Pull RISC-V updates from Palmer Dabbelt:
- Support for runtime detection of the Svnapot extension
- Support for Zicboz when clearing pages
- We've moved to GENERIC_ENTRY
- Support for !MMU on rv32 systems
- The linear region is now mapped via huge pages
- Support for building relocatable kernels
- Support for the hwprobe interface
- Various fixes and cleanups throughout the tree
* tag 'riscv-for-linus-6.4-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (57 commits)
RISC-V: hwprobe: Explicity check for -1 in vdso init
RISC-V: hwprobe: There can only be one first
riscv: Allow to downgrade paging mode from the command line
dt-bindings: riscv: add sv57 mmu-type
RISC-V: hwprobe: Remove __init on probe_vendor_features()
riscv: Use --emit-relocs in order to move .rela.dyn in init
riscv: Check relocations at compile time
powerpc: Move script to check relocations at compile time in scripts/
riscv: Introduce CONFIG_RELOCATABLE
riscv: Move .rela.dyn outside of init to avoid empty relocations
riscv: Prepare EFI header for relocatable kernels
riscv: Unconditionnally select KASAN_VMALLOC if KASAN
riscv: Fix ptdump when KASAN is enabled
riscv: Fix EFI stub usage of KASAN instrumented strcmp function
riscv: Move DTB_EARLY_BASE_VA to the kernel address space
riscv: Rework kasan population functions
riscv: Split early and final KASAN population functions
riscv: Use PUD/P4D/PGD pages for the linear mapping
riscv: Move the linear mapping creation in its own function
riscv: Get rid of riscv_pfn_base variable
...
Pull interrupt updates from Thomas Gleixner:
"Core:
- Add tracepoints for tasklet callbacks which makes it possible to
analyze individual tasklet functions instead of guess working from
the overall duration of tasklet processing
- Ensure that secondary interrupt threads have their affinity
adjusted correctly
Drivers:
- A large rework of the RISC-V IPI management to prepare for a new
RISC-V interrupt architecture
- Small fixes and enhancements all over the place
- Removal of support for various obsolete hardware platforms and the
related code"
* tag 'irq-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
irqchip/st: Remove stih415/stih416 and stid127 platforms support
irqchip/gic-v3: Add Rockchip 3588001 erratum workaround
genirq: Update affinity of secondary threads
softirq: Add trace points for tasklet entry/exit
irqchip/loongson-pch-pic: Fix pch_pic_acpi_init calling
irqchip/loongson-pch-pic: Fix registration of syscore_ops
irqchip/loongson-eiointc: Fix registration of syscore_ops
irqchip/loongson-eiointc: Fix incorrect use of acpi_get_vec_parent
irqchip/loongson-eiointc: Fix returned value on parsing MADT
irqchip/riscv-intc: Add empty irq_eoi() for chained irq handlers
RISC-V: Use IPIs for remote icache flush when possible
RISC-V: Use IPIs for remote TLB flush when possible
RISC-V: Allow marking IPIs as suitable for remote FENCEs
RISC-V: Treat IPIs as normal Linux IRQs
irqchip/riscv-intc: Allow drivers to directly discover INTC hwnode
RISC-V: Clear SIP bit only when using SBI IPI operations
irqchip/irq-sifive-plic: Add syscore callbacks for hibernation
irqchip: Use of_property_read_bool() for boolean properties
irqchip/bcm-6345-l1: Request memory region
irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4
...
Pull irqchip changes from Marc Zyngier:
- Large RISC-V IPI rework to make way for a new interrupt
architecture
- More Loongarch fixes from Lianmin Lv, fixing issues in the so
called "dual-bridge" systems.
- Workaround for the nvidia T241 chip that gets confused in
3 and 4 socket configurations, leading to the GIC
malfunctionning in some contexts
- Drop support for non-firmware driven GIC configurarations
now that the old ARM11MP Cavium board is gone
- Workaround for the Rockchip 3588 chip that doesn't
correctly deal with the shareability attributes.
- Replace uses of of_find_property() with the more appropriate
of_property_read_bool()
- Make bcm-6345-l1 request its MMIO region
- Add suspend support to the SiFive PLIC
- Drop support for stih415, stih416 and stid127 platforms
Link: https://lore.kernel.org/lkml/20230421132104.3021536-1-maz@kernel.org
Alexandre Ghiti <alexghiti@rivosinc.com> says:
After multiple attempts, this patchset is now based on the fact that the
64b kernel mapping was moved outside the linear mapping.
