during onlining of the non-boot processors, they could do this prior to commit |
||
|
|
1f38c86bb2 |
watchdog/hardlockup: avoid large stack frames in watchdog_hardlockup_check()
After commit |
||
|
|
8d539b84f1 |
nmi_backtrace: allow excluding an arbitrary CPU
The APIs that allow backtracing across CPUs have always had a way to exclude the current CPU. This convenience means callers didn't need to find a place to allocate a CPU mask just to handle the common case. Let's extend the API to take a CPU ID to exclude instead of just a boolean. This isn't any more complex for the API to handle and allows the hardlockup detector to exclude a different CPU (the one it already did a trace for) without needing to find space for a CPU mask. Arguably, this new API also encourages safer behavior. Specifically if the caller wants to avoid tracing the current CPU (maybe because they already traced the current CPU) this makes it more obvious to the caller that they need to make sure that the current CPU ID can't change. [akpm@linux-foundation.org: fix trigger_allbutcpu_cpu_backtrace() stub] Link: https://lkml.kernel.org/r/20230804065935.v4.1.Ia35521b91fc781368945161d7b28538f9996c182@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: kernel test robot <lkp@intel.com> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
47f4cb4339 |
watchdog/sparc64: define HARDLOCKUP_DETECTOR_SPARC64
The HAVE_ prefix means that the code could be enabled. Add another variable for HAVE_HARDLOCKUP_DETECTOR_SPARC64 without this prefix. It will be set when it should be built. It will make it compatible with the other hardlockup detectors. Before, it is far from obvious that the SPARC64 variant is actually used: $> make ARCH=sparc64 defconfig $> grep HARDLOCKUP_DETECTOR .config CONFIG_HAVE_HARDLOCKUP_DETECTOR_BUDDY=y CONFIG_HAVE_HARDLOCKUP_DETECTOR_SPARC64=y After, it is more clear: $> make ARCH=sparc64 defconfig $> grep HARDLOCKUP_DETECTOR .config CONFIG_HAVE_HARDLOCKUP_DETECTOR_BUDDY=y CONFIG_HAVE_HARDLOCKUP_DETECTOR_SPARC64=y CONFIG_HARDLOCKUP_DETECTOR_SPARC64=y Link: https://lkml.kernel.org/r/20230616150618.6073-6-pmladek@suse.com Signed-off-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Douglas Anderson <dianders@chromium.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
a5fcc2367e |
watchdog/hardlockup: make HAVE_NMI_WATCHDOG sparc64-specific
There are several hardlockup detector implementations and several Kconfig values which allow selection and build of the preferred one. CONFIG_HARDLOCKUP_DETECTOR was introduced by the commit |
||
|
|
28168eca32 |
watchdog/hardlockup: move SMP barriers from common code to buddy code
It's been suggested that since the SMP barriers are only potentially useful for the buddy hardlockup detector, not the perf hardlockup detector, that the barriers belong in the buddy code. Let's move them and add clearer comments about why they're needed. Link: https://lkml.kernel.org/r/20230526184139.9.I5ab0a0eeb0bd52fb23f901d298c72fa5c396e22b@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Suggested-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
d3b62ace0f |
watchdog/buddy: cleanup how watchdog_buddy_check_hardlockup() is called
In the patch ("watchdog/hardlockup: detect hard lockups using secondary
(buddy) CPUs"), we added a call from the common watchdog.c file into the
buddy. That call could be done more cleanly. Specifically:
1. If we move the call into watchdog_hardlockup_kick() then it keeps
watchdog_timer_fn() simpler.
2. We don't need to pass an "unsigned long" to the buddy for the timer
count. In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") the count was changed to "atomic_t"
which is backed by an int, so we should match types.