The first patch allows to build relocatable kernels but is not selected
by default. That patch is a requirement for KASLR.
The second and third patches take advantage of an already existing powerpc
script that checks relocations at compile-time, and uses it for riscv.
* b4-shazam-merge:
riscv: Use --emit-relocs in order to move .rela.dyn in init
riscv: Check relocations at compile time
powerpc: Move script to check relocations at compile time in scripts/
riscv: Introduce CONFIG_RELOCATABLE
riscv: Move .rela.dyn outside of init to avoid empty relocations
riscv: Prepare EFI header for relocatable kernels
Link: https://lore.kernel.org/r/20230329045329.64565-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Alexandre Ghiti <alexghiti@rivosinc.com> says:
This patchset intends to improve tlb utilization by using hugepages for
the linear mapping.
As reported by Anup in v6, when STRICT_KERNEL_RWX is enabled, we must
take care of isolating the kernel text and rodata so that they are not
mapped with a PUD mapping which would then assign wrong permissions to
the whole region: it is achieved the same way as arm64 by using the
memblock nomap API which isolates those regions and re-merge them afterwards
thus avoiding any issue with the system resources tree creation.
arch/riscv/include/asm/page.h | 19 ++++++-
arch/riscv/mm/init.c | 102 ++++++++++++++++++++++++++--------
arch/riscv/mm/physaddr.c | 16 ++++++
drivers/of/fdt.c | 11 ++--
4 files changed, 118 insertions(+), 30 deletions(-)
* b4-shazam-merge:
riscv: Use PUD/P4D/PGD pages for the linear mapping
riscv: Move the linear mapping creation in its own function
riscv: Get rid of riscv_pfn_base variable
Link: https://lore.kernel.org/r/20230324155421.271544-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
During the early page table creation, we used to set the mapping for
PAGE_OFFSET to the kernel load address: but the kernel load address is
always offseted by PMD_SIZE which makes it impossible to use PUD/P4D/PGD
pages as this physical address is not aligned on PUD/P4D/PGD size (whereas
PAGE_OFFSET is).
But actually we don't have to establish this mapping (ie set va_pa_offset)
that early in the boot process because:
- first, setup_vm installs a temporary kernel mapping and among other
things, discovers the system memory,
- then, setup_vm_final creates the final kernel mapping and takes
advantage of the discovered system memory to create the linear
mapping.
During the first phase, we don't know the start of the system memory and
then until the second phase is finished, we can't use the linear mapping at
all and phys_to_virt/virt_to_phys translations must not be used because it
would result in a different translation from the 'real' one once the final
mapping is installed.
So here we simply delay the initialization of va_pa_offset to after the
system memory discovery. But to make sure noone uses the linear mapping
before, we add some guard in the DEBUG_VIRTUAL config.
Finally we can use PUD/P4D/PGD hugepages when possible, which will result
in a better TLB utilization.
Note that:
- this does not apply to rv32 as the kernel mapping lies in the linear
mapping.
- we rely on the firmware to protect itself using PMP.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Rob Herring <robh@kernel.org> # DT bits
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Tested-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20230324155421.271544-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Use directly phys_ram_base instead, riscv_pfn_base is just the pfn of
the address contained in phys_ram_base.
Even if there is no functional change intended in this patch, actually
setting phys_ram_base that early changes the behaviour of
kernel_mapping_pa_to_va during the early boot: phys_ram_base used to be
zero before this patch and now it is set to the physical start address of
the kernel. But it does not break the conversion of a kernel physical
address into a virtual address since kernel_mapping_pa_to_va should only
be used on kernel physical addresses, i.e. addresses greater than the
physical start address of the kernel.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Tested-by: Anup Patel <anup@brainfault.org>
Link: https://lore.kernel.org/r/20230324155421.271544-2-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
RISC-V now manages CPU topology using arch_topology which provides
CPU capacity and frequency related interfaces to access the cpu/freq
invariant in possible heterogeneous or DVFS-enabled platforms.
Here adds topology.h file to export the arch_topology interfaces for
replacing the scheduler's constant-based cpu/freq invariant accounting.
Signed-off-by: Song Shuai <suagrfillet@gmail.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Ley Foon Tan <lftan@kernel.org>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230323123924.3032174-1-suagrfillet@gmail.com
[Palmer: Fix the whitespace issues.]
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Evan Green <evan@rivosinc.com> says:
There's been a bunch of off-list discussions about this, including at
Plumbers. The original plan was to do something involving providing an
ISA string to userspace, but ISA strings just aren't sufficient for a
stable ABI any more: in order to parse an ISA string users need the
version of the specifications that the string is written to, the version
of each extension (sometimes at a finer granularity than the RISC-V
releases/versions encode), and the expected use case for the ISA string
(ie, is it a U-mode or M-mode string). That's a lot of complexity to
try and keep ABI compatible and it's probably going to continue to grow,
as even if there's no more complexity in the specifications we'll have
to deal with the various ISA string parsing oddities that end up all
over userspace.
Instead this patch set takes a very different approach and provides a set
of key/value pairs that encode various bits about the system. The big
advantage here is that we can clearly define what these mean so we can
ensure ABI stability, but it also allows us to encode information that's
unlikely to ever appear in an ISA string (see the misaligned access
performance, for example). The resulting interface looks a lot like
what arm64 and x86 do, and will hopefully fit well into something like
ACPI in the future.
The actual user interface is a syscall, with a vDSO function in front of
it. The vDSO function can answer some queries without a syscall at all,
and falls back to the syscall for cases it doesn't have answers to.
Currently we prepopulate it with an array of answers for all keys and
a CPU set of "all CPUs". This can be adjusted as necessary to provide
fast answers to the most common queries.
An example series in glibc exposing this syscall and using it in an
ifunc selector for memcpy can be found at [1].
I was asked about the performance delta between this and something like
sysfs. I created a small test program and ran it on a Nezha D1
Allwinner board. Doing each operation 100000 times and dividing, these
operations take the following amount of time:
- open()+read()+close() of /sys/kernel/cpu_byteorder: 3.8us
- access("/sys/kernel/cpu_byteorder", R_OK): 1.3us
- riscv_hwprobe() vDSO and syscall: .0094us
- riscv_hwprobe() vDSO with no syscall: 0.0091us
These numbers get farther apart if we query multiple keys, as sysfs will
scale linearly with the number of keys, where the dedicated syscall
stays the same. To frame these numbers, I also did a tight
fork/exec/wait loop, which I measured as 4.8ms. So doing 4
open/read/close operations is a delta of about 0.3%, versus a single vDSO
call is a delta of essentially zero.
[1] https://patchwork.ozlabs.org/project/glibc/list/?series=343050
* b4-shazam-merge:
RISC-V: Add hwprobe vDSO function and data
selftests: Test the new RISC-V hwprobe interface
RISC-V: hwprobe: Support probing of misaligned access performance
RISC-V: hwprobe: Add support for RISCV_HWPROBE_BASE_BEHAVIOR_IMA
RISC-V: Add a syscall for HW probing
RISC-V: Move struct riscv_cpuinfo to new header
Link: https://lore.kernel.org/r/20230407231103.2622178-1-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add a vDSO function __vdso_riscv_hwprobe, which can sit in front of the
riscv_hwprobe syscall and answer common queries. We stash a copy of
static answers for the "all CPUs" case in the vDSO data page. This data
is private to the vDSO, so we can decide later to change what's stored
there or under what conditions we defer to the syscall. Currently all
data can be discovered at boot, so the vDSO function answers all queries
when the cpumask is set to the "all CPUs" hint.
There's also a boolean in the data that lets the vDSO function know that
all CPUs are the same. In that case, the vDSO will also answer queries
for arbitrary CPU masks in addition to the "all CPUs" hint.
Signed-off-by: Evan Green <evan@rivosinc.com>
Link: https://lore.kernel.org/r/20230407231103.2622178-7-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This allows userspace to select various routines to use based on the
performance of misaligned access on the target hardware.
Rather than adding DT bindings, this change taps into the alternatives
mechanism used to probe CPU errata. Add a new function pointer alongside
the vendor-specific errata_patch_func() that probes for desirable errata
(otherwise known as "features"). Unlike the errata_patch_func(), this
function is called on each CPU as it comes up, so it can save
feature information per-CPU.
The T-head C906 has fast unaligned access, both as defined by GCC [1],
and in performing a basic benchmark, which determined that byte copies
are >50% slower than a misaligned word copy of the same data size (source
for this test at [2]):
bytecopy size f000 count 50000 offset 0 took 31664899 us
wordcopy size f000 count 50000 offset 0 took 5180919 us
wordcopy size f000 count 50000 offset 1 took 13416949 us
[1] https://github.com/gcc-mirror/gcc/blob/master/gcc/config/riscv/riscv.cc#L353
[2] https://pastebin.com/EPXvDHSW
Co-developed-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Evan Green <evan@rivosinc.com>
Reviewed-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Tested-by: Heiko Stuebner <heiko.stuebner@vrull.eu>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Paul Walmsley <paul.walmsley@sifive.com>
Link: https://lore.kernel.org/r/20230407231103.2622178-5-evan@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
riscv establishes 2 virtual mappings:
- early_pg_dir maps the kernel which allows to discover the system
memory
- swapper_pg_dir installs the final mapping (linear mapping included)
We used to map the dtb in early_pg_dir using DTB_EARLY_BASE_VA, and this
mapping was not carried over in swapper_pg_dir. It happens that
early_init_fdt_scan_reserved_mem() must be called before swapper_pg_dir is
setup otherwise we could allocate reserved memory defined in the dtb.