Link: https://lkml.kernel.org/r/20230526184139.6.I006c7d958a1ea5c4e1e4dc44a25596d9bb5fd3ba@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
||
|
|
7a71d8e650 |
watchdog/hardlockup: in watchdog_hardlockup_check() use cpumask_copy()
In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") we started using a cpumask to keep track of
which CPUs to backtrace. When setting up this cpumask, it's better to use
cpumask_copy() than to just copy the structure directly. Fix this.
Link: https://lkml.kernel.org/r/20230526184139.4.Iccee2d1ea19114dafb6553a854ea4d8ab2a3f25b@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
||
|
|
2711e4adef |
watchdog/hardlockup: don't use raw_cpu_ptr() in watchdog_hardlockup_kick()
In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") there was no reason to use raw_cpu_ptr().
Using this_cpu_ptr() works fine.
Link: https://lkml.kernel.org/r/20230526184139.3.I660e103077dcc23bb29aaf2be09cb234e0495b2d@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
||
|
|
6426e8d1f2 |
watchdog/hardlockup: HAVE_NMI_WATCHDOG must implement watchdog_hardlockup_probe()
Right now there is one arch (sparc64) that selects HAVE_NMI_WATCHDOG without selecting HAVE_HARDLOCKUP_DETECTOR_ARCH. Because of that one architecture, we have some special case code in the watchdog core to handle the fact that watchdog_hardlockup_probe() isn't implemented. Let's implement watchdog_hardlockup_probe() for sparc64 and get rid of the special case. As a side effect of doing this, code inspection tells us that we could fix a minor bug where the system won't properly realize that NMI watchdogs are disabled. Specifically, on powerpc if CONFIG_PPC_WATCHDOG is turned off the arch might still select CONFIG_HAVE_HARDLOCKUP_DETECTOR_ARCH which selects CONFIG_HAVE_NMI_WATCHDOG. Since CONFIG_PPC_WATCHDOG was off then nothing will override the "weak" watchdog_hardlockup_probe() and we'll fallback to looking at CONFIG_HAVE_NMI_WATCHDOG. Link: https://lkml.kernel.org/r/20230526184139.2.Ic6ebbf307ca0efe91f08ce2c1eb4a037ba6b0700@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Suggested-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: "David S. Miller" <davem@davemloft.net> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
9ec272c586 |
watchdog/hardlockup: keep kernel.nmi_watchdog sysctl as 0444 if probe fails
Patch series "watchdog: Cleanup / fixes after buddy series v5 reviews".
This patch series attempts to finish resolving the feedback received
from Petr Mladek on the v5 series I posted.
Probably the only thing that wasn't fully as clean as Petr requested was
the Kconfig stuff. I couldn't find a better way to express it without a
more major overhaul. In the very least, I renamed "NON_ARCH" to
"PERF_OR_BUDDY" in the hopes that will make it marginally better.
Nothing in this series is terribly critical and even the bugfixes are
small. However, it does cleanup a few things that were pointed out in
review.
This patch (of 10):
The permissions for the kernel.nmi_watchdog sysctl have always been set at
compile time despite the fact that a watchdog can fail to probe. Let's
fix this and set the permissions based on whether the hardlockup detector
actually probed.