And this function initializes reserved_mem variable with addresses that
lie in the early_pg_dir dtb mapping: when those addresses are reused
with swapper_pg_dir, this mapping does not exist and then we trap.
The previous "fix" was incorrect as early_init_fdt_scan_reserved_mem()
must be called before swapper_pg_dir is set up otherwise we could
allocate in reserved memory defined in the dtb.
So move the dtb mapping in the fixmap region which is established in
early_pg_dir and handed over to swapper_pg_dir.
Fixes: 922b0375fc ("riscv: Fix memblock reservation for device tree blob")
Fixes: 8f3a2b4a96 ("RISC-V: Move DT mapping outof fixmap")
Fixes: 50e63dd8ed ("riscv: fix reserved memory setup")
Reported-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/all/f8e67f82-103d-156c-deb0-d6d6e2756f5e@microchip.com/
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230329081932.79831-2-alexghiti@rivosinc.com
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
To do remote FENCEs (i.e. remote TLB flushes) using IPI calls on the
RISC-V kernel, we need hardware mechanism to directly inject IPI from
the supervisor mode (i.e. RISC-V kernel) instead of using SBI calls.
The upcoming AIA IMSIC devices allow direct IPI injection from the
supervisor mode (i.e. RISC-V kernel). To support this, we extend the
riscv_ipi_set_virq_range() function so that IPI provider (i.e. irqchip
drivers can mark IPIs as suitable for remote FENCEs.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230328035223.1480939-5-apatel@ventanamicro.com
Currently, the RISC-V kernel provides arch specific hooks (i.e.
struct riscv_ipi_ops) to register IPI handling methods. The stats
gathering of IPIs is also arch specific in the RISC-V kernel.
Other architectures (such as ARM, ARM64, and MIPS) have moved away
from custom arch specific IPI handling methods. Currently, these
architectures have Linux irqchip drivers providing a range of Linux
IRQ numbers to be used as IPIs and IPI triggering is done using
generic IPI APIs. This approach allows architectures to treat IPIs
as normal Linux IRQs and IPI stats gathering is done by the generic
Linux IRQ subsystem.
We extend the RISC-V IPI handling as-per above approach so that arch
specific IPI handling methods (struct riscv_ipi_ops) can be removed
and the IPI handling is done through the Linux IRQ subsystem.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230328035223.1480939-4-apatel@ventanamicro.com
Various RISC-V drivers (such as SBI IPI, SBI Timer, SBI PMU, and
KVM RISC-V) don't have associated DT node but these drivers need
standard per-CPU (local) interrupts defined by the RISC-V privileged
specification.
We add riscv_get_intc_hwnode() in arch/riscv which allows RISC-V
drivers not having DT node to discover INTC hwnode which in-turn
helps these drivers to map per-CPU (local) interrupts provided
by the INTC driver.
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230328035223.1480939-3-apatel@ventanamicro.com
Conor Dooley <conor.dooley@microchip.com> says:
Here's my attempt at fixing both the use of an FPU on XIP kernels and
the issue that Jason ran into where CONFIG_FPU, which needs the
alternatives frame work for has_fpu() checks, could be enabled without
the alternatives actually being present.
For the former, a "slow" fallback that does not use alternatives is
added to riscv_has_extension_[un]likely() that can be used with XIP.
Obviously, we want to make use of Jisheng's alternatives based approach
where possible, so any users of riscv_has_extension_[un]likely() will
want to make sure that they select RISCV_ALTERNATIVE.
If they don't however, they'll hit the fallback path which (should,
sparing a silly mistake from me!) behave in the same way, thus
succeeding silently. Sounds like a
To prevent "depends on !XIP_KERNEL; select RISCV_ALTERNATIVE" spreading
like the plague through the various places that want to check for the
presence of extensions, and sidestep the potential silent "success"
mentioned above, all users RISCV_ALTERNATIVE are converted from selects
to dependencies, with the option being selected for all !XIP_KERNEL
builds.
I know that the VDSO was a key place that Jisheng wanted to use the new
helper rather than static branches, and I think the fallback path
should not cause issues there.
See the thread at [1] for the prior discussion.
1 - https://lore.kernel.org/linux-riscv/20230128172856.3814-1-jszhang@kernel.org/T/#m21390d570997145d31dd8bb95002fd61f99c6573
[Palmer: these were also merged into fixes, but there's a cleanup that
depends on the merge so I'm taking it into for-next as well.]
* b4-shazam-merge:
RISC-V: always select RISCV_ALTERNATIVE for non-xip kernels
RISC-V: add non-alternative fallback for riscv_has_extension_[un]likely()
Link: https://lore.kernel.org/r/20230324100538.3514663-1-conor.dooley@microchip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
* commit '1ee7fc3f4d0a93831a20d5566f203d5ad6d44de8':
RISC-V: always select RISCV_ALTERNATIVE for non-xip kernels
RISC-V: add non-alternative fallback for riscv_has_extension_[un]likely()
Conor Dooley <conor.dooley@microchip.com> says:
Here's my attempt at fixing both the use of an FPU on XIP kernels and
the issue that Jason ran into where CONFIG_FPU, which needs the
alternatives frame work for has_fpu() checks, could be enabled without
the alternatives actually being present.
For the former, a "slow" fallback that does not use alternatives is
added to riscv_has_extension_[un]likely() that can be used with XIP.
Obviously, we want to make use of Jisheng's alternatives based approach
where possible, so any users of riscv_has_extension_[un]likely() will
want to make sure that they select RISCV_ALTERNATIVE.
If they don't however, they'll hit the fallback path which (should,
sparing a silly mistake from me!) behave in the same way, thus
succeeding silently. Sounds like a
To prevent "depends on !XIP_KERNEL; select RISCV_ALTERNATIVE" spreading
like the plague through the various places that want to check for the
presence of extensions, and sidestep the potential silent "success"
mentioned above, all users RISCV_ALTERNATIVE are converted from selects
to dependencies, with the option being selected for all !XIP_KERNEL
builds.
I know that the VDSO was a key place that Jisheng wanted to use the new
helper rather than static branches, and I think the fallback path
should not cause issues there.
See the thread at [1] for the prior discussion.
1 - https://lore.kernel.org/linux-riscv/20230128172856.3814-1-jszhang@kernel.org/T/#m21390d570997145d31dd8bb95002fd61f99c6573
[Palmer: merging in the fixes as a branch as there's some features that
depend on it.]
* b4-shazam-merge:
RISC-V: always select RISCV_ALTERNATIVE for non-xip kernels
RISC-V: add non-alternative fallback for riscv_has_extension_[un]likely()
Link: https://lore.kernel.org/r/20230324100538.3514663-1-conor.dooley@microchip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The has_fpu() check, which in turn calls riscv_has_extension_likely(),
relies on alternatives to figure out whether the system has an FPU.
As a result, it will malfunction on XIP kernels, as they do not support
the alternatives mechanism.
When alternatives support is not present, fall back to using
__riscv_isa_extension_available() in riscv_has_extension_[un]likely()
instead stead, which handily takes the same argument, so that kernels
that do not support alternatives can accurately report the presence of
FPU support.
Fixes: 702e64550b ("riscv: fpu: switch has_fpu() to riscv_has_extension_likely()")
Link: https://lore.kernel.org/all/ad445951-3d13-4644-94d9-e0989cda39c3@spud/
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20230324100538.3514663-2-conor.dooley@microchip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
guoren@kernel.org <guoren@kernel.org> says:
From: Guo Ren <guoren@linux.alibaba.com>
The patches convert riscv to use the generic entry infrastructure from
kernel/entry/*. Some optimization for entry.S with new .macro and merge
ret_from_kernel_thread into ret_from_fork.
* b4-shazam-merge:
riscv: entry: Consolidate general regs saving/restoring
riscv: entry: Consolidate ret_from_kernel_thread into ret_from_fork
riscv: entry: Remove extra level wrappers of trace_hardirqs_{on,off}
riscv: entry: Convert to generic entry
riscv: entry: Add noinstr to prevent instrumentation inserted
riscv: ptrace: Remove duplicate operation
Link: https://lore.kernel.org/r/20230222033021.983168-1-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
This patch converts riscv to use the generic entry infrastructure from
kernel/entry/*. The generic entry makes maintainers' work easier and
codes more elegant. Here are the changes:
- More clear entry.S with handle_exception and ret_from_exception
- Get rid of complex custom signal implementation
- Move syscall procedure from assembly to C, which is much more
readable.