Link: https://lkml.kernel.org/r/20230527014153.2793931-1-dianders@chromium.org
Link: https://lkml.kernel.org/r/20230526184139.1.I0d75971cc52a7283f495aac0bd5c3041aadc734e@changeid
Fixes:
|
||
|
|
930d8f8dba |
watchdog/perf: adapt the watchdog_perf interface for async model
When lockup_detector_init()->watchdog_hardlockup_probe(), PMU may be not ready yet. E.g. on arm64, PMU is not ready until device_initcall(armv8_pmu_driver_init). And it is deeply integrated with the driver model and cpuhp. Hence it is hard to push this initialization before smp_init(). But it is easy to take an opposite approach and try to initialize the watchdog once again later. The delayed probe is called using workqueues. It need to allocate memory and must be proceed in a normal context. The delayed probe is able to use if watchdog_hardlockup_probe() returns non-zero which means the return code returned when PMU is not ready yet. Provide an API - lockup_detector_retry_init() for anyone who needs to delayed init lockup detector if they had ever failed at lockup_detector_init(). The original assumption is: nobody should use delayed probe after lockup_detector_check() which has __init attribute. That is, anyone uses this API must call between lockup_detector_init() and lockup_detector_check(), and the caller must have __init attribute Link: https://lkml.kernel.org/r/20230519101840.v5.16.If4ad5dd5d09fb1309cebf8bcead4b6a5a7758ca7@changeid Reviewed-by: Petr Mladek <pmladek@suse.com> Co-developed-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com> Signed-off-by: Douglas Anderson <dianders@chromium.org> Suggested-by: Petr Mladek <pmladek@suse.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
1f423c905a |
watchdog/hardlockup: detect hard lockups using secondary (buddy) CPUs
Implement a hardlockup detector that doesn't doesn't need any extra arch-specific support code to detect lockups. Instead of using something arch-specific we will use the buddy system, where each CPU watches out for another one. Specifically, each CPU will use its softlockup hrtimer to check that the next CPU is processing hrtimer interrupts by verifying that a counter is increasing. NOTE: unlike the other hard lockup detectors, the buddy one can't easily show what's happening on the CPU that locked up just by doing a simple backtrace. It relies on some other mechanism in the system to get information about the locked up CPUs. This could be support for NMI backtraces like [1], it could be a mechanism for printing the PC of locked CPUs at panic time like [2] / [3], or it could be something else. Even though that means we still rely on arch-specific code, this arch-specific code seems to often be implemented even on architectures that don't have a hardlockup detector. This style of hardlockup detector originated in some downstream Android trees and has been rebased on / carried in ChromeOS trees for quite a long time for use on arm and arm64 boards. Historically on these boards we've leveraged mechanism [2] / [3] to get information about hung CPUs, but we could move to [1]. Although the original motivation for the buddy system was for use on systems without an arch-specific hardlockup detector, it can still be useful to use even on systems that _do_ have an arch-specific hardlockup detector. On x86, for instance, there is a 24-part patch series [4] in progress switching the arch-specific hard lockup detector from a scarce perf counter to a less-scarce hardware resource. Potentially the buddy system could be a simpler alternative to free up the perf counter but still get hard lockup detection. Overall, pros (+) and cons (-) of the buddy system compared to an arch-specific hardlockup detector (which might be implemented using perf): + The buddy system is usable on systems that don't have an arch-specific hardlockup detector, like arm32 and arm64 (though it's being worked on for arm64 [5]). + The buddy system may free up scarce hardware resources. + If a CPU totally goes out to lunch (can't process NMIs) the buddy system could still detect the problem (though it would be unlikely to be able to get a stack trace). + The buddy system uses the same timer function to pet the hardlockup detector on the running CPU as it uses to detect hardlockups on other CPUs. Compared to other hardlockup detectors, this means it generates fewer interrupts and thus is likely better able to let CPUs stay idle longer. - If all CPUs are hard locked up at the same time the buddy system can't detect it. - If we don't have SMP we can't use the buddy system. - The buddy system needs an arch-specific mechanism (possibly NMI