- Connect ret_from_fork & ret_from_kernel_thread to generic entry.
- Wrap with irqentry_enter/exit and syscall_enter/exit_from_user_mode
- Use the standard preemption code instead of custom
Suggested-by: Huacai Chen <chenhuacai@kernel.org>
Reviewed-by: Björn Töpel <bjorn@rivosinc.com>
Tested-by: Yipeng Zou <zouyipeng@huawei.com>
Tested-by: Jisheng Zhang <jszhang@kernel.org>
Signed-off-by: Guo Ren <guoren@linux.alibaba.com>
Signed-off-by: Guo Ren <guoren@kernel.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Link: https://lore.kernel.org/r/20230222033021.983168-5-guoren@kernel.org
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Andrew Jones <ajones@ventanamicro.com> says:
When the Zicboz extension is available we can more rapidly zero naturally
aligned Zicboz block sized chunks of memory. As pages are always page
aligned and are larger than any Zicboz block size will be, then
clear_page() appears to be a good candidate for the extension. While cycle
count and energy consumption should also be considered, we can be pretty
certain that implementing clear_page() with the Zicboz extension is a win
by comparing the new dynamic instruction count with its current count[1].
Doing so we see that the new count is just over a quarter of the old count
(see patch6's commit message for more details).
For those of you who reviewed v1[2], you may be looking for the memset()
patches. As pointed out in v1, and a couple follow-up emails, it's not
clear that patching memset() is a win yet. When I get a chance to test
on real hardware with a comprehensive benchmark collection then I can
post the memset() patches separately (assuming the benchmarks show it's
worthwhile).
* b4-shazam-merge:
RISC-V: KVM: Expose Zicboz to the guest
RISC-V: KVM: Provide UAPI for Zicboz block size
RISC-V: Use Zicboz in clear_page when available
RISC-V: cpufeatures: Put the upper 16 bits of patch ID to work
RISC-V: Add Zicboz detection and block size parsing
dt-bindings: riscv: Document cboz-block-size
RISC-V: Factor out body of riscv_init_cbom_blocksize loop
RISC-V: alternatives: Support patching multiple insns in assembly
Link: https://lore.kernel.org/r/20230224162631.405473-1-ajones@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Using memset() to zero a 4K page takes 563 total instructions, where
20 are branches. clear_page(), with Zicboz and a 64 byte block size,
takes 169 total instructions, where 4 are branches and 33 are nops.
Even though the block size is a variable, thanks to alternatives, we
can still implement a Duff device without having to do any preliminary
calculations. This is achieved by using the alternatives' cpufeature
value (the upper 16 bits of patch_id). The value used is the maximum
zicboz block size order accepted at the patch site. This enables us
to stop patching / unrolling when 4K bytes have been zeroed (we would
loop and continue after 4K if the page size would be larger)
For 4K pages, unrolling 16 times allows block sizes of 64 and 128 to
only loop a few times and larger block sizes to not loop at all. Since
cbo.zero doesn't take an offset, we also need an 'add' after each
instruction, making the loop body 112 to 160 bytes. Hopefully this
is small enough to not cause icache misses.
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Acked-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230224162631.405473-7-ajones@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
cpufeature IDs are consecutive integers starting at 26, so a 32-bit
patch ID allows an aircraft carrier load of feature IDs. Repurposing
the upper 16 bits still leaves a boat load of feature IDs and gains
16 bits which may be used to control patching on a per patch-site
basis.
This will be initially used in Zicboz's application to clear_page(),
as Zicboz's block size must also be considered. In that case, the
upper 16-bit value's role will be to convey the maximum block size
which the Zicboz clear_page() implementation supports.
cpufeature patch sites which need to check for the existence or
absence of other cpufeatures may also be able to make use of this.
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230224162631.405473-6-ajones@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
As pointed out in commit d374a16539 ("RISC-V: fix compile error
from deduplicated __ALTERNATIVE_CFG_2"), we need quotes around
parameters passed to macros within macros to avoid spaces being
interpreted as separators. ALT_NEW_CONTENT was trying to handle
this by defining new_c has a vararg, but this isn't sufficient
for calling ALTERNATIVE() from assembly with multiple instructions
in the new/old sequences. Remove the vararg "hack" and use quotes.
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230224162631.405473-2-ajones@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Andrew Jones <ajones@ventanamicro.com> says:
This series has no intended functional change. These cleanups were
found while renaming errata_id to patch_id in order to better
convey that its purpose is larger than errata (it's also for
cpufeatures).
* b4-shazam-merge:
riscv: cpufeature: Drop errata_list.h and other unused includes
riscv: lib: Include hwcap.h directly
riscv: alternatives: Rename errata_id to patch_id
riscv: alternatives: Remove unnecessary define and unused struct
riscv: Rename Kconfig.erratas to Kconfig.errata
riscv: Clarify RISCV_ALTERNATIVE help text
Link: https://lore.kernel.org/r/20230224154601.88163-1-ajones@ventanamicro.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Qinglin Pan <panqinglin00@gmail.com> says:
Svnapot is a RISC-V extension for marking contiguous 4K pages as a non-4K
page. This patch set is for using Svnapot in hugetlb fs and huge vmap.
This patchset adds a Kconfig item for using Svnapot in
"Platform type"->"SVNAPOT extension support". Its default value is on,
and people can set it off if they don't allow kernel to detect Svnapot
hardware support and leverage it.
Tested on:
- qemu rv64 with "Svnapot support" off and svnapot=true.
- qemu rv64 with "Svnapot support" on and svnapot=true.
- qemu rv64 with "Svnapot support" off and svnapot=false.
- qemu rv64 with "Svnapot support" on and svnapot=false.
* b4-shazam-merge:
riscv: mm: support Svnapot in huge vmap
riscv: mm: support Svnapot in hugetlb page
riscv: mm: modify pte format for Svnapot
Link: https://lore.kernel.org/r/20230209131647.17245-1-panqinglin00@gmail.com
[Palmer: fix up the feature ordering in the merge]
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Sergey Matyukevich <geomatsi@gmail.com> says:
Some time ago two different patches have been posted to fix stale TLB
entries that caused applications crashes.
The patch [0] suggested 'aggregating' mm_cpumask, i.e. current cpu is not
cleared for the switched-out task in switch_mm function. For additional
explanations see the commit message by Guo Ren. The same approach is
used by arc architecture, so another good comment is for switch_mm
in arch/arc/include/asm/mmu_context.h.
The patch [1] attempted to reduce the number of TLB flushes by deferring
(and possibly avoiding) them for CPUs not running the task.
Patch [1] has been merged. However we already have two bug reports from
different vendors. So apparently something is missing in the approach
suggested in [1]. In both cases the patch [0] fixed the issue.
This patch series reverts [1] and replaces it by [0].
[0] https://lore.kernel.org/linux-riscv/20221111075902.798571-1-guoren@kernel.org/
[1] https://lore.kernel.org/linux-riscv/20220829205219.283543-1-geomatsi@gmail.com/
* b4-shazam-merge:
riscv: asid: Fixup stale TLB entry cause application crash
Revert "riscv: mm: notify remote harts about mmu cache updates"
Link: https://lore.kernel.org/r/20230226150137.1919750-1-geomatsi@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
We're currently using stop_machine() to update ftrace & kprobes, which
means that the thread that takes text_mutex during may not be the same
as the thread that eventually patches the code. This isn't actually a
race because the lock is still held (preventing any other concurrent
accesses) and there is only one thread running during stop_machine(),
but it does trigger a lockdep failure.
This patch just elides the lockdep check during stop_machine.
Fixes: c15ac4fd60 ("riscv/ftrace: Add dynamic function tracer support")
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
Link: https://lore.kernel.org/r/20230303143754.4005217-1-conor.dooley@microchip.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Svnapot can be used to support 64KB hugetlb page, so it can become a new
option when using hugetlbfs. Add a basic implementation of hugetlb page,
and support 64KB as a size in it by using Svnapot.
For test, boot kernel with command line contains "default_hugepagesz=64K
hugepagesz=64K hugepages=20" and run a simple test like this:
tools/testing/selftests/vm/map_hugetlb 1 16
And it should be passed.
Signed-off-by: Qinglin Pan <panqinglin00@gmail.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20230209131647.17245-3-panqinglin00@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Add one alternative to enable/disable svnapot support, enable this static
key when "svnapot" is in the "riscv,isa" field of fdt and SVNAPOT compile
option is set. It will influence the behavior of has_svnapot. All code
dependent on svnapot should make sure that has_svnapot return true firstly.
Modify PTE definition for Svnapot, and creates some functions in pgtable.h
to mark a PTE as napot and check if it is a Svnapot PTE. Until now, only
64KB napot size is supported in spec, so some macros has only 64KB version.
Signed-off-by: Qinglin Pan <panqinglin00@gmail.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Link: https://lore.kernel.org/r/20230209131647.17245-2-panqinglin00@gmail.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
Pull more RISC-V updates from Palmer Dabbelt:
- Some cleanups and fixes for the Zbb-optimized string routines
- Support for custom (vendor or implementation defined) perf events
- COMMAND_LINE_SIZE has been increased to 1024
* tag 'riscv-for-linus-6.3-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: Bump COMMAND_LINE_SIZE value to 1024
drivers/perf: RISC-V: Allow programming custom firmware events
riscv, lib: Fix Zbb strncmp
RISC-V: improve string-function assembly
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
Pull RISC-V updates from Palmer Dabbelt:
"There's a bunch of fixes/cleanups throughout the tree as usual, but we
also have a handful of new features:
- Various improvements to the extension detection and alternative
patching infrastructure
- Zbb-optimized string routines
- Support for cpu-capacity in the RISC-V DT bindings
- Zicbom no longer depends on toolchain support
- Some performance and code size improvements to ftrace
- Support for ARCH_WANT_LD_ORPHAN_WARN
- Oops now contain the faulting instruction"
* tag 'riscv-for-linus-6.3-mw1' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (67 commits)
RISC-V: add a spin_shadow_stack declaration
riscv: mm: hugetlb: Enable ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
riscv: Add header include guards to insn.h
riscv: alternative: proceed one more instruction for auipc/jalr pair
riscv: Avoid enabling interrupts in die()
riscv, mm: Perform BPF exhandler fixup on page fault
RISC-V: take text_mutex during alternative patching
riscv: hwcap: Don't alphabetize ISA extension IDs
RISC-V: fix ordering of Zbb extension
riscv: jump_label: Fixup unaligned arch_static_branch function
RISC-V: Only provide the single-letter extensions in HWCAP
riscv: mm: fix regression due to update_mmu_cache change
scripts/decodecode: Add support for RISC-V
riscv: Add instruction dump to RISC-V splats
riscv: select ARCH_WANT_LD_ORPHAN_WARN for !XIP_KERNEL
riscv: vmlinux.lds.S: explicitly catch .init.bss sections from EFI stub
riscv: vmlinux.lds.S: explicitly catch .riscv.attributes sections
riscv: vmlinux.lds.S: explicitly catch .rela.dyn symbols
riscv: lds: define RUNTIME_DISCARD_EXIT
RISC-V: move some stray __RISCV_INSN_FUNCS definitions from kprobes
...
Pull tty / serial driver updates from Greg KH:
"Here is the big set of serial and tty driver updates for 6.3-rc1.
Once again, Jiri and Ilpo have done a number of core vt and tty/serial
layer cleanups that were much needed and appreciated. Other than that,
it's just a bunch of little tty/serial driver updates:
- qcom-geni-serial driver updates
- liteuart driver updates
- hvcs driver cleanups
- n_gsm updates and additions for new features
- more 8250 device support added
- fpga/dfl update and additions
- imx serial driver updates
- fsl_lpuart updates
- other tiny fixes and updates for serial drivers
All of these have been in linux-next for a while with no reported
problems"
* tag 'tty-6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (143 commits)
tty: n_gsm: add keep alive support
serial: imx: remove a redundant check
dt-bindings: serial: snps-dw-apb-uart: add dma & dma-names properties
soc: qcom: geni-se: Move qcom-geni-se.h to linux/soc/qcom/geni-se.h
tty: n_gsm: add TIOCMIWAIT support
tty: n_gsm: add RING/CD control support
tty: n_gsm: mark unusable ioctl structure fields accordingly
serial: imx: get rid of registers shadowing
serial: imx: refine local variables in rxint()
serial: imx: stop using USR2 in FIFO reading loop
serial: imx: remove redundant USR2 read from FIFO reading loop
serial: imx: do not break from FIFO reading loop prematurely
serial: imx: do not sysrq broken chars
serial: imx: work-around for hardware RX flood
serial: imx: factor-out common code to imx_uart_soft_reset()
serial: 8250_pci1xxxx: Add power management functions to quad-uart driver
serial: 8250_pci1xxxx: Add RS485 support to quad-uart driver
serial: 8250_pci1xxxx: Add driver for quad-uart support
serial: 8250_pci: Add serial8250_pci_setup_port definition in 8250_pcilib.c
tty: pcn_uart: fix memory leak with using debugfs_lookup()
...
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...