backtrace) to get info about the locked up CPU. [1] https://lore.kernel.org/r/20230419225604.21204-1-dianders@chromium.org [2] https://issuetracker.google.com/172213129 [3] https://docs.kernel.org/trace/coresight/coresight-cpu-debug.html [4] https://lore.kernel.org/lkml/20230301234753.28582-1-ricardo.neri-calderon@linux.intel.com/ [5] https://lore.kernel.org/linux-arm-kernel/20220903093415.15850-1-lecopzer.chen@mediatek.com/ Link: https://lkml.kernel.org/r/20230519101840.v5.14.I6bf789d21d0c3d75d382e7e51a804a7a51315f2c@changeid Signed-off-by: Colin Cross <ccross@android.com> Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Guenter Roeck <groeck@chromium.org> Signed-off-by: Tzung-Bi Shih <tzungbi@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Ian Rogers <irogers@google.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
d9b3629ade |
watchdog/hardlockup: have the perf hardlockup use __weak functions more cleanly
The fact that there watchdog_hardlockup_enable(), watchdog_hardlockup_disable(), and watchdog_hardlockup_probe() are declared __weak means that the configured hardlockup detector can define non-weak versions of those functions if it needs to. Instead of doing this, the perf hardlockup detector hooked itself into the default __weak implementation, which was a bit awkward. Clean this up. From comments, it looks as if the original design was done because the __weak function were expected to implemented by the architecture and not by the configured hardlockup detector. This got awkward when we tried to add the buddy lockup detector which was not arch-specific but wanted to hook into those same functions. This is not expected to have any functional impact. Link: https://lkml.kernel.org/r/20230519101840.v5.13.I847d9ec852449350997ba00401d2462a9cb4302b@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Reviewed-by: Petr Mladek <pmladek@suse.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
df95d3085c |
watchdog/hardlockup: rename some "NMI watchdog" constants/function
Do a search and replace of: - NMI_WATCHDOG_ENABLED => WATCHDOG_HARDLOCKUP_ENABLED - SOFT_WATCHDOG_ENABLED => WATCHDOG_SOFTOCKUP_ENABLED - watchdog_nmi_ => watchdog_hardlockup_ - nmi_watchdog_available => watchdog_hardlockup_available - nmi_watchdog_user_enabled => watchdog_hardlockup_user_enabled - soft_watchdog_user_enabled => watchdog_softlockup_user_enabled - NMI_WATCHDOG_DEFAULT => WATCHDOG_HARDLOCKUP_DEFAULT Then update a few comments near where names were changed. This is specifically to make it less confusing when we want to introduce the buddy hardlockup detector, which isn't using NMIs. As part of this, we sanitized a few names for consistency. [trix@redhat.com: make variables static] Link: https://lkml.kernel.org/r/20230525162822.1.I0fb41d138d158c9230573eaa37dc56afa2fb14ee@changeid Link: https://lkml.kernel.org/r/20230519101840.v5.12.I91f7277bab4bf8c0cb238732ed92e7ce7bbd71a6@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Tom Rix <trix@redhat.com> Reviewed-by: Tom Rix <trix@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
|
|
ed92e1ef52 |
watchdog/hardlockup: move perf hardlockup watchdog petting to watchdog.c
In preparation for the buddy hardlockup detector, which wants the same petting logic as the current perf hardlockup detector, move the code to watchdog.c. While doing this, rename the global variable to match others nearby. As part of this change we have to change the code to account for the fact that the CPU we're running on might be different than the one we're checking. Currently the code in watchdog.c is guarded by CONFIG_HARDLOCKUP_DETECTOR_PERF, which makes this change seem silly. However, a future patch will change this. Link: https://lkml.kernel.org/r/20230519101840.v5.11.I00dfd6386ee00da25bf26d140559a41339b53e57@changeid Signed-off-by: Douglas Anderson <dianders@chromium.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen-Yu Tsai <wens@csie.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Colin Cross <ccross@android.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Guenter Roeck <groeck@chromium.org> Cc: Ian Rogers <irogers@google.com> Cc: Lecopzer Chen <lecopzer.chen@mediatek.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Masayoshi Mizuma <msys.mizuma@gmail.com> Cc: Matthias Kaehlcke <mka@chromium.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com> Cc: Ricardo Neri <ricardo.neri@intel.com> Cc: Stephane Eranian <eranian@google.com> Cc: Stephen Boyd <swboyd@chromium.org> Cc: Sumit Garg <sumit.garg@linaro.org> Cc: Tzung-Bi Shih <tzungbi@chromium.